Radiation Protection at CERN

Lelmut Vincke CERN, DGS-RP

2/201

Content

- CERN Accelerators, our main source of radiation
- Most important quantities used in Radiation Protection
- Radiation Fields occurring at High Energy Accelerators
- A few words about cosmic radiation
- Radiation Protection carried out at CERN
- Detector response calculations by using Monte Carlo codes

CERN - CONSEIL EUROPÉEN POUR LA RECHERCHE NUCLÉAIRE

Sur le terrain du futur institut nucléaire

Sous la conduite de M. A. Picot, les membres du Conseil européen pour la recherche nucléaire se sont rendus hier à Meyrin pour reconnaitre le terrain où s'élèvera le Centre nucléaire (voir en Dernière heure) (Photo Freddy Bertrand, Genéve

La Suisse du 30 octobre 1953

1954:

- Created by 12 European States
- First European Organisation
- Focus on nuclear physics ("nucleaire")

E=mc²

Today: Particle Physics

- ~ 2400 staff
- ~ 800 other paid personnel
- > 11000 registered users from ~ 100 countries

~ 3500 registered contractors

 22 Member States: Austria, Belgium, Bulgaria, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Israel, Italy, Netherlands, Norway, Poland, Portugal, Slovakia, Spain, Sweden, Switzerland and the United Kingdom, India (assoc. member).
 7 Observers to Council: India, Japan, the Russian Federation, the United States of America, Turkey, the European Commission and UNESCO

CERN's main accelerator chain

(low-energy part)

Booster (1.6 GeV)

Proton Synchrotron (26 GeV/c)

LINAC (50 MeV)

200 m

Accelerators at CERN

(high-energy part)

SPS Circumference: <u>7 km</u>

Intensity per filling of the ring: 6E13 protons

LHC (2 x 7 TeV)

Fixed target experiments

> CNGS now AWAKE

SPS beam

Large Hadron Collider (LHC)

Particle type: Protons

Beam energy: 7 TeV

Number of stored particles: 2×4.10^{14}

Stored energy: ~ 2 × 450 MJ Mass at rest: ~ 1 ng

Mass in laboratory system: ~10 μg The same amount of energy as in one LHC beam is stored in: An F16 airplane at supersonic speed (mach 1)

In an aircraft carrier at a speed of 12 km/h CERN operates powerfull (and dangerous) beams: full impact of a typical high-energy beam on tungsten (~ 0.16 % of the LHC beam energy)

- Beam energy 440 GeV/c (SPS beam momentum)
- 1.08×10^{13} protons on tungsten alloy (Inermet 180)
- Beam impact within ~ 8 us
- Question: How will the three 3 cm long tungsten alloy blocks digest the beam impact?

By courtesy of A. Bertarelli

High speed camera catching the beam impact

Details: Bertarelli et al., An experiment to test advanced materials impacted by intense proton pulses at CERN HiRadMat facility, Nucl. Instr. Meth. B (2013) http://dx.doi.org/10.1016/j.nimb.2013.05.007 Most important quantities used in Radiation Protection

Absorbed dose

refers to the energy deposited (not released) in matter. It reflects the sum of the energies dE_{dep} deposited by incident particles in a sample of matter, divided by the mass dm of the sample.

$$D = \frac{\mathrm{d}E_{dep}}{\mathrm{d}m}$$

Unit: J/kg = Gray (Gy)

Equivalent dose in an organ or tissue, H_T

is a measure of the absorbed dose D_{T,R} to tissue T by radiation of type R. It is defined by

$$H_{T} = \sum_{R} w_{R} D_{T,R}$$
 Unit: Sievert (Sv)

with w_R being the radiation weighting factor which reflects the different radiobiological effectiveness for various radiation types and energies.

	ICRP publication 103		
	Radiation	Energy	W _R (formerly Q)
	x-rays, gamma rays, beta rays, muons		1
The radiation weighting factor	neutrons	< 1 MeV	2.5 + 18.2·e ^{-[ln(E)]²/6}
(especially for neutrons) has been revised over time and remains		1 MeV - 50 MeV	5.0 + 17.0 · e ^{-[ln(2·E)]²/6}
		> 50 MeV	2.5 + 3.25 · e ^{-[ln(0.04·E)]²/6}
controversial	protons, charged pions		2
	alpha rays, Nuclear fission products.		20

heavy nuclei

Effective dose, E

equals the sum of various equivalent doses of different organs or tissues, weighted with the respective tissue weighting factor w_T . It is defined by

$$E = \sum_{T} w_{T} H_{T} = \sum_{T} w_{T} \sum_{R} w_{R} D_{T,R}$$
 Unit: Sievert (Sv)

with $\sum_{T} w_{T} = 1$.

Different organs show different sensitivity to equivalent dose deposited

	Tissue		Tissue
Organ	weighting factor	Organ	weighting factor
Gonads	0.08	Esophagus	0.04
Red Bone Marrow	0.12	Thyroid	0.04
Colon	0.12	Skin	0.01
Lung	0.12	Bone surface	0.01
Stomach	0.12	Salivary glands	0.01
Breasts	0.12	Brain	0.01
Bladder	0.04	Remainder of body	0.12
Liver	0.04		

Radiation Fields around High Energy Accelerators

Contents

- Introduction
- Impact of ionizing radiation in accelerators
- Dose to people, shielding
 - Radiation fields lateral to beam impact points
 - Radiation fields downstream of beam impact points

Radiation Fields around High Energy Accelerators Prompt ionizing radiation – beam on

Whole particle zoo with E up to initial beam energy

High pressure ionization chamber

REM counter

Ionizing Radiation due to induced radioactivity – beam off

 α , β -, γ -radiation, Main γ energies: < 2.76 MeV

Air filled ionization chamber

Handheld devices

Prompt Ionising Radiation

Hadron accelerator

Cosmos

Particle impact creates high-energy mixed radiation fields

Prompt Ionizing Radiation in Accelerators

- Ionizing radiation in accelerators is produced by any beam impacts of high energy particles → secondary radiation
- Impact of very energetic particles produce particle showers

Production of ionizing radiation by **ONE** hadron (120 GeV/c) on copper Target

Hadronic shower only

Hadronic shower + photons

Ionizing particles on matter: Impact and consequences

Dose to people

Focused energy deposition in material → heat development, shockwaves→ destruction of materials Radiation triggered failure of electronics

Aging of organic materials like insulations Activation of material

Radiation impact

Relation between absorbed dose and damage caused by radiation

Dose to people

Example of full beam loss (7 TeV) in the LHC

Main aspects of radiation field attenuation in accelerator environments

Lateral to beam impact point

Downstream to beam impact point

Radiation lateral to the beam impact point

Lateral Shielding Configuration: Simulation to calculate radiation propagation through a lateral shielding wall

A 450 GeV proton beam is sent onto a 5 m long target with a diameter of 5 cm. Target is surrounded by particle detectors

Dose analysis

Point source/line of sight model

 $r = r_0 + d + r_1$ in m

 λ ... hadronic interaction length

Typical particle fluence spectra at areas located behind lateral thick concrete shielding

Radiation downstream to the beam impact point

Radiaton fields occurring downstream of an impact point of an highenergy proton beam

450 GeV proton beam on 50 cm long copper target

Dose simulation results

Dose of all particles

Dose by muons only

Muons strongly dominate the dose seen downstream the heavy shielding

Spectral analysis of the fluence seen in detector 1 and detector 3.

