
2016
edition

Supervisers: Eric Chabert,
Eric Conte

Computing session 1

Processing data with a C++ program

Abstract:
Through this computing session, the ESIPAP students will apply their programming knowledge
for instrumental purpose. The simple example in this session consists in reading data acquired
by a sensor and in processing them before dumping the results in a text �le. The students
will apply the �rst notions of programming and will learn how to build a C/C++ project. The
second part of the session addresses the migration of the project to modular programming. The
students will learn the bene�t of the make�le-based compilation.

Pedagogical goals:

C/C++ language • Implementing, in an e�cient way, elementary algorithms.

• Reading and writing text �les.

• Manipulating data arrays.

• Handling strings and string-�oat conversions.

• Writing functions and making the code modular.

• Improving the robustness of the code in order to prevent
abnormal termination or unexpected actions.

Compiling/linking • Creating an executable �le from a simple source �le.

• Compiling and linking a project made up of several source
�les: in a manual or automated (Make�le) way.

Requirements:

• First notions of C/C++ programming: I/O access, arrays, pointers/references, functions.

1 / 19

Contents

I Introduction to the ESIPAP computing sessions 3

1 Foreword 4

2 The ESIPAP framework 5
2.1 Launching the Windows machine . 5
2.2 Accessing the Linux virtual machine . 5
2.3 Setting the environment . 6
2.4 Saving your work on a share disk . 6

II Getting started with GNU g++ 8

3 Hello world! 9
3.1 Main program source . 9
3.2 Building the main program . 9
3.3 Work to do . 10

4 Elementary statistics on a data �le 11
4.1 Physics context . 11
4.2 First program . 11
4.3 An improved code . 11

5 Processing a data �le 12
5.1 Physics context . 12
5.2 Tasks to achieve . 12

III Modular programming 13

6 Creating a project with several source �les 14
6.1 Modular programming concepts . 14
6.2 Work to do . 14
6.3 Include guard . 14

7 Compiling with GNU make 16
7.1 Some words about the program GNU make . 16
7.2 Minimal make�le . 16
7.3 Enriched make�le . 18

2 / 19

Part I

Introduction to the ESIPAP computing

sessions

3 / 19

1 Foreword

Computing sessions belong to the educational program of the ESIPAP (European School in
Instrumentation for Particle and Astroparticle Physics). Their goal is to teach the secrets of
C++ programming through practical work in the context of high energy physics. The session
is designed to be pedagogical. It is advised to read this document section-by-section. Indeed,
except the Physics context, each section of the document is a milestone allowing to acquire
computing skills and to validate them. The sections related to C++ programming are ranked
in terms of complexity. In order to facilitate the reading of this document and to measure his
progress, the student must �ll up the dedicated roadmap which includes a check-list and
empty �elds for personal report.

In the document, some graphical tags are used for highlighting some particular points. The list
of tags and their description are given below.

The student is invited to perform a pratical work by
writing a piece of code following some instructions.

Analyzing or interpreting task is requested and the re-
sults must be reported in the roadmap.

Some additional information is provided for extend-
ing the main explanations. It is devoted to curious stu-
dents.

A piece of advice is given to help the student in his
task.

4 / 19

2 The ESIPAP framework

The practical works must be performed on devoted machines where all required software are
properly installed. The user will �nd below all the instructions for setting the environment at
each beginning of session.

2.1 Launching the Windows machine

You must choose a computer in the computing room, spot its name and check that no peripheral
is missing (mouse, keyboard, ...). Then boot it and login to the Windows operator system
(supervisors will provide the password access).

2.2 Accessing the Linux virtual machine

The practical sessions will be achieved on a Linux machine for pedagogical motivations. You
must connect a virtual machine. First click on the "Start" button, i.e. the button with the
Windows logo, located on the bottom left of the screen (see Figure 1).

Figure 1: The Windows Start button

According to Figure 2, click on the virtual machine called "ESIPAP_slc6". A password could
be necessary and should be supplied by the supervisors.

Figure 2: The screen showing the available virtual machines

5 / 19

2.3 Setting the environment

To load the work environment, you can issue the command below at the shell prompt.

bash$source /home/esipap/tools/setup.sh

If the system is properly installed, the version of each tool to study should be displayed at the
screen like below. If you have an error, please call the supervisors.

