Back to the Detectors

1

CSC: Cathode Strip Chamber

- Determine muon position by interpolating the charge on 3 to 5 adjacent strips
- Precision (x-) strip pitch ~ 5.6 mm
- Measure Q1, Q2, Q3... with 150:1 SNR to get $\sigma x \sim 60 \ \mu m$.
- Second set of y-strips measure transverse
- coordinate to ~ 1 cm.
- Position accuracy unaffected by gas gain or drift time variations

Micro Pattern Gas Detectors

Detectors(Gaseous)

Micro-Megas

- Giomataris I. et al., NIMA 376 (1996) 29
- Capable of operating at very high rates
- Work in magnetic fields
- Radiation hard and age well.
- Shape and readout segmentation can be adapted to the needs
- Parallel plate structures with straight-forward field shapes.
- Work at very low HV (thin amplification gap)
- Industrially produced

Micro-Megas

- Capable of operating at very high rates
- Work in magnetic fields
- Radiation hard and age well.
- Shape and readout segmentation can be adapted to the needs
- Parallel plate structures with straight-forward field shapes.
- Work at very low HV (thin amplification gap)
- Industrially produced

5

Micro-Megas

- Capable of operating at very high rates
 - Short ion evacuation path => high rate capability
- Very precise readout structures produced using PCB technology (lithography)
- Very good spatial resolution
- Improvement (add of a layer of resistive strips above the readout structure: Spark tolerant without degrading their performance
 T. Alexopoulos et al., NIMA 640 (2011) 110-118

Interlude

Muography

• the probability of muon absorption is proportional to the density

Muon flux \rightarrow density map

• Use cosmic muons to analyse Archaeology, Volcanology, buildings structure,...

Micro Pattern Gas Detectors

• the probability of muon absorption is proportional to the density

Muon flux \rightarrow density map

• Use cosmic muons to analyse Archaeology, Volcanology, buildings structure,...

• the probability of muon absorption is proportional to the density

Muon flux \rightarrow density map

• Use cosmic muons to analyse Archaeology, Volcanology, buildings structure,...

- Use cosmic muons to analyse truck, container....
- Multiple diffusion:
 - 2 detectors: deviation angle
 - fast (~mn), 3D,

Micro-Megas: µTPC!!!!

- "Wide" drift region (typically a few mm)
- Electric field of 100–1000 V/cm
- 100 µm amplification gap with high electrical field (40–50 kV/cm)
 - a factor Em/Ed≈70–100 is required for full mesh transparency for electrons
- Drift velocities of 5 cm/µs (or 20 ns/mm) electrons need 100 ns for a 5 mm gap
- Adding the time arrival of the signals => TPC-like
- Track vectors for inclined tracks

GEM: Gas Electron Multiplier

- F. Sauli at CERN, (R. Bouclier et al., NIM A 396 (1997) 50).
- Parallel plate structure with perforated Cu-clad Kapton foils.
- By applying a potential between conducting foil surfaces a strong electric field develops inside the holes
- Electron multiplication takes place in the field inside the holes
- Hole diameters are 70–120 μm
- Kapton foils are about 50 µm thick

GEM: Gas Electron Multiplier

- Triple GEM
- Lower voltage for the same gain
- Less spark

Scintillator

- · Scintillation: atoms are excited by a muon
- Atoms are emitting photons which are detected by the photomultiplier.
- The scintillator is plastic (made from organic matter).

