particle. Experimental

European School of Instrumentation in Particle & Astroparticle Physics

2. a few things about
particle accelerators particle accelerators

a small hint…

 $E=mc^2$

Aren't natural radioactive processes enough? What about cosmic rays?

Why accelerating and colliding particles?

Aren't natural radioactive processes enough? What about cosmic rays?

$$
E = mc^2
$$

• Probe smaller scale

Produce heavier particles

High energy Large number of collisions

$$
N = \mathcal{L} \cdot \sigma
$$

- Detect rare processes
- Precision measurements

Luminosity

In a collider ring…

$$
\mathcal{L} = \frac{1}{4\pi} \frac{f k N_1 N_2}{\sigma_x \sigma_y} \text{Current} \quad \text{Bean sizes (RMS)}
$$

What particle to accelerate and collide?

• **Stable (charged) particle**

- \checkmark Electron/positron
- \checkmark Proton/antiproton

what particle should we use?

• **Secondary beams of charged or neutral particles**

- \checkmark (Anti)neutrinos
- \checkmark Muons
- \checkmark Photons
- \checkmark Charged pions
- \checkmark Kaons

Particle accelerations for dummies

(non-relativistic)

\nLorentz Force

\n
$$
\vec{F}_L = q\left(\vec{E} + \vec{v} \times \vec{B}\right)
$$

time variation of kinetic energy

$$
\frac{dE_{\rm kin}}{dt} = \vec{F_L} \cdot \vec{v} = q\vec{v} \cdot \vec{E}
$$

- Only longitudinal component of electrical field matters
- Time-varying electrical field to change energy
- (Static) magnetic field cannot change particle momentum…
- ... but can be used to bend its trajectory!

A brief history of particle accelerators - part I

Cockcroft and Walton's apparatus

Van de Graaff electrostatic generator

Two-stage Tandem accelerator

A brief history of particle accelerators – part 2

RF linear accelerator (LINAC)

LINAC lenght

- Example: proton (A=1) with E = 1 MeV (β = 4.6 10⁻²) if v_{RF} = 7 MHz will travel about 1m in half a RF cycle
- Total LINAC length increases dramatically with increasing speed
- A possible solution would be to increase v_{RF}
- ... but at very high v_{RF} open tube structure radiates too much energy!

RF cavities

- The problem can be solved by closing the structure as a cavity…
- Cavities can be joined
- Choosing k=2 currents on walls cancel, and walls can eliminated

Alvarez structure

 $k = 2$, $v_{RF} \sim 100$ MHz, $\lambda \le L$

protons $\beta \sim 1$ for E ~ 10 GeV electrons $\beta \sim 1$ for E ~ 10 MeV

already at those energies $v \sim c \rightarrow$ drift tube length can stay constant!

Example: Fermilab LINAC

(Syncro) Cyclotron

Berkeley syncro-cyclotron (p, E = 340 MeV)

A brief history of particle accelerators – part 3

(or as varying magnetic fields could also be used to accelerate particles)

- 1923 Wideröe, a young Norwegian student, draws in his laboratory notebook the design of the betatron with the well-known 2-to-1 rule. Two years later he adds the condition for radial stability but does not publish.
- 1927 Later in Aachen Wideröe makes a model betatron, but it does not work. Discouraged he changes course and builds the linear accelerator mentioned in Table 2.
- 1940 Kerst re-invents the betatron and builds the first working machine for 2.2 MeV electrons.

1950 Kerst builds the world's largest betatron of 300 MeV.

Betatron acceleration

- Trick is to arrange magnetic field increase in vicinity of beam to correspond to increase of particle energy
	- \checkmark beam stays on the same orbit ("2-to-1 rule")
- Betatrons insensitive to relativistic effects
	- \checkmark ideal for accelerating electrons

Accelerators work together!