--

ESIPAP environment

--

- GNU g++ version 4.9.1

- ROOT version 6.06/00

- Geant4 version 10.2.0

--

You must work in your local folder. Of course, it is advised to create one folder for each practical
session like: session1, session2, session3 and session4. Do not overwrite or remove �les
that you wrote in a previous session.

2.4 Saving your work on a share disk

Your work will be evaluated from the the piece of code that you wrote. At the end of each
session you must save your production on a share disk. The virtual machine is equipped with
one share disk called "ESIPAP-SHARE" and saved everyday. For accessing this disk, click on
the Linux tab named "places" according to Figure 3 and select the disk "ESIPAP-SHARE".

Figure 3: The Linux tab named "places"

6 / 19

After entering a password, the list of all connected machines in the room is displayed (see
Figure 4). Select the folder corresponding to your machine and put there all you work. Please
organize this folder by creating one folder for each practical session like: session1, session2,
session3 and session4.

Figure 4: List of all available machines in the room

7 / 19

Part II

Getting started with GNU g++

8 / 19

3 Hello world!

In this section, a very simple example of main program (the so-called hello world example) is
supplied and explained in order to help beginners in C++ programming. More experimented
students should be a little patient: challenging tasks are coming soon.

3.1 Main program source

The main program will be contained in a source �le called main.cpp. It displays at the screen
the message "Hello World!".

1 // STL headers

2 #include <iostream >

3 using namespace std;

4

5 // Main program

6 int main(int argc , char** argv)

7 {

8 // Display messages at screen

9 cout << "Hello World!" << endl;

10

11 // Normal program termination

12 return 0;

13 }

Listing 1: A �rst main program

3.2 Building the main program

To build with g++ compiler an executable �le from main.cpp �le, the simpliest command to
type at the shell prompt is:

bash$g ++ main.cpp

If the main.cpp �le compiles properly, an executable �le with the default name a.out is created.
Of course, we invite the students to use g++ in more advanced way by adding three items:

• giving a proper name to the executable program

• splitting the complation step from the linking step

• specifying some compilation options

To avoid retyping several times during the session the building commands, a shell script can
be written. This is an example of a such �le called mymake:

1 gcc -W -Wall -ansi -pedantic -o main.o -c main.cpp

2 gcc -o main main.o

Listing 2: A �rst building script

It is necessary to make this script executable before launching it.

bash$chmod +x mymake

9 / 19

3.3 Work to do

• Recopy the content of the main.cpp and mymake �les.

• Build the program and test that the "hellow world" mes-
sage appears properly when you launch the executable.

• Explain the compilation options used for generating the
object �le main.o.

10 / 19

4 Elementary statistics on a data �le

4.1 Physics context

We assume a digital sensor measuring energy deposits at a given frequency. The integer output
values must be positive and be smaller than 1023. These values are saved in text �les. An
example of a such �le containing 1000 events could be found here: events.dat. The �le format
is very simple: one datum a line.

4.2 First program

You must write a program achieving an elementary statistics study on the data �le. The
program will be made up of only one source �le called main.cpp.

• Read the data �le and save all the data into an array.

• Compute the following statistical information:

� the maximum value

� the minimum value

� the mean value

� the root-mean-square value

� the median

• Displaying at the screen these information.

4.3 An improved code

We would like to improve the robustness of the code. For testing the improvements, the student
can use the following input �le: events2.dat.

• The data �le name should be not hard-coded. Adapt your
code in order to give the �le name as an argument of your
program.

• Your text-�le reader should check that each value is con-
sistent with the range [0;1023] speci�ed in the physics con-
text. It must now warn the user when an irrelevant value
is found and must skip it.

11 / 19

https://drive.google.com/file/d/0B8sLz-hbU9yiVUdrUy1KM3k4U28/view?usp=sharing
https://drive.google.com/file/d/0B8sLz-hbU9yiendpWVF0c1lyUG8/view?usp=sharing

5 Processing a data �le

5.1 Physics context

We keep the context of the previous section. But now we must correct the output values by
applying :

• an o�set: a real value to subtract to the raw energy.