Silicon: Pixel

• Elementary cell

Silicon Tracker: CMS

- 11 layers
- 200 m² of active silicon for CMS tracker

Cherenkov radiation: Photo Multiplier (PM)

- Relativistic charged particles through a medium of refractive index n > 1 / β
- Relativistic means that the particle moves faster than the light in the medium
- Cherenkov radiation is tangent to a cone θ_{c} around the trace: $\cos(\theta_{c}) = 1 / n\beta$
 - Radiation is due to the polarization of the medium and a dynamic variation of the dipole moment of the molecules of the medium (ie water) \backslash
 - Number of photons (Frank-Tamm) is proportional to $Z^2 sin^2(\theta_c)$

Photo Multiplier: Cherenkov radiation

• Mini-Boon

Photo Multiplier: Cherenkov radiation

Photo Multiplier: Cherenkov radiation

• T2K

(c) Kamioka Observatory, ICRR(Institute for Cosmic Ray Research), The University of Tokyo SUPERKAMIOKANDE Institute for Cosmic Ray Research), The University of Tokyo

Francois Montanet Experimental astroparticle physics

Photo Multiplier: Cherenkov radiation

• Back to Cosmics

Francois Montanet Experimental Astroparticle Physics

Photo Multiplier: Cherenkov radiation

Back to Cosmics

100K light years Milky Way Galaxy

5M light years Local Galactic Group

Universe becomes opaque for high energy Photons:

 $\gamma + \gamma_{background} \rightarrow e^+ + e^-$

100M light years Virgo Supercluster

1G light years Local Superclusters

Observable Universe

100K light years Milky Way Galaxy

5M light years Local Galactic Group

Universe is transparent to neutrinos at all energies

100M light years Virgo Supercluster

1G light years Local Superclusters

Observable Universe

Photo Multiplier: Cherenkov radiation

• The muon is detected via Cherenkov radiation in the water or ice

South Pole

J

-

Amundsen-Scott Station

IceCube Neutrino Observatory

accube FO stuing

Cuba FO aturing

Т r

TacCuba FO atuina

IcoCubo EQ ctr

Beam

- In accelerators muons are abundantly produced in hadronic interactions
 - pp $\rightarrow \pi + \dots$ and $\pi \rightarrow \mu \nu \mu$
- Today muon beams are available at many places in Europe, Asia, and America.
- High energy muon beams, e.g., at CERN SPS, FNAL
- Low/medium energy: PSI, TRIUMF, Los Alamos, BNL, DUBNA, RAL, ...

Muon cooling for a Higgs Factory at CERN ?

New boson sparks call for 'Higgs factory'

physicsworld.com

Jul 5, 2012 @15 comments

Former CERN boss Carlo Rubbia wants a muon collider

CERN's discovery of a new fundamental particle – most likely a Higgs boson – was barely hours old when physicists speaking at this year's Lindau Nobel Laureate Meeting in Germany argued the case for a new facility to measure its properties in detail. Speaking out in favour of a new machine was former CERN boss Carlo Rubbia, who shared the 1984 Nobel Prize for Physics for the discovery of the W and Z bosons. "The technology is there to construct a Higgs factory," he claimed. "You don't need €10bn; it could be done relatively cheaply?

"With a Higgs of 125 GeV we need only a modest machine, perhaps not a large linear collider." Rubbia points out that muons colliding at a combined energy of roughly 125 GeV would suffice – just over half the energy of LEP and requiring a machine with a much smaller radius.

Muon cooling for a Higgs Factory at CERN ?

Muon cooling for a Higgs Factory at CERN ?

Summary

- Muon is an elementary particle describe by the SM
 - All its parameters are well known
 - Some tension on g_{μ} -2 (3.6 sigma)
 - Muons is used in many domain: Astrophysics, particle physics
 - Atmospheric showers, Trigger, Veto,...
- Muon detection
 - started with cloud chambers and Geiger-Müller
 - Detection mechanism always the same: Ionisation
 - The main break-through in tracking detectors: MWPC
 - Spark chambers parallel-plate chambers has lead to RPCs and now MPGDs*
 - MPDGs are probably the new generation of muon detectors being robust
 - GEM, MicroMegas, THGEM...
 - Radiation hard and showing no signs of ageing
 - High rates
 - Excellent spatial resolution
 - Fast (trigger)
- Muo-graphy
- Future: Muon collider?