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particlephysics
Experimental

2. a few things about 
particle accelerators
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why?
a small hint…

Aren’t natural radioactive processes enough? 
What about cosmic rays? 



Why accelerating and colliding particles?

• Probe smaller scale
• Produce heavier particles
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High energy Large number of collisions

• Detect rare processes
• Precision measurements

Aren’t natural radioactive processes enough? What about cosmic rays? 



Luminosity
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Number of events 
in unit of time

[L2][t-1] [L-2 t-1]

σ(pp à H+X) ~ 20 pb1034 cm-2 s-1?

In a collider ring…
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What particle to accelerate and collide?

• Stable (charged) particle
ü Electron/positron
ü Proton/antiproton

• Secondary beams of charged or neutral particles
ü (Anti)neutrinos
ü Muons
ü Photons
ü Charged pions
ü Kaons
ü …
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what particle should we use? 



Particle accelerations for dummies

• Only longitudinal component of electrical field matters
• Time-varying electrical field to change energy
• (Static) magnetic field cannot change particle momentum…
• … but can be used to bend its trajectory!
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(non-relativistic) 
Lorentz Force 

time variation of 
kinetic energy 



A brief history of particle accelerators – part 1
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Cockcroft and Walton's apparatus 
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Van de Graaff electrostatic generator 
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Two-stage Tandem accelerator 
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A brief history of particle accelerators – part 2
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RF linear accelerator (LINAC)
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Ln

Wideore: k=1, L<λ

n n+1



LINAC lenght

• Example: proton (A=1) with E = 1 MeV (β = 4.6 10-2) if νRF = 7 MHz will 
travel about 1m in half a RF cycle

• Total LINAC length increases dramatically with increasing speed
• A possible solution would be to increase νRF

• … but at very high νRF open tube structure radiates too much energy!
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Total LINAC length

energy gain per gap ion atomic number

final particle energy



RF cavities
• The problem can be solved by 

closing the structure as a cavity…
• Cavities can be joined
• Choosing k=2 currents on walls 

cancel, and walls can eliminated
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k=1 k=2



Alvarez structure
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k = 2 , νRF ~100 MHz , λ < L
protons β ~ 1 for E ~ 10 GeV electrons β ~ 1 for E ~ 10 MeV

already at those energies v~c à drift tube length can stay constant!



Example: Fermilab LINAC
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(Syncro) Cyclotron
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weak focusing

for relativistic particle cyclotron frequency 
should be adjusted to speed/emergy
(syncro-cyclotron)



Berkeley syncro-cyclotron (p, E = 340 MeV)
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A brief history of particle accelerators – part 3
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(or as varying magnetic fields could also be used to accelerate particles)



Betatron acceleration

• Trick is to arrange magnetic field increase in vicinity of 
beam to correspond to increase of particle energy
ü beam stays on the same orbit (“2-to-1 rule”)

• Betatrons insensitive to relativistic effects
ü ideal for accelerating electrons
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from… … to …



Accelerators work together!
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Cockroft-Walton 
(source)

Alvarez LINAC
(injector)

Bevatron (6 GeV)

Lawrence Berkeley National Laboratory
(antiproton discovery)



The road toward syncrotrons
• Problems in RF acceleration in the 1940s…

ü Linacs
• poor RF sources; electron tube technology was yet in its infancy

ü Cyclotrons
• relativistic effects à asynchronous RF 

ü Betatrons
• intensity of trapped beam depends critically on the injected beam’s positions and angles
• analysis of particle transverse oscillations led to theory of betatron oscillations

• Advancements during WW2
ü High power microwave tubes for the radars were put to practical use

• magnetrons and klystrons

ü Discovery of the phase stability principle in RF acceleration 
• Vladimir Veksler (1944) and Edwin M. McMillan (1945) 
• cyclotron à synchrocyclotron à synchrotron 
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Phase stability
• Particles of different energies have differences in velocity and in orbit length

ü particles may be asynchronous wrt RF frequency 

• RF field have however a restoring force at a certain phase, around which asynchronous particles 
be captured in bunches

• The phenomenon enables a stable, continuous acceleration of the whole particles in a bunch to 
high energies:  circular accelerators based on this principle are called “synchrotron”
ü Principle is also applicable to linacs, particularly in low energy range, to bunch continuous 

beams emitted from a source and to lead bunches to downstream accelerator sections
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syncrotron oscillations



Syncrotron
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3 GeV protons 
BNL ~ 1950



Storage rings

Marco Delmastro Experimental Particle Physics 25



Livingstone chart
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Bending: dipoles

Marco Delmastro Experimental Particle Physics 27

Bx = 0
By = B
Bz = 0

B
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LHC dipoles
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Focusing (defocusing): quadrupoles
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Bx = -g x x
By = -g x y
Bz = 0

g[T/n] = field gradient
Focusing in one direction, defocusing in the other

FO-DO
array
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Syncrotron radiation
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energy lost per revolution

electrons vs. protons

It’s easier to accelerate protons to 
higher energies, but protons are 
fundamentals…



e+-e- vs. hadron collider
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e+-e- vs. hadron collider
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5-10



Accelerators around the world (past and present)
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HERA
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e±-p collider (1992-2007)
√s = 318 GeV



Tevatron

Marco Delmastro Experimental Particle Physics 41

collider (1983-2011)

= 1.96 TeV

CDF-D0
top quark discovery
Higgs search
new physics



SLAC
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SLAC Linear Collider (1990-1998)
Z-pole, EW physics, B-physics, polarized beams

PEPII Asymmetric Storage Ring (1999-2008)
3 GeV e+ on 9 GeV e- (very high luminosity)
CP Violation, B-physics, rare decays



RHIC
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Heavy ions (BNL, 2000-present)



LEP
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e+-e- collider (1998-2000)
√s = 91 GeV (LEP)

√s ~ 200 GeV (LEP2)
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LHC
pp collider (2008-present)
√s = 7-13 (14) GeV



CERN accelerator complex
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Beam emittance
• Beam size and distribution of particle momenta evolve during motion in 

collider ring
• Each particle position in phase space sits in ellipse of constant area

ü From beam motion equation and Liouville theorem…
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transverse momentum

transverse position

EmittanceTwiss parameters



Beam dimensions
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Gaussian width (RMS) 
in transverse direction 

emittance Twiss parameter (amplitude function)

position along beam directions

“Beta star” at interaction 
point, often adjusted to be 
minimum



Improvements to luminosity?
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increase number particle 
per bunch?

increase number 
of bunches?

decrease emittance! decrease beta star!



Crossing angle
• To avoid parasitic encounters, beams with close bunches often cross at an angle

ü LHC beams cross at an angle of 300 microradian (bunch spacing 25 ns)
• Crossing angle has an impact on luminosity!
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“crab” crossingwith crossing angle



Zàμμ event with 25 reconstructed vertices
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April 15th, 2012

~5 cm



Mean Number of Interactions per Crossing
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ATLAS design value
L = 1034 cm-1s-1@ 25 ns

Day in 2016
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Production of secondary beams
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Production of secondary beams
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Future colliders? ILC
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Future colliders? CLIC
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Future colliders? Muon collider
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