• a gain: a multiplicative value (de�ned as strictly positive real).

Thus the corrected energy (energy*) is the result of the following equation:

energy* = (energy-o�set)× gain

5.2 Tasks to achieve

• Writing a code which asks to the user to specify the values
of the o�set and the gain.

• Computing for each input energy value the corrected
value.

• Calculating the statistical information on the corrected
values and displaying them at the screen.

• Saving the results in an output �le with the following con-
ventions:

� the �le name: <input name>+"_"+<average value>. The
'.' character of the average value will be replace by the 'p'
character. For instance: "3.14" replaced by "3p14".

� The �le should contain one line a datum in scienti�c notation.

12 / 19

Part III

Modular programming

13 / 19

6 Creating a project with several source �les

6.1 Modular programming concepts

We would like to split the �le main.cpp into several source �les. The code should be reorganized
in terms of functions. We propose the following scheme for the �le naming:

• the header �le statistics.h and the source �le statistic.cpp containing functions
related to the statistics

• the header �le processing.h and the source �le processing.cpp containing functions
related to the energy correction algorithm.

• the header �le datafile.h and the source �le datafile.cpp containing functions for
reading or writing a data �le.

• the main �le main.cpp calling the di�erent functions.

6.2 Work to do

• Change your code by making functions and put them in
the di�erent �les.

• Adapt the script mymake for compiling this project with
several source �les.

• Test if the program is working properly.

6.3 Include guard

Usually in a C++ project, the core code of a header �le is contained between preprocessor
directives such as the �le below.

1 #ifndef MYFILE_H

2 #define MYFILE_H

3

4 //

5 // core code

6 //

7

8 #endif

Listing 3: A template of a C/C++ header �le

14 / 19

• What do these lines? Why are they written?

• Apply this structure to all your header �les.

15 / 19

7 Compiling with GNU make

In spite of its simplicity, the shell script mymake used for building the executable program has
two disavantages. First, each source �le is compiled when the script is launched. For big
project, compiling all �les could take a lot of time and this time could be an issue if only one
source �le has been changed since the last compilation. Secondly, the compilation command
must be repeated in the script as many time as there are source �les. Besides, new compilation
commands must be added if new source �les are created. The manual writing and management
of this script should be painful in the context of big project.

To tackle these two disavantages, project building can be performed by using an advanced
con�guration �le containing generic and compact compilation instructions. This kind of con-
�guration �le is called makefile. Numerous programs allow to interpret the make�le and to
launch automatically the compilation sequence: GNU make (called also gmake), nmake, tmake
... and, unfortunately, each corresponding make�le has a speci�c syntax. The following expla-
nations are based on the example of the most popular tool: GNU make.

7.1 Some words about the program GNU make

The GNU make tool is usually included in every Linux distributions and it is fully operational
on Lxplus session of the students. The corresponding executable program is called gmake or
simply make. To check the presence of this program, you can issue the command below at the
shell prompt: the release version must be displayed at the screen.

bash$make -v

By default, GNU make will look for a make�le called Makefile or makefile. The next sections
of this document are devoted to the syntax of this �le.

7.2 Minimal make�le

Here is explained the simplest way to write a make�le. For explaining the syntax, let has
consider the example of a project made up of a main source �le called main.cpp which use
two classes described in the header/source �les file1.h, file1.cpp, file2.h and file2.cpp.
Building an executable program called main can be performed with the following make�le:

1 # Makefile example

2

3 all: main

4

5 main.o: main.cpp

6 gcc -W -Wall -ansi -pedantic -o main.o -c main.cpp

7

8 file1.o: file1.cpp file1.h

9 gcc -W -Wall -ansi -pedantic -o file1.o -c file1.cpp

10

11 file2.o: file2.cpp file2.h

12 gcc -W -Wall -ansi -pedantic -o file2.o -c file2.cpp

13

14 main: main.o file1.o file2.o

16 / 19

15 gcc -o main main.o file1.o file2.o

16

17 clean:

18 rm -rf *.o main

Listing 4: A simple make�le

Like for shell script, lines begun with # are interpreted as comment lines. The �le is made up
of several instruction blocks called rules. Each rule targets to compile a source �le or to link
the object �les. The generic syntax for a rule is the following:

1 target: dependency1 dependency2 [...]