Strong domination of muons downstream the shielding

EM particles at this locations can be traced back to muon interactions

High-energy muons lose ~1 GeV when traveling through 1.8 m of concrete or 70 cm of iron.

→ To shield all muons a shielding of ~800 m of concrete or ~300 m of iron is required.

Conceptual design of an irradiation facility

Courtesy of E. Feldbaumer

Dose rate mapping at beam height Comparison: 450 GeV/c vs 24 GeV/c

Example to show the muon dominance downstream of thick shielding construction in high-energy facilities

Courtesy of E. Feldbaumer

Spectra behind experimental setup consisting of a 50 cm copper target + 2 m of air + 4 m of iron dump

Courtesy of E. Feldbaumer

Rough estimates for the muon dose as a function of shielding strength (collimated beam assumed)

The given shielding strength does not include the 4 m of iron between the target and the reference point.

Concrete shielding strength = Iron strength*2.6

Assuming a beam intensity of 1E11 p/s we would need the following amount of shielding to remain below 2.5 uSv/h (non designated area) a locations downstream the dump

~ 100 m of additional iron for 450 GeV/c
~ 5 m of additional iron for 24 GeV/c
Cosmic radiation environment

Contents:

- Basic introduction to cosmic radiation fields
- Interesting phenomena at high energies
- Radiation Protection aspects in space

Classification of cosmic (ionizing) radiation

Solar Cosmic Radiation (SCR)

- high-energy particles coming from the sun
- consist of protons, electrons and ions with energies ranging from a few tens of keV to GeV
- Two main processes of their production:
 - solar-flares
 - shock waves caused by coronal mass ejections.

Galactic Cosmic Radiation (GCR)

 Particles which originate from sources outside of the solar system, distributed throughout our Milky Way galaxy and beyond.

Properties of Galactic Cosmic Radiation

Composition: 2% electrons and 98% nuclei

Composition of nuclei: 87% protons 12 % α -particles 1% heavy nuclei Almost no anti-matter detected

Spectrum:

- Main part of the GCR particles have an energy below 10 GeV
- Interaction with solar magnetic field modulate the particle's energy
- GCR fluence up to 10 GeV shows a dependence on the solar activity
- There is a high-energy component of the GCR spectrum, reaching energies higher than 10²⁰ eV.

Proton spectra observed during various years (1965: solar minimum, 1969: solar maximum)

Fisk (1979): Mechanisms for energetic particle acceleration in the solar wind

A BIRD'S EYE VIEW OF THE ALL-PARTICLE CR SPECTRUM

Picture taken from http://hep.fi.infn.it/PAMELA/naumov/Eng/UHECR/UHECR.html

 α = 2.7 for E < 3 × 10¹⁵ eV α = 3 for E > 3 × 10¹⁵ eV

Highest energy measured: 3.2×10^{20} eV (Fly's Eye detector)

Interesting effects at such high energies (assuming particle was a proton)

Energy of particle : $3.2 \times 10^{20} \text{ eV} = 51 \text{ J}$

Kinetic energy of a golf ball (170 km/h)

rom
$$E^2 = m^2 c^4 = \frac{m_0^2 c^4}{1 - v^2 / c^2}$$

F

we calculate Lorentz factor γ:

$$\gamma = \frac{1}{\sqrt{1 - v^2/c^2}}$$

Time dilatation: $t = t_0 \times \gamma$

1 second for the proton are 10773 years for us!!!

Length contraction:

For the protein appears as R

maximum t 39 micro m High energy particles are subject to Doppler Effect, changing the frequency of photons.

Considering a head-on collision between a proton and a photon the frequency of the photon is seen as:

 $f = f_0 \sqrt{\frac{1+\beta}{1-\beta}} \qquad \text{With: } \beta = v/c \dots (\beta (3.2 \times 10^{20} \text{ eV}) = (1 - 4.8 \times 10^{-24})$

Typical energy of microwave photon: 1.1×10^{-3} eV.

$$E = E_0 \sqrt{\frac{1+\beta}{1-\beta}} = 1.1 \times 10^{-3} \times 6.4 \times 10^{11} = 7.04 \times 10^8 eV$$

Proton should interact with microwave photons producing pions.

This calculation coincides with the Greisen–Zatsepin–Kuzmin limit (GZK limit), defining a theoretical upper limit for the energy of cosmic rays coming from sources beyond ~ 50 MParsec.

However, we observe such particles, although no sources for such high-energy particles can be pinpointed within this radius. These observations remain an **unsolved riddle**.

Dose to space- and aircraft crews

Ambient-dose-equivalent rates as a function of standard barometric altitude

(at 2 GV vertical geomagnetic cut-off rigidity and mid solar cycle, calculated by S. Rollet, taken from Oxford University Press et al. Journal of the ICRU 2010;10:17-21)

Dose exposure during a space trip to Mars

- In space crafts only limited shielding power for the protection of the crew can be provided.
- During a one way trip to Mars the dose received by the crew is estimated to (330 ± 6) mSv, resulting in a dose of 660 mSv for a round trip. Exposure during Mars (no magnetic field protection) is not included in this calculation.
- These results are based on measurements carried out in the Mars Science Laboratory spacecraft*.
- Real dose during flight depends also strongly on the sun activity

*Science 31 May 2013: Vol. 340 no. 6136 pp. 1080-1084, DOI: 10.1126/science.1235989

Aging of organic materials like insulations

Examples for radiation damage Resin used for magnet coil insulation

Radiation damage on cable insulations

Radiation damage is mainly caused by braking hydrogen bridge bounds in molecules

In radiation facilities insulation material shall be chosen according to the radiation level in the area.

In the last millennium many radiation hardness tests were carried out and documented at CERN.

