
Detector Simulation
Multithreading

Witek Pokorski
Alberto Ribon

CERN

13-14.02.2017

2

The following lecture is entirely based on Andrea
Dotti’s lecture given at the Geant4 tutorial at MIT in
2015.

I am fully reusing Andrea’s slides in their original
form.

Geant410.1.p01

A. Dotti (adotti@slac.stanford.edu)

Multithreading 1

26-30 May, 2015
Geant4 tutorial @ MIT
Ray and Maria Stata Center - Room 32-124

Important Note

This is the first part of a 2- session
Only the very minimum will be introduced here
• What is multi-threading?
• How to activate MT
• How to migrate code (thread-safety in second talk)
• UI commands related to MT

4

The challenges of many-core era

• Increase frequency of CPU
causes increase of power
needs

• Reached plateau around 2005
• No more increase in CPU frequency
• However number of

transistors /$ you can buy
continues to grow

• Multi/May-core era
• Note: quantity memory you can

buy with same $ scales slower
• Expect:
• Many core (double/2yrs?)
• Single core performance will not

increase as we were used to
• Less memory/core
• New software models need to

take these into account:
increase parallelism

5
CPU Clock Frequecy 1and usage: The Future of Computing Performance: Game Over or Next Level?
DRAM cost: Data from 1971-2000: VLSI Research Inc. Data from 2001-2002: ITRS, 2002 Update, Table 7a, Cost-Near-Term Years, p. 172. Data from 2003-2018: ITRS, 2004 Update, Tables 7a and 7b, Cost-Near-Term Years, pp. 20-21.
CPU cost: Data from 1976-1999: E. R. Berndt, E. R. Dulberger, and N. J. Rappaport, "Price and Quality of Desktop and Mobile Personal Computers: A Quarter Century of History," July 17, 2000, ;Data from 2001-2016: ITRS, 2002 Update, On-Chip Local Clock in Table 4c: Performance and Package Chips: Frequency On-Chip Wiring Levels -- Near-Term Years, p.
167. ;
Average transistor price: Intel and Dataquest reports (December 2002), see Gordon E. Moore, "Our Revolution,”

In Brief

• Modern CPU architectures: need to introduce parallelism
• Memory and its access will limit number of concurrent
processes running on single chip
• Solution: add parallelism in the application code

• Geant4 needs back-compatibility with user code and simple
approach (physicists != computer scientists)
• Events are independent: each event can be simulated
separately
• Multi-threading for event level parallelism is the natural
choice

6

Geant4 Multi Threading capabilities

7

Threading 101

What is a thread?

9

What is a thread?

1
0

What is a thread?

1
1

What is a thread?

12

Multi-threading in Geant4: the basics

General Design

14

Simplified Master / Worker Model

• A G4 (with MT) application can be seen as simple finite state machine

15

Simplified Master / Worker Model

• A G4 (with MT) application can be seen as simple finite state machine
• Threads do not exists before first /run/beamOn
• When master starts the first run spawns threads and distribute work

16

Master
Worker

Shared Vs Thread-local

• To reduce memory footprint threads must share at least
part of the objects

• General rule in G4: threads can share whatever is invariant
during the event loop (e.g. threads do not change these
objects while processing events, these are used “read-
only”)
- Geometry definition
- Electromagnetic physics tables
- The reason for this is discussed in
second part

17

Shared ? Private?

Shared by all threads �
: stable during the event loop

•  Geometry
•  Particle definition
•  Cross-section tables
•  User-initialization classes

Thread-local�
: dynamically changing for every event/
track/step

•  All transient objects such as run,
event, track, step, trajectory, hit, etc.

•  Physics processes
•  Sensitive detectors
•  User-action classes

•  In the multi-threaded mode, generally saying, data that are stable
during the event loop are shared among threads while data that are
transient during the event loop are thread-local.

Detector geometry &
cross-section tables MEMORY SPACE

Transient per event
data (tracks, hits, etc.)

Active cores Unused cores

AVAILABLE CORES

MEMORY SPACE

Active cores

AVAILABLE CORES

W
ith

ou
t M

T

W

ith
 M

T

19

Shared ? Thread-local?

In general, geometry and physics tables are shared, while event, track, step,
trajectory, hits, etc., as well as several Geant4 manager classes such as
EevntManager, TrackingManager, SteppingManager, TransportationManager,
FieldManager, Navigator, SensitiveDetectorManager, etc. are thread-local.
Among the user classes, user initialization classes
(G4VUserDetectorConstruction, G4VUserPhysicsList and newly
introduced G4VUserActionInitialization) are shared, while all user action
classes and sensitive detector classes are thread-local.