2 instructions1

3 instructions2

4 [...]

When GNU make treats a target, it analyzes �rst the dependencies. If a dependency is a �le, the
program determines if this �le has been changed since the previous compilation. If a depen-

dency is a target speci�ed in the make�le, the program checks if the target has been treated.
In the case of one dependency has changed or has to be rebuilt, GNU make treats the target
before and execute the instructions. In the other case, the instructions are skipped. Beware:
instructions are preceded by a tabulation character (and not by space characters).

To launch GNU make and to interpret the make�le, just type the following command at the shell
prompt:

bash$make

GNU make looks for the make�le and treats the �rst rule speci�ed in the make�le. Usually it is
called all. Of course, a given target could be speci�ed to the program by set the target name
as an argument of make command. This is the example of application to the target main:

bash$make main

We focus the user that the following make�le contains a speci�c rules called clean. It is very
useful to remove �les produced by g++ (object �les *.o and executable program) in order to
back to the original source.

bash$make clean

• By analyzing the example above, write a make�le adapted
to the programming project.

• Clean your project with the make�le rule clean (a copy of
the source �le must be saved in a safe place in case of an
unexpected deletion due to a bug in the make�le).

• Compile the project with the make�le.

• Check that if only one �le is changed, only source depend-
ing on this �le are treated in the next GNU make run.

17 / 19

Some developers prefer splitting the clean target into two targets: clean
for removing only temporary �les (object �les) and mrproper for remov-
ing all compiler produced �les (object �les and executable).

7.3 Enriched make�le

The previous make�le example is not really automated. In the next example, internal variables
are used and allow to write compact and generic rules.

1 # Makefile example using variable

2

3 CC=g++

4

5 CFLAGS = -W -Wall -ansi -pedantic

6 SRCS = $(wildcard *.cpp)

7 HDRS = $(wildcard *.h)

8 OBJS = $(SRCS:.cpp=.o)

9 EXEC=main

10

11

12 all: $(SRCS) $(EXEC)

13

14 $(EXEC): $(OBJS)

15 $(CC) $(LDFLAGS) $(OBJS) -o $@

16

17 %.o: %.cpp %.h

18 $(CC) $(CFLAGS) -c $< -o $@

19

20 clean:

21 rm -f *.o $(EXEC)

Listing 5: an automated make�le

De�nition of variables follows the scheme VARIABLE = value. The list of variables used in the
analysed make�le can be found below. Of course, the user can de�ne his/her own variables.

• CC : compiler command

• CFLAGS: compiler options

• SRCS: list of source �les (*.cpp).

• HDRS: list of header �les (*.h).

• OBJS: list of object �les (*.o).

• EXEC : name of the executable program to create.

To access the content of a variable, the syntax is: $(VARIABLE). For information, the special
value $(wildcard *) is very useful because it allows to extract a list of �les from the local

18 / 19

folder sa�sfying a given criterion.

Then there are also some special variables, internal to GNU make which can be used in the
di�erent rules. The two such variables used in the example are very powerful:

• $@: name of the target.

• $<: name of the �rst dependency.

Finally, repeating rule de�nition could be avoided by using automated rules. Thus, the following
rule is applied to every �le ended with '.o'. The character % replace the name of the �les.

1 %.o: %.cpp %.h

2 commands1

3 commands2

4 [...]

• Adapt (if necessary) the automated make�le to the pro-
gramming project.

• Compile your program with the obtained make�le

19 / 19

	I Introduction to the ESIPAP computing sessions
	Foreword
	The ESIPAP framework
	Launching the Windows machine
	Accessing the Linux virtual machine
	Setting the environment
	Saving your work on a share disk

	II Getting started with GNU g++
	Hello world!
	Main program source
	Building the main program
	Work to do

	Elementary statistics on a data file
	Physics context
	First program
	An improved code

	Processing a data file
	Physics context
	Tasks to achieve

	III Modular programming
	Creating a project with several source files
	Modular programming concepts
	Work to do
	Include guard

	Compiling with GNU make
	Some words about the program GNU make
	Minimal makefile
	Enriched makefile