Material catalogues from the past are available and should be used

Radiation resistance of cable materials

Polyimide PEEK Polyurethane rubber (PUR) Ethylene-propylene rubber (EPR/EPDM) Styrene-butadiene rubber (SBR) Polyethylene terephthalate copolymers Cross-linked polyolefins Polychloroprene rubber Ethylene vinyl acetate (EVA) Polyvinylchloride (PVC) Chlorosulfongted polyethylene Acrylonitrile rubber Polyethylene/Polyolefin (e.g. PE/PP.PO) Acrylic rubber (EAR,EEA) Silicone rubber (SIR) Butyle rubber Perfluoroethylene-propylene (FEP) Polytetrafluoroethylene (PTFE)

V/////
V/////
V////
V/////
V/////
V//////
V/7.

DOSE IN GRAY	10 3	10 4	10 5	10 6	107	10
DOSE IN RAD	10 5	10 6	10 7	10 ⁸	10 ⁹	10

Appreciation of Damage	Elongation	Utility	
Incipient to mild	75-100 % OF IN. VALUE	Nearly always usable	
Radiation index area	25-75 % OF IN. VALUE	Often satisfactory	[]]]]
Moderate to severe	< 25 % OF IN. VALUE	Not recommended	

Induced radioactivity in and around (highenergy) particle accelerators

Contents:

- Introduction to radioactivity and isotope decay
- Activation in accelerators
- Calculation procedures to forecast activation in accelerators
- Examples of activation at high-energy accelerators
- ActiWiz: program allowing the evaluation of the radiological impact of materials in accelerators

Radioactivity

What is radioactivity?

Spontaneous emission of radiation from unstable nuclei. The consequence of most of the radioactivity reactions are combined with the change of the emitting nucleus into another kind of nucleus.

Modes of radioactive decay

 α -decay: Emission of an alpha particle, a part of the nucleus consiting of 2 protons and 2 neutrons. \Rightarrow A_{new}= A_{old}-4 and Z_{new}=Z_{old}-2

 β^- -decay: A neutron in the nucleus is transformed into a proton via the emission of an electron and an anti-electron neutrino. $\rightarrow A_{new} = A_{old}$ and $Z_{new} = Z_{old} + 1$

Modes of radioactive decay

 β^+ -**decay:** A proton in the nucleus is transformed into a neutron via the emission of a positron and an electron-neutrino $\rightarrow A_{new} = A_{old}$ and $Z_{new} = Z_{old} - 1$

Electron capture: An electron from the atomic orbit is captured by a proton resulting to the transformation into a neutron. $\rightarrow A_{new} = A_{old}$ and $Z_{new} = Z_{old} - 1$

 γ -decay: In a gamma decay a nucleus changes from a higher energetic state to a lower energetic state by emitting a high-energy photon (gamma particle). The composition of the nucleus remains unchanged.

Radiation types emitted by radioactivity

Radioactivity results in the emission of α , β^+ , β^- and γ radiation.

How can we shield these particles?

How dangerours are such particles when being incorporated?

The risk caused by α -radiation is highest when being incorporated and decaying inside the body.

Radioactive decay

Decay of a radioactive material per time unit (activity) as a function of time:

 $A = -\frac{\mathrm{d}N}{\mathrm{d}t} \sim N$

Proportionality factor is called decay constant (λ) and it defines the probability of the deacy of a given isotope

$$A = -\frac{\mathrm{d}N}{\mathrm{d}t} = \lambda \cdot N$$

$$\frac{\mathrm{d}N}{N} = -\lambda \cdot \mathrm{d}t$$

With $N(t=0) = N_0$

$$N(t) = N_0 \cdot e^{-\lambda \cdot t} / \lambda$$
$$A(t) = A_0 \cdot e^{-\lambda \cdot t}$$

Unit: Bq: 1 Bq = 1 decay per second

General production-decay chains

A decay of an isotope can result in a chain (even several chains) of decays •

Each possible chain in this tree can be described by coupled differential equations

www.periodensystem.net

Beside via decay some or even all isotopes can be produced by external • production processes. E.g.: activation of materials in accelerators.

Mathematical expression of one production-decay chain (Bateman equation)

System of coupled differential equations

$$\begin{aligned} \frac{\mathrm{d}N_1}{\mathrm{d}t} &= P_1 - \lambda_1 \cdot N_1 \\ \frac{\mathrm{d}N_2}{\mathrm{d}t} &= P_2 + (b_{1,2} \cdot \lambda_1 \cdot N_1) - \lambda_2 \cdot N_2 \\ & \vdots & \vdots \\ \frac{\mathrm{d}N_i}{\mathrm{d}t} &= P_i + (b_{i-1,i} \cdot \lambda_{i-1} \cdot N_{i-1}) - \lambda_i \cdot N_i \\ & \vdots & \vdots \\ \frac{\mathrm{d}N_n}{\mathrm{d}t} &= P_n + (b_{n-1,n} \cdot \lambda_{n-1} \cdot N_{n-1}) - \lambda_n \cdot N_n \\ & \vdots & \vdots \\ \frac{\mathrm{d}N_m}{\mathrm{d}t} &= P_m + (b_{m-1,m} \cdot \lambda_{m-1} \cdot N_{m-1}) - \lambda_m \cdot N_m \end{aligned}$$

Number of isotope n Production rate of isotope n Decay constant of isotope n Branching ratio from isotope n-1 into n

Solving by Laplace transformation (\mathcal{L}) of system of differential equations

Laplace transformation to find solutions for complicated radioactive decay problems

The Laplace transform of a function f(t), defined for all real numbers $t \ge 0$, is the function F(s), defined by:

$$F(s) = \int_0^\infty e^{-st} f(t) \, dt$$

It transforms a function being dependent from t into a new function F being dependent from s

Linearity	af(t) + bg(t)	aF(s) + bG(s)
Differentiation	f'(t)	sF(s) - f(0)

Laplace transformation of system of differential equations \rightarrow system of linear algebraic equations

Mathematical expression of one production-decay chain (Bateman equation)

Laplace transformed equations = system of linear equations, to be solved in the Laplace domain as a function of *s*.