•  It is not straightforward (and thus not recommended) to access from a
shared class object to a thread-local object, e.g. from detector construction
to stepping action.

•  Please note that thread-local objects are instantiated and initialized at the
first BeamOn.

To avoid potential errors, it is advised to always keep in mind which class is
shared and which class is thread-local.

Sequential mode

main()

G4RunManager

G4EventManager

G4TrackingManager

G4SteppingManager

G4Run

G4Event

G4Track

G4Step

Multi-threaded mode　

main()

G4MTRunManager G4Run

G4WorkerRunManager

G4EventManager

G4TrackingManager

G4SteppingManager

G4Run

G4Event

G4Track

G4Step

G4WorkerRunManager

G4EventManager

G4TrackingManager

G4SteppingManager

G4Run

G4Event

G4Track

G4Step

G4WorkerRunManager

G4EventManager

G4TrackingManager

G4SteppingManager

G4Run

G4Event

G4Track

G4Step

Worker thread #0 Worker thread #1 Worker thread #2

Master thread

Sequential mode

main()

G4RunManager

G4EventManager

G4TrackingManager

G4SteppingManager

UserRunAction

UserEventAction

UserTrackingAction

UserSteppingAction

UserStackingAction

UserPrimaryGeneratorAction

G4WorkerRunManager

G4Event
Manager

G4TrackingManager

G4SteppingManager

UserRun
Action

UserEventAction

UserTracking
Action

UserStepping
Action

UserPrimary
GeneratorAction

UserStackingAction

G4WorkerRunManager

G4Event
Manager

G4TrackingManager

G4SteppingManager

UserRun
Action

UserEventAction

UserTracking
Action

UserStepping
Action

UserStackingAction

main()

G4MTRunManager UserRunAction

Worker thread #1 Worker thread #2

Master thread

G4WorkerRunManager

G4Event
Manager

G4TrackingManager

G4SteppingManager

UserRun
Action

UserEventAction

UserTracking
Action

UserStepping
Action

UserStackingAction

Worker thread #0

Multi-threaded mode

UserPrimary
GeneratorAction

UserPrimary
GeneratorAction

Geant4 Multi-threading: How to compile

How to configure Geant4 for MT

• cmake	-DGEANT4_BUILD_MULTITHREADED=ON	[…]	
• Requires “recent” compiler that supports ThreadLocalStorage
technology (to be discussed Thursday) and pthread library installed
(usually pre-installed on POSIX systems)

• Check cmake output for:
--	Performing	Test	HAVE_TLS	
--	Performing	Test	HAVE_TLS	-	Success	

• If it complains then your compiler is too old, sorry…
• Mac OS X, you need to use clang>=3.0 (not gcc!). On Mac OS X 10.7:
cmake	-DCMAKE_CXX_COMPILER=clang++	-DCMAKE_C_COMPILER=clang	\																			

-DGEANT4_BUILD_MULTITHREADED=ON	[…]	

• Sorry no WIN support!
• Compile as usual

26

Code Compatibility

• Some API have changed to enable MT (this is why this is a major
release)
• The exercises of this tutorial will show how to implement these correctly
for MT

• You can use an application developed for G4 Ver 9.6 without
changing your code in sequential mode (except for other
mandatory modifications not MT-related)

• An MT-ready application, can also run in sequential mode without
changing your code (but not vice-versa)

27

Application Changes: How to 1/2

• Detector Construction two functions to implement:
• G4VPhysicalVolume*	G4VUserDetectorConstruction::Construct();	

• Build here your detector geometry except Sensitive Detectors and magnetic filed
(called by master thread once)

• void	G4VUserDetectorConstruction::ConstructSDandField();	

• Build here SDs and B-Fields (called by each thread)

• Create a new class that inherits from G4VUserActionInitialization and
implement:
• void	G4VUserActionInitialization::Build()	

• Instantiate here user-actions for worker threads (called by each thread)
• void	G4VUserActionInitialization::BuildForMaster()	

• Instantiate here user-actions for master (optional) (called bu master)

28

Application Changes: How to 2/2

• In the main() function instantiate a G4MTRunManager and (if you want) set
the default number of threads:
int	main(int,char**)	{	

	#ifdef	G4MULTITHREADED	
				G4MTRunManager*	runManager	=	new	G4MTRunManager;	
				runManager->SetNumberOfThreads(G4Threading::G4GetNumberOfCores());	
#else	
				G4RunManager*	runManager	=	new	G4RunManager;	
#endif	
					
				//	Mandatory	user	initialization	classes	
				runManager->SetUserInitialization(new	DetectorConstruction);	
					
				G4VModularPhysicsList*	physicsList	=	new	FTFP_BERT;	
				runManager->SetUserInitialization(physicsList);	
					
				//	User	action	initialization	
				runManager->SetUserInitialization(new	ActionInitialization());	
	 	//…	

 !

