Lectures on calorimetry

Christophe Ochando (LLR/Ecole Polytechnique/CNRS)

Lecture 4

CINIS

N2P3

ÉCOLE POLYTECHNIQUE UNIVERSITÉ PARIS-SACLAY

Les deux infinis

February 14th 2017, ESIPAP 2017

Plan of lectures

Lecture 2

Physics of hadronic showers

ATLAS & CMS calorimeters

Calorimeter Objects

Lecture 3

Example of calorimeters (suite)

Future of calorimetry

Tutorial Exercises

Resolution

> Two-body decay. Ex: $H \rightarrow \gamma \gamma$

$$m_{\gamma\gamma} = 2E_1 E_2 (1 - \cos \theta_{\gamma\gamma})$$

$$\frac{\sigma_m}{m_{\gamma\gamma}} = \frac{1}{2} \sqrt{\left(\frac{\sigma_{E1}}{E_1}\right)^2 + \left(\frac{\sigma_{E2}}{E_2}\right)^2 + \left(\frac{\sigma_{\theta}}{tg\theta/2}\right)^2}$$

- Resolution on E comes from calorimeters
- ➢ How do we measure position of photons ? (in CMS and ATLAS)

ATLAS/CMS Results (1)

ATLAS/CMS Results (2)

Resolution (again)

CMS

($\frac{\sigma(E)}{E} =$	$=\frac{0.03}{\sqrt{E(GeV)}}$				
(test beam)						

$$\frac{\sigma(E)}{E} = \frac{0.1}{\sqrt{E(GeV)}} \oplus \frac{0.3}{E(GeV)} \oplus 0.007$$

(test beam)

- > Fill the table for both calorimeters
- > Comment ?

	10 GeV	1 TeV
Stochastic (GeV)		
Noise (GeV)		
Constant (GeV)		
$\sigma(E)~(GeV)$		
σ(E) / E (%)		

Exercise: Crystal Calorimeter

	Atomic Mass	X0 (g.cm-2)	R _M (g.cm-2)
Cs	132.9	8.31	15.53
I	126.9	8.48	15.75

- 1) Compute the radiation length of a CsI crystal (g.cm-2)
- 2) Given its density (4.51 g.cm-3), give X0 in cm
- 3) Given the critical Energy E_c =11.17 MeV, deduce the Moliere Radius (g.cm-2 and cm)
- 4) Compute the Moliere Radius with the formula for composite material. Compare to 3).

Take e- with E=100 GeV and E=1 TeV going through Cu (Z=29) and W(Z=74)

- 1) Compute the critical energy E_c for each material.
- 2) For each material and energy, where does the shower max occurs (in unit of X0)
 - Use the formula: $t_{max} = ln(E/E_c) t1$, t1=1 for e-, 0.5 for γ
- 3) Compute the 95% longitudinal containment (in unit of X0) in each case
- 4) Compute the Moliere Radius of each material.
- 5) Which material would you choose to build an EM calorimeter. Why?

Exercise: DØ Calorimeter

		η x φ
EM1	2 X0	0.1 x 0.1
EM2	2 X0	0.1 x 0.1
EM3	6.8 X0	0.05 x 0.05
EM4	9.8 X0	0.1 x 0.1

One cell of the U/LAr central EM calorimeter of DØ is made of a sandwich of 3mm U plate and 2x2.3mm LAr gap.

- 1) Compute the XO for the sandwich (in g.cm-2)
- 2) Compute the average density of the sandwich
- 3) Give XO in cm
- 4) Compute the position of the shower max (in units of X0) for an electron with E=45 GeV
- 5) The EM part has four sections with different granularity and X0.

Comment wrt to the result on question 4.

6) During RunII, a magnet was added before the calorimeters as well as a pre-shower (Pb/scintillating fibers). What is the impact on the shower max ? What are the consequences on the calorimetric performance ? What is the role of the pre-shower ?

Particle Flow & DØ

Can you imagine a Particle Flow algorithm with this detector? Why?

BACK UP SLIDES