$$s \cdot F_{1}(s) - N_{1}(t = 0) = \frac{P_{1}}{s} - \lambda_{1} \cdot F_{1}(s)$$

$$s \cdot F_{n}(s) - N_{n}(t = 0) = \frac{P_{n}}{s} + b_{n-1,n} \cdot \lambda_{n-1} \cdot F_{n-1}(s) - \lambda_{n} \cdot F_{n}(s)$$

$$s \cdot F_{m}(s) - N_{m}(t = 0) = \frac{P_{m}}{s} + b_{m-1,m} \cdot \lambda_{m-1} \cdot F_{m-1}(s) - \lambda_{m} \cdot F_{m}(s)$$

$$R_{n} \dots \text{ humber of isotope n}$$

$$P_{n} \dots \text{ production rate of isotope n}$$

$$h_{n} \dots \text{ branching ratio from isotope n}$$

$$h_{n} (t)$$

Inverse Laplace transformation of $F_n(s)$ $\mathcal{L}^{-1}(F_n(s)) \longrightarrow N_n(t)$

$$N_n(t) = \sum_{i=1}^n \left[\left(\prod_{j=i}^{n-1} \lambda_j b_{j,j+1} \right) \sum_{j=i}^n \left(\frac{N_i^0 e^{-\lambda_j t}}{\prod_{\substack{p=i\\p\neq j}}^n \lambda_p - \lambda_j} + \frac{P_i (1 - e^{-\lambda_j t})}{\lambda_j \prod_{\substack{p=i\\p\neq j}}^n \lambda_p - \lambda_j} \right) \right]$$

To obtain the final result for a given isotope the contributions of the various chains have to be summed up.

Activation: Radioactivity production in accelerators

First questions about activation

What is activation?

Activation can be described as the imposed change of nuclear composition of given isotopes resulting in the production of radioactivity.

Impact of activation:

 Accelerators: caused by beam operation accelerator and environment will become radioactive → dose to personnel and environment.

What can be done to reduce activation?

- Reduce beam losses
- Reduce activation prone material

Which production mechanisms of activation occur at high-energy accelerators?

At high-energy accelerators primary particles interact with matter. The primary particle itself or secondary particles interacting with nuclei can produce radioactive isotopes. Main production channels of activation at high-energy accelerators are:

• Spallation processes, (n,2n), (n,p), (n,alpha), ...

• Particle capture (mainly neutrons)

•(γ,n)-reactions (important for electron accelerators)

Questions about activation III/III

Required information to classify activation:

- 1. Specific activity: classification of material between radioactive and nonradioactive material
- 2. Dose rate around the activated components

Physics principles of radio nuclide production per lost

Energy (E) and particle type dependent production cross section to produce nuclide i from isotope j

Total track length of particle type k through volume of interest as a function of energy (E)

Activation as a function of beam operation time and

cooling time

$$\frac{dN_i}{dt} = -\lambda_i \cdot N_i + P_i \cdot I$$

$$A_i(t_{irr} + t_{cool}) = P_i \cdot I \cdot (1 - e^{-\lambda t_{irr}}) \cdot e^{-\lambda t_{cool}}$$

- N_i... Number of isotopes i
- λ ... decay constant of nuclide i
- P_i... production rate of isotope i per proton
- I ... proton intensity
- t_{irr}... irradiation time
- t_{cool}... cooling time

Build-up and decay

$$A_{i,max} \leq P_i \cdot I$$

90% of $A_{i,max}$ are obtained after ~ 3.32· $t_{1/2}$

99% of $A_{i,max}$ are obtained after ~ 6.64 \cdot t_{1/2} Video demonstration of radioactivity production, build-up and decay

Calculation procedures to forecast activation and dose rates in

high-energy accelerators

Analytic method

Full Monte Carlo calculation

Analytic methods

$$P_i = \sum_{j,k} n_j \int dE \, \sigma_{i,j,k}(E) \Lambda_k(E)$$

 $A_i(t_{irr} + t_{cool}) = P_i \cdot I \cdot (1 - e^{-\lambda t_{irr}}) \cdot e^{-\lambda t_{cool}}$

Required input parameters:

- Track length spectra for all relevant particle types, $\Lambda_k(E)$
- Cross sections for radio nuclide production $\sigma_{i,j,k}$
- Irradiation and cooling history

Pro:

• Fast activation result if input parameters are available

Cons:

- Track length of various particles fields are required (very often Monte Carlo results)
- Only rough dose rate estimate without self shielding effects

Full Monte Carlo calculation of activation

Input required:

- 3D geometry description
- Beam energy and intensity
- Irradiation history and cooling time(s)

Procedure inside code:

1) Simulation of particle cascade and isotope production around beam impact point

2) Radiation emerging from radio-isotopes are further transported to calculate dose rate in the surroundings of activated material

Applications for FLUKA activation simulations
Applications at the Large Hadron Collider (LHC)

Particle type: Protons

Beam energy: 7 TeV

Number of stored particles: 2×4.10^{14}

CMS detector

21 M

Collision point

Parameters of CMS detector:

Length: 21 m Diameter: 15 m, Mass: 12500 t

Operational parameters:

Two counter rotating beams @ 7 TeV Luminosity: 10³⁴ cm⁻² s⁻¹ → 10⁹ proton-proton collisions/s

Residual dose rates to be expected after beam operation

Residual dose rate expected after 1st year of operation:

180 days of operation + 6 cooling times: 1 h, 1d, 1w, 1m, 4m

180 days of irradiation, 109 pp/s, 1h of cooling

180 days of irradiation, 109 pp/s, 1d of

180 days of irradiation, 109 pp/s, 1w of cooling

180 days of irradiation, 109 pp/s, 1m of cooling

180 days of irradiation, 109 pp/s, 4m of cooling

Radiation Protection at CERN

Contents

- Mandate
- Radiation Protection Regulations
- Dose limits and objectives
- Dosimetry, Operational Radiation Protection and Radiation Monitoring
- Radioactive waste: treatment and elimination
- ALARA at CERN

Radiation Protection at CERN: Mandate

Some Key Figures...

Radiation Areas and Radioactive Laboratories:

- ~ 45 km accelerator tunnel
- Class A, C laboratories
- RIB facility ISOLDE
- Spallation source n-TOF
- ~ 50 60 access points
- ~ 160 experiments
- ~ 7000 radiation workers
- new projects

Radiation Protection Regulation

General Principles of Radiation Protection

 Justification

any exposure of persons to ionizing radiation has to be justified

2) Limitation

the personal doses have to be kept below the legal limits

3) Optimization

the personal doses and collective doses have to be kept as low as reasonable achievable (ALARA)

CERN's Radiation Protection Regulation

CERN is an intergovernmental organization and not bound to any national law* - but

ICRP INTERNATIONAL COMMISSION ON RADIOLOGICAL PROTECTION

*) CERN's relation with its two Host States is defined in conventions between the parties

IAEA Basic Safety **Standards**

Guideline 96/29 Euratom laying down the basic standards for protecting public and workers against the risk of ionising radiation

CERN Safety Code F (Radiation Protection Ordinance) and underlying safety instructions, guidelines, etc.