29

Compiled if MT=ON

Application Changes: How to 2/2

• In the main() function instantiate a G4MTRunManager and (if you want)
set the default number of threads:
int	main(int,char**)	{	

	#ifdef	G4MULTITHREADED	
				G4MTRunManager*	runManager	=	new	G4MTRunManager;	
				runManager->SetNumberOfThreads(G4Threading::G4GetNumberOfCores());	
#else	
				G4RunManager*	runManager	=	new	G4RunManager;	
#endif	
					
				//	Mandatory	user	initialization	classes	
				runManager->SetUserInitialization(new	DetectorConstruction);	
					
				G4VModularPhysicsList*	physicsList	=	new	FTFP_BERT;	
				runManager->SetUserInitialization(physicsList);	
					
				//	User	action	initialization	
				runManager->SetUserInitialization(new	ActionInitialization());	
	 	//…	

 !

30

Returns number of
logical cores of machine

Application Changes: How to 2/2

• In the main() function instantiate a G4MTRunManager and (if you want)
set the default number of threads:
int	main(int,char**)	{	

	#ifdef	G4MULTITHREADED	
				G4MTRunManager*	runManager	=	new	G4MTRunManager;	
				runManager->SetNumberOfThreads(G4Threading::G4GetNumberOfCores());	
#else	
				G4RunManager*	runManager	=	new	G4RunManager;	
#endif	
					
				//	Mandatory	user	initialization	classes	
				runManager->SetUserInitialization(new	DetectorConstruction);	
					
				G4VModularPhysicsList*	physicsList	=	new	FTFP_BERT;	
				runManager->SetUserInitialization(physicsList);	
					
				//	User	action	initialization	
				runManager->SetUserInitialization(new	ActionInitialization());	
	 	//…	

 !

31

Compiled if MT=OFF

https://twiki.cern.ch/twiki/bin/view/Geant4/QuickMigrationGuideForGeant4V10

UI Commands

MT related UI commands

/run/numberOfThreads	[n] : Specify number of threads
or /run/useMaximumLogicalCores	: Use the maximum number of cores
/control/cout/setCoutFile	[filename] : Sends G4cout stream to a per-thread file. Use
“***Screen***” to reset to screen
/control/cout/setCerrFile	[filename]	: As previous but for G4cerr
Advanced commands:
/control/cout/useBuffer	[true|false] : Send G4cout/G4cerr to a per-thread buffer that will
printed at the end of the job
/control/cout/prefixString	[string]	: Add an per-thread identifier to each output line from
threads, the thread id is appended to this prefix (default: G4WTn)
/control/cout/ignoreThreadsExcept	[id] : Show output only from thread “id”
/run/pinAffinity	[n]: Set thread affinity (lock threads to core), may increase
performances in some cases
/run/eventModulo	[n]	[s]: Set how many events to send to threads in one request and
how often re-seed thread RNG engine, defaults work vast majority cases, in special cases (e.g.
extremely small and fast events) tweaking this parameters can increase performances (warning:
playing with seeding algorithm can break strong reproducibility)

Setting the number of threads

• Default the number of threads: 2
- Use /run/numberOfThreads or
G4MTRunManager::SetNumberOfThreads()

• G4Threading::G4GetNumberOfCores() returns the number of
logical cores of your machine

• Currently number of threads cannot be changed after /run/
initialize (C++ call to: G4RunManager::Initialize())

• You can overwrite your application behavior and UI commands
setting the (shell) environment variables
G4FORCENUMBEROFTHREADS=… before starting the application (the
special keyword max can be used to use all system cores)

34

User Defined UI commands

• User interacts with application typing UI commands
- Master thread “accumulates” the commands and passes the
commands stack to all the threads at the beginning of a run

- Threads execute the same commands sequence as master thread
• However some commands make sense only in master thread (e.g.
the one modifying the geometry)

• UI commands can be marked as “not to be broadcasted”:
- G4UIcommand::SetToBeBroadcasted(false);	

• Do not forget this step if you implement user-defined UI commands

35

Conclusions

Parallelism is a tricky business:
• User code has to be thread-safe
• Race conditions may appear (better: they will very probably
appear)

• Bugs may often seem “random” and difficult to reproduce
• Experience is needed for complex applications, but we believe for
simple ones following these instructions is enough

• A new hyper news user forum has been created (Multithreading)
to address all possible questions

• Ask an expert!

36