Lawrence Berkeley National Laboratory (antiproton discovery)

The road toward syncrotrons

- Problems in RF acceleration in the 1940s…
	- \checkmark Linacs
		- poor RF sources; electron tube technology was yet in its infancy
	- \checkmark Cyclotrons
		- relativistic effects \rightarrow asynchronous RF
	- **Betatrons**
		- intensity of trapped beam depends critically on the injected beam's positions and angles
		- analysis of particle transverse oscillations led to theory of betatron oscillations
- Advancements during WW2
	- \checkmark High power microwave tubes for the radars were put to practical use
		- magnetrons and klystrons
	- \checkmark Discovery of the phase stability principle in RF acceleration
		- Vladimir Veksler (1944) and Edwin M. McMillan (1945)
		- cyclotron \rightarrow synchrocyclotron \rightarrow synchrotron

Phase stability

- Particles of different energies have differences in velocity and in orbit length
	- \checkmark particles may be asynchronous wrt RF frequency
- RF field have however a restoring force at a certain phase, around which asynchronous particles be captured in bunches
- The phenomenon enables a stable, continuous acceleration of the whole particles in a bunch to high energies: circular accelerators based on this principle are called "synchrotron"
	- \checkmark Principle is also applicable to linacs, particularly in low energy range, to bunch continuous beams emitted from a source and to lead bunches to downstream accelerator sections

Syncrotron

Storage rings

Livingstone chart

Marco Delmastro Experimental Particle Physics **26**

Bending: dipoles

LHC dipoles

LHC DIPOLE: STANDARD CROSS-SECTION

Focusing in one direction, defocusing in the other

Syncrotron radiation

energy lost per revolution

$$
\Delta E = \frac{4\pi}{3}\frac{1}{4\pi\epsilon_0}\left(\frac{e^2\beta^3\gamma^4}{R}\right)
$$

electrons vs. protons

$$
\frac{\Delta E_e}{\Delta E_p} \simeq \left(\frac{m_p}{m_e}\right)^4
$$

It's easier to accelerate protons to higher energies, but protons are fundamentals…

e+-e- vs. hadron collider

 $f_{a/A}(x_a, Q^2)$

Parton distributions measured in DIS

e+-e- vs. hadron collider

Accelerators around the world (past and present)

Tevatron

$\overline{p}\overline{p}$ collider (1983-2011) $= 1.96$ TeV

CDF-D0 top quark discovery Higgs search new physics

Marco Delmastro **Experimental Particle Physics Experimental Particle Physics 1999**

Experimental Areas at SLAC

ation H

SLAC Linear Collider (1990-1998) Z-pole, EW physics, B-physics, polarized beams PEPII Asymmetric Storage Ring (1999-2008) 3 GeV e+ on 9 GeV e- (very high luminosity) CP Violation, B-physics, rare decays

SPEAR

Demo

Collider Marco Delmastro **Experimental Hall** And Experimental Particle Physics

Positron Arc Alle

SLAC

Marco Delmastro Experimental Particle Physics **44**

e+-e- collider (1998-2000) \sqrt{s} = 91 GeV (LEP) $\sqrt{s} \sim 200$ GeV (LEP2)

LHC

SUISSE

FRANCE

pp collider (2008-present) \sqrt{s} = 7-13 (14) GeV

CMS

LHC 27 km

 $LHCb-$

CERN Prévessin

 \overline{a}

ATLAS-

SPS_7 km

CERN Meyrin

-ALICE

CERN accelerator complex

Beam emittance

- Beam size and distribution of particle momenta evolve during motion in collider ring
- Each particle position in *phase space* sits in ellipse of constant area
	- \checkmark From beam motion equation and Liouville theorem...

Beam dimensions

position along beam directions

Gaussian width (RMS) in transverse direction

emittance Twiss parameter (amplitude function)

"Beta star" at interaction point, often adjusted to be minimum

$$
\beta^* = \beta(z_0)
$$

Improvements to luminosity?

Crossing angle

- To avoid parasitic encounters, beams with close bunches often cross at an angle \checkmark LHC beams cross at an angle of 300 microradian (bunch spacing 25 ns)
- Crossing angle has an impact on luminosity!

Zàμμ event with 25 reconstructed vertices

Production of secondary beams

Production of secondary beams

Future colliders? ILC

other

Future colliders? CLIC

Future colliders? Muon collider