Le Bulletin News Articles Official News Training and Development General Information Staff Association

« A bientôt les protons » rétrospective sur l'exploitation des premiers protons du LHC.

Archives | Contact | Stabonner | | Association du personnel | Accuel CE

Une grande étape pour la sécurité

Ces derniers jours ont été jalonnés de grands moments pour la

physique du LHC, tandis que nous passions de l'exploitation avec

protons à l'exploitation avec ions plomb. Chaque nouvelle étape a

été largement commentée et je vous ai tenus informés par des

courriels. Un événement moins visible et néanmoins vital pour le

bon fonctionnement du Laboratoire est l'accord que nous

nous permettra de rationaliser la protection contre les rayonnements et la sûreté radiologique au CERN.

Le mot

du DG

qu gomaine. Sur le plan pratique, le nouvel accord simplifie les choses en harmonisant les

procédures administratives tout en garantissant l'application des

Cet accord marque l'aboutissement de plusieurs mois de discussions approfondies avec l'Autorité de sûreté nucléaire, en discussions approfondies avec la conté authinue an enirere la terrence at l'office térdéral pour la conté authinue an enirere la

discussions approtongies avec l'Autorité de sureté nucléaire, en Brance, et l'Offrice fédéral pour la santé publique, en suisse. Il a France, et l'Offrice fédéral pour la santé publique en matière de

garantir la durabilité environnementale des activités du CERN à long terme, je me félicite donc de cet accord et remercie très sincèrement les trois parties qui ont travaillé de manière

long terme. Je me félicite donc de cet accord et remercie sincèrement les trois parties qui ont travailé de manière constructive nour le mettre en place.

sincerement les trois parties qui ont t constructive pour le mettre en place.

procedures auministratives tout en garantissant rapplication meilleures pratiques en matière de protection contre les memeures pratiques en matiere de protection cont rayonnements et de sûreté radiologique au CERN.

Cet accord marque l'aboutissement de plusieurs mois de

signerons avec nos États hôtes le 15 novembre prochain. Cet

accord tripartite, le deuxième que nous signons en deux mois,

(recherche) english | françai

CERN

Unité

HSE

RELATIONS

TRIPARTITES

Accord triparti

du 15-11-201

Comité tripartit

eté et radioprote

Issue No. 46-47/2010 - Lundi 15 novembre 2016

Ce nouvel accord

remplacera les accords

établissent les procédures

française et la partie suisse

du domaine. Sur le plan

applicables sur la partie

bilatéraux actuels, qui

RATIFICATION OF THE TRIPARTITE AGREEMENT

ON SAFETY AND RADIATION PROTECTION

(September 2011)

ACCORD

ENTRE

L'ORGANISATION EUROPEENNE POUR LA RECHERCHE

NUCLEAIRE,

LE CONSEIL FEDERAL SUISSE,

ET

LE GOUVERNEMENT DE LA REPUBLIQUE FRANÇAISE

relatif à la Protection contre les rayonnements ionisants et à la Sûreté

des Installations de l'Organisation européenne

pour la Recherche nucléaire

Directeur de l'Office fédéral

Pascal Strupler

de santé publique

Pour l'Organisation

₹off Heuer

Directeur général

Pour le Conseil fédéral suisse Pour le Gouvernement français

André-Claude Lacoste

sûreté nucléaire

Président de l'Autorité de

88

Une grande étape pour la sécurité

- Dernières nouvelles du LHC : passage aux ions lourds réussi
- ATLAS : au-delà des esperances
- CMS : au « top » de sa forme
- ALICE : le meilleur reste à venir
- LHCb : plus qu'une expérience de précision, un détecteur prêt à faire des découvertes
- TOTEM : des milliers d'événements intéressants
- Protection contre les rayonnements ionisants et sûreté des installations signature par le CERN et ses Etats hôtes d'un accord tripartite.
- Pleine puissance pour le premie puissance pour le premier module du Linac4
- Le CERN en détails
- Un fonds dédié à l'innovation technologique

- Exotica : à l'affût des événements exotiques
- Derrière les machines Le coin de l'Ombuds : Entre collègues
- Frank Blythe (1924-2010) Denis Gudet (1955-2010)

- Subscribe by RSS

- PARTICULE-ièrement enrichissante cette nuit au
- rrance, et l'Urrice regeral pour la sante publique, en Suisse. Il a pour but d'améliorer les pratiques et procédures en matière de pour but d'améliorer les pratiques et de série d'accordine a serie d'accordine d'accordine d'accordine d'accordine d'accordine d'accordine d'accordine de la série de la série d'accordine de la série pour but d'améliorer les pratiques et procédures en matière de radioprotection et de sûreté radiologique, ainsi que d'accroître la transparence des rapports que le CERN fait à la France et la cuiere conformément à con ennanement de collaborer avec ses transparence des rapports que le CERN fait à la France et la Suisse, conformément à son engagement de collaborer avec ses Étate bâtes dans ce domaine Réunion de concertation sur les infrastructures électroniques Une transparence accrue implique des efforts considérables de la Une transparence accrue implique des efforts considérables de l part du CERN pour tenir à jour ses règles, ses pratiques et ses documents en matière de sûreté radiologique et de documents en matière de sûreté radiologique et de radioprote cion pour toutes ses installations, cousaire pour anciennes. C'est cependant une évolution pérsent du cERN à anciennes durabilité environnementale des activités du cERN à grantir la durabilité environnementale des activités du cERN à long terme. Je me félicite donc de cet accord et remercie très long terme.

History of Radiation Protection

Dose Limits

	Dose limits for 12 months consecutive (mSv)			
	Non-occupationally exposed persons	Occupationally exposed persons		
		В	А	
EURATOM	< 1	< 6	< 20	
Germany/France	< 1	< 6	< 20	
CERN	< 1	< 6	< 20	
Switzerland	< 1	< 20		

CERN's Dose Objectives

Category	Dose/Year
Critical Group of Public	< 10 uSv
Non-professionally exposed personnel	< 100 uSv
Professionally exposed personnel	< 6 mSv

Dosimetry, Operational Radiation Protection and Radiation Monitoring

Individual Dosimetry

	Dose	Persons									
	interval	Concerned									
	(mSv)										
		2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
0	0.0 – 0.1	4192	5131	5143	5042	5418	5315	6002	6273	7616	7688
0	0.1 – 1.0	1738	898	1020	1219	1514	1984	2030	2188	1816	1026
1	.0 – 2.0	37	33	40	39	31	31	29	82	133	2
2	2.0 – 3.0	17	2	3	13	6	7	0	3	14	0
3	6.0 - 4.0	4	1	1	2	0	0	0	0	1	0
4	.0 – 5.0	2	1	1	0	0	0	0	0	0	0
5	.0 – 6.0	0	0	0	0	0	0	0	0	0	0
>	6.0	0	0	0	0	0	0	0	0	0	0
	SUM PERS	5990	6066	6208	6315	6969	7337	8061	8546	9580	8716

