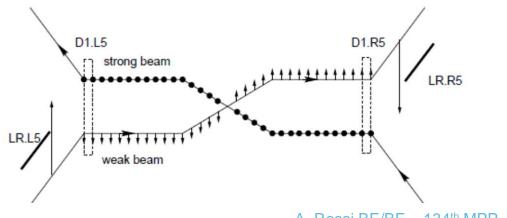


Operational and interlocking strategy for long-range beam-beam wire compensators in IP5 (TCT, TCL)

A. Rossi on behalf of the whole team:

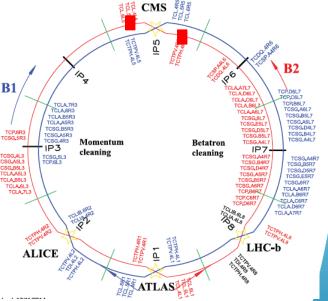
H. Schmickler, C. Boccard, J. Albertone, O. Aberle, F. Carra, L. Gentini, J. Lendaro, G. Bregliozzi, G. Cattenoz and more


With thanks to S. Redaelli, S. Fartoukh, D. Wollman, M. Zerlauth, V. Montabonnet, M. Magrans de Abril, Q. King

134th MPP

September 30, 2016

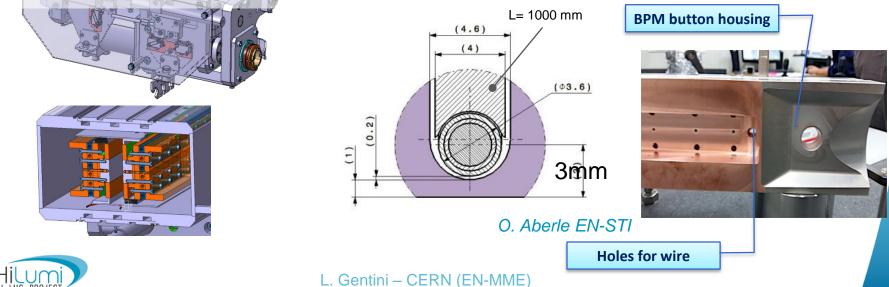
Motivations for the wires


- Beam-beam interactions: linear & non-linear kicks causing
 - orbit change and tune shift (linear effects)
 - dynamic aperture reduction (non-linear, excitation more pronounced on beam tails)
- Demonstrate long range beam-beam compensation using a local wire on both sides of the IP on a "weak" beam, where the BB effects from the "strong" beam are enhanced

Motivations for the in-jaw wire collimators

- Collimator with wire in-jaw offer:
 - 1 wire per IP side, on incoming and on outgoing beam at a favourable location
 - Wire moving in same plane as beam crossing
 - Possibility to move the wire in perpendicular plane (collimator 5th axis) to adjust for (
 - Current up to 350A + cooling
- At LRBB review