Collective Personal Dose Equivalent Summary over the last 22 years

Operational Radiation Protection

From design

2.50E+004 · 1.60E+000 1.40E+000 2.00E+004 .20E+000 50E+004 1.000+000 1.000+004 8.00E-001 5.00E+003 · 6.00E-001 4.00E-00 0.00E+000 2.00E-00 5.00E+003 100E+00 19/09/11 16:00:00 19/09/11 18:00:00 9/09/11 14:00:00 19/09/11 22:00:00 19/09/11 22:00:00

uSv/h

to reality

Radiation Monitoring

96

Instrumentation

Run 2011 – Seen by neutron monitors in USA15

Area classification: LHC - 2010

LHC - 2011

LHC - 2012

LHC during LS1

Radioactive waste: treatment and elimination

Waste received

Waste received per year

Analyzed

Eliminated to final repository

ALARA at CERN

CRITÈRE DE DOSE INDIVIDUELLE

Équivalent de dose prévisionnel individuel (H_i) pour l'intervention, ou pour l'ensemble des interventions de même nature lorsque celles-ci sont répétées plusieurs fois sur une année :

100 j	ıSv 1	mSv
niveau I	niveau II	niveau III

CRITÈRE DE DOSE COLLECTIVE

Équivalent de dose prévisionnel collective (H_c) pour l'intervention, ou pour l'ensemble des interventions de même nature lorsque celles-ci sont répétées plusieurs fois sur une année :

500	μ Sv 5	mSv
niveau I	niveau II	niveau III

CRITÈRE DE DÉBIT DE DOSE

Débit d'équivalent de dose prévisionnel ($\dot{\it H}$) dans la zone d'intervention :

50 µS	v∙h⁻¹	2 mSv·h⁻¹
niveau I	niveau II	niveau III

CRITÈRE DE CONTAMINATION ATMOSPHÉRIQUE

Activité aérienne spécifique CA :

 5 CA
 200 CA

 niveau I
 niveau II

 CRITÈRE DE CONTAMINATION SURFACIQUE

 Activité surfacique spécifique CA :

 10 CS

niveau I

niveau II

niveau III

ALARA procedure – 3 Levels:

Optimisation

- Optimisation, documentation
- III Optimisation, documentation, ALARA Committee

Includes risk analysis

ALARA

- Mock-up training
- Procedures
- Approval by "stakeholders"
 radiation protection incl.
- Lessons learned

Page 6 of 9 technicien aidera à soutenir la manchette pour la déplacer sur le coté il faut 3 personnes pour cette opération 5 8' Protéger l'entrée des interconnexions avec (2 personnes) du film plastique avant de retirer les écrans thermiques Mettre du scotch pour fixer le film de plastic film Mettre du plastique des deux cotes de l'interconnexion • Enlever la première 3' 6 couche de matelas (2 personnes) de MLI Mettre des gants blancs pour réaliser cette opération (protéger le matelas MLI) 7 Attacher un petit 1' anneau à la fin de la corde (1 personne) corde qui traverse le matelas MLI Anneau 8 • Plier le matelas de 3' MLI (2 personnes) Mettre des gants blancs pour réaliser cette opération (protéger le matelas MLI)

ALARA example 1:

SPS-LSS1 cabling and dump shielding wall design (ALARA III)

Cable exchange campaign in SPS-LSS1

- The LSS1 area is the most radioactive zone in the SPS
- Any work has to be fully optimized allowing to reduce dose to personnel to a bare minimum

va factor of 3.2

Cables combs replacing cable ties

After removal

nternal be

- Removal of highly radioactive equipment prior the 22 weeks lasting cable
 - exchange campaign
 average dose rate in the

Before removal Remote handling with robots Special equipment allowing for dos

Optimized cable removal and cutting

> Remote cable pulling machine

• The former shielding located beside the TIDV dump caused significant problems due to its high activation and contamination levels.

ALARA example 2: Dismantling of former SPS target area

Job and Dose Planning

For all working steps i, the time_i required and the given dose rate_i need to be assessed beforehand.

$$\Gamma otal \ dose = \sum_i Dose \ rate_i \times Time_i$$

Dose rates based on measurements and simulations

Example: Work in a former SPS target area

Dose estimate based on: -Real measurements (accessible areas) -Fluka calculation

SURVEY TCX shielding 17/12/09 Dose rates [µSv/h] AD6 @ 10cm et 1m from the blocks

Ambient dose rate along the hole
Removal of highly radioactive blocks being located in a former SPS target area

ALARA example 3: Repair work of CNGS horn and reflector

CNGS Horn und Reflector Repair

level II

→ optimisation and documentation
→ 1.6 mSv collective dose

Shielded cabin

Mobile lead shield

Monte-Carlo simulations as a tool for detector response evaluation

Motivation

High-energy hadron accelerator – LHC, SPS ...

High-energy mixed radiation fields

Radiation detectors must be characterized for these fields

Measured detector counts $\leftarrow \rightarrow$ desired quantity (Sv, Gy)

Detector response evaluation with Monte Carlo simulation tools

Simulation of irradiation situation + simulation response of detector

Simulation provides knowledge of particle fields and the response of the chamber to this radiation field

Field calibration factor

The following question remains: Does the simulation also reflect the reality?

Comparison between simulation and measurement = Benchmarking of simulation

Benchmark experiments in the CERF radiation field to test reliability of Monte Carlo program FLUKA

Two ionization chamber types were irradiated with secondary particles produced in high-energy hadronic interactions (like beam loss in accelerator)

- PMI chambers: exposed to high-energy particles occurring close to a target
- IG5 chambers: exposed to the same radiation field, however attenuated by 80 cm of concrete.

What is CERF? An irradiation facility at CERN providing highenergy mixed radiation fields

How? → A mixed hadron beam (in this setup 120 GeV/c) is intercepted by a copper target → highenergy mixed radiation field produced by EM and hadronic cascades

Simulation picture of the PMI chamber

21.5 cm

28.5 cm

15.8 cm.

PE wall (4mm) / inside graphite coated

Active volume

Anode: PE / graphite coated

Connector to cathode

Connector to anode

Connector plug for power supply and signal outlet

Wall composition: $C-H_2$

Filling gas: air atmospheric pressure

Active volume: 3I

Working voltage: ~460 V

IG5 - Geometry

electrodes

Properties

2 types (Ar or H filled) 5,2 I active volume pressurized at 20 bar 1200 V high-voltage

Dimensions

diameter – 18.33 cm height – 45.6 cm

> electronics board

active medium

2 ways to calculate detector response Way 1 (indirect approach)

Used to calculate IG5 response

A) Calculate detector fluence response [C cm²]

B) Calculate particle fluence spectra [cm⁻²]

C) Combination of A and B

Simulated counting rate of detector

A) Simulation of Response Fuctions

Circular parallel beam

Energy deposition in active volume

Calculate number of ion pairs created

Charge created within active volume

Conversion factors

Response R_{Φ} [C cm²]

Response R_{Ka} [C/Gy], $R_{H^{*}10}$ [C/Sv]

Response to var. particles (R_{Φ} for Ar)

B) Calculation of fluence in the range of the measurement positions

B) Particle fluence at detector position (CT6/T10)

C) Combination of A and B

Charge = $\sum_{particle type} \int dE \frac{d\phi}{dE} R_{\phi}(E)$

Charge leads to counting rate of detector

Convolution between fluence and response functions (CT6/T10)

Total contribution to response (Ar)

Neutron	Proton	π	γ
(30 ± 1)%	(24 ± 3)%	$(11 \pm 1)\%$	(35 ± 4)%

Total contribution to response (H)

Neutron	Proton	π	γ
(59 ± 3)%	(17 ± 2)%	$(4 \pm 1)\%$	$(20 \pm 2)\%$

Ratio between simulation and experiment

Experimental set-up in the CERF target area

Way 2 (direct approach)

Used to calculate PMI response

FLUKA calculation of the whole particle cascade in the experimental setup

Within this simulation calculation of energy deposition in active volume of chamber

"Energy to ion+/e-" conversion factor leads to number of produced ion+/e- pairs.

Conversion of number of ion $^+/e^-$ pairs into pC.

One pC corresponds with one PMI counts.

Analysis of the fluence reaching the various detector positions

Particle fluence at detector position 2

Particle fluence at detector position 4

Particle fluence at detector position 6

Simulation result of the counting rate

beam

Influence of the different particle types (%) to the final counting rate of the detectors at the various positions

Comparison between simulation and measurement results

	Simulation Counts/ prim. part. *10 ⁻⁶	Simulation error *10 ⁻⁶	Measurement Counts/ prim. part. *10 ⁻⁶	Measurement error *10 ⁻⁶	Simulation/ Measurement	Error
Pos 1	5,63	± 0,12	5,64	± 0,56	0.998	± 0.102
Pos 2	16,06	± 0,44	15,58	± 1,56	1.031	± 0.107
Pos 3	67,46	± 0,73	67,25	± 6,93	1.003	± 0.104
Pos 4	85,33	± 0,64	79,00	± 8,67	1.080	± 0.119
Pos 5	96,20	± 1,26	89,39	± 9,47	1.076	± 0.115
Pos 6	108,31	± 0,82	115,74	± 17,99	0.936	± 0.146

Summary of MC based calibration

- FLUKA benchmarking experiments were performed at CERF
- Very good agreement between simulation and measurement results in the radiation field occuring at the CERF facility.

The results prove that:

- FLUKA calculates mixed high-energy radiation fields correctly.
- FLUKA calculates detector response of ionisation chambers correctly.

 FLUKA can be used to calculate a suitable field calibration factors for high-energy radiation fields occuring at CERN

Backup slides

ActiWiz Nuclide inventory optimization in accelerators

Motivation for optimization of nuclear inventories of materials placed in accelerators

- Beside other material properties also the radiological consequences of the implementation of a material have to be considered
- Level of activation depends on the type of the material
- Choosing materials with low radiological impact results in several benefits

pe of the material gical impact results in

Safety benefit

Lower dose rates and committed doses

Operational benefit

- Reduced downtime due to faster access
- Less restrictions for manipulation & access

End of life-cycle benefit

- Smaller amount and less critical radioactive waste
- Smaller financial burden

Strategy to develop a tool allowing an optimization of nuclear inventories

Categorization of radiation environments

Development of ActiWiz – code assessing radiation risks, dominant nuclides etc., for arbitrary materials

Radiological hazard catalogue for materials

Categorization of the radiation environments

FLUKA calculations of typical hadronic particle spectra (p, n, π^+ , π^-) in CERN's accelerators

2400 single Monte Carlo simulations → 157.000 nuclide inventories (10 GB of data) Used as base for the

ActiWiz program

160 MeV (Linac4), 1.4 GeV (Booster), 14 GeV/c (PS), 400 GeV/c (SPS), 7 TeV (LHC)

ActiWiz – program interface

Evaluate radiological hazard for arbitrary materials with a few mouse clicks

💰 ActiWiz		· · · ·	
Radiation fie	eld		
Location:	7 TeV/c - beam impact area		-
Irradiation:	1 day	✓ Cooling: 1 hour ✓ More info on the	radiation field
Material pro	perties		
Elements		Compound Load Save Plot Load multiple compounds Clear	
232-TH 234-U 235-U 238-U		Take compound's density into account	leight fraction
90-SR 99-TC			0.0507
ANTIMONY		CALCIUM	0.5743 =
ARGON		CARBON	0.1051
BARIUM		HYDROGEN	0.0135
BERYLLIUM		IRON	0.0303
BISMUTH		MAGNESIUM	0.0363
BROMINE		OXYGEN	1.1569
CADMIUM			0.0200
CERIUM			
CHLORINE	-	Selected component: ALUMINUM - 1 Apply weight fraction	
	→ Calculate	ActiWi	Z ncke & C. Theis Version 1.0

- 1.) Select energy / location / irradiation times
- 2.) Define material composition based on 69 chemical elements
- * Many thanks to **R. Froeschl** for providing activation data on Zinc

Main output of ActiWiz: Material categorization

Radiological hazard assessment of material allowing for radiological comparison of materials

Secondary output of ActiWiz: RP quantities Example

For a given irradiation scenario we obtain:

• Information about ambient dose equivalent rate for various materials as a function of cooling time

Some relevant units for radiation protection and radiation physics

Quantities discussed

- Flux
- Fluence
- Fluence rate or Flux density
- Differential fluence
- Current
- Kerma
- Absorbed dose
- Equivalent dose
- Effective dose
- Ambient dose equivalent
- Cross section
- Surface density
- Activity
- Particle momentum versus particle energy

The description of these quantities are taken from the relevant ICRU and ICRP reports

FLUX (g: Fluß)

N ... number of particles t ... time

No surface through which particles traverse is considered

Fluence (Flußdichte)

- N Number of particles incident on a sphere of cross-sectional area $d\alpha$
- $\alpha \dots$ Cross section of an infinitesimal sphere surrounding point of interest
- *I* ... track length of particles traversing the infinitesimal sphere of volume *dV*

More general for macroscopic bodies: average fluence in a given body

$$\phi = \frac{\sum l}{V} \longrightarrow \text{ For a sphere: } \phi = \frac{N}{\alpha} = \frac{N}{r^2 \pi} = \frac{N}{\frac{4}{3}r^3 \pi} \cdot \frac{4}{3}r = \frac{N}{V}\overline{l} = \frac{\sum l}{V}$$

 \overline{I} ... average cord length of a sphere

Fluence is a quantity that is proportional to effects such as induced activity, dose, radiation damage. The longer the integrated track length of particles through matter the higher the number of interactions inside the body

Average fluence on a surface

• For a given surface with a infinitesimal thickness of dt the following can be concluded:

Differential fluence

 $\phi_E = \frac{\mathrm{d}\phi}{\mathrm{d}E}$ Fluence per energy occurring in the energy interval [E, E+dE]

Different ways to display differential fluence

Reflects better the real amount of particles around a given energy

Derivation

Current

- Particles (N) crossing a given surface (A)
- No weighting with $\cos(\Theta)$
- Pure counting of particles through a surface

$$C = \frac{N}{A}$$

Fluence rate or Flux density

$$\dot{\Phi} = \frac{\mathrm{d}\Phi}{\mathrm{d}t} = \frac{\partial N}{\partial \alpha \partial t}$$

 Φ ... Fluence N ... number of particles t ... time

Kerma (K)

is the abbreviation of **k**inetic **e**nergy **r**eleased in **ma**tter. It reflects the sum of the initial kinetic energies dE_{tr} of charged particles that are liberated by uncharged particles in a sample of matter, divided by the mass dm.

$$K = \frac{\mathrm{d}E_{tr}}{\mathrm{d}m}$$

Unit: J/kg = Gray (Gy)

Kerma must not be mixed up with Absorbed dose, having the same unit (Gy).

Absorbed dose

refers to the energy deposited (not released) in matter.

It reflects the sum of the energies dE_{dep} deposited by incident particles in a sample of matter, divided by the mass dm of the sample.

$$D = \frac{\mathrm{d}E_{dep}}{\mathrm{d}m}$$

Unit: J/kg = Gray (Gy)

Equivalent dose in an organ or tissue, H_T

is a measure of the absorbed dose $\mathsf{D}_{T\!,R}$ to tissue T by radiation of type R. It is defined by

$$H_{T} = \sum_{R} w_{R} D_{T,R}$$
 Unit: Sievert (Sv)

with w_R being the radiation weighting factor which reflects the different radiobiological effectiveness for various radiation types and energies.

The radiation weighting factor (especially for neutrons) has been revised over time and remains controversial

Radiation	Energy	W _R (formerly Q)
x-rays, gamma rays, beta rays, muons		1
neutrons	< 1 MeV	2.5 + 18.2·e ^{-[ln(E)]²/6}
	1 MeV - 50 MeV	$5.0 + 17.0 \cdot e^{-[ln(2 \cdot E)]^2/6}$
	> 50 MeV	2.5 + 3.25 · e ^{-[ln(0.04·E)]²/6}
protons, charged pions		2
alpha rays, Nuclear fission products, heavy nuclei		20

ICRP publication 103

Effective dose, E

equals the sum of various equivalent doses of different organs or tissues, weighted with the respective tissue weighting factor w_T . It is defined by

$$E = \sum_{T} w_{T} H_{T} = \sum_{T} w_{T} \sum_{R} w_{R} D_{T,R}$$
 Unit: Sievert (Sv)

with $\sum_{T} \mathbf{w}_{T} = 1$.

Different organs show different sensitivity to equivalent dose deposited

	Tissue		Tissue
Organ	weigthing factor	Organ	weigthing factor
Gonads	0.08	Oesophagus	0.04
Red Bone Marrow	0.12	Thyroid	0.04
Colon	0.12	Skin	0.01
Lung	0.12	Bone surface	0.01
Stomach	0.12	Salivary glands	0.01
Breasts	0.12	Brain	0.01
Bladder	0.04	Remainder of body	0.12
Liver	0.04		

Ambient-dose-equivalent, H*(10)

denotes the operational dose quantity used for area monitoring of penetrating radiation. Such a quantity is required since the effective dose is not directly measurable (different weighting factors for organs and particles). The H*(10) quantity is measured via the ICRU sphere:

ICRU sphere: A sphere of 30 cm diameter made of <u>tissue equivalent material</u> with a density of 1 g/cm³ and a mass composition of 76.2% oxygen, 11.1% carbon, 10.1% hydrogen and 2.6% nitrogen

Ambient dose equivalent is a conservative measure for effective dose.

Cross section

The cross section (σ) of a target entity, for a particular interaction produced by incident particles is defined as:

$$\sigma = \frac{P}{\phi} \quad \longleftarrow \quad$$

Using the definition of the fluence
applying the track length allows to use each target shape and size

- P ... probability of interaction occurring in a given volume
- Φ fluence through the given volume

Unit of the cross section is m². A special unit for the cross section used is barn, which is defined by:

Surface density (Flaechendichte)

Mass per unit area:

Explanation: Mass along a straight line starting at a given surface normalized to the size of the surface

$$\rho_A = \frac{m}{A} = \int \rho \cdot dl = \rho \cdot l$$

$$\uparrow$$
If ρ = const.
$$\rho_A \dots \text{ surface } \rho$$

$$\rho_A \dots \text{ density}$$

$$\rho \dots \text{ density}$$

Activity

• Decays of a radioactive material per time unit

$$A = \frac{\mathrm{d}N}{\mathrm{d}t}$$

Unit: Bq: \rightarrow 1 Bq = 1 decay per second

Particle momentum versus particle energy

$$E^2 = m^2 c^4 = \frac{m_0^2 c^4}{1 - v^2 / c^2}$$

. .

$$E^2 = m_0^2 c^2 + p^2 c^2$$

- E ... total energy
- *p* ... momentum
- *m*... mass of particle
- m_0 ... mass of particle at rest
- *v*... velocity of particle
- c... speed of light in vacuum

In natural units where c = 1, the energy-momentum equation reduces to

Don't forget considering mass: $E_{kin} = E - Energy$ equivalent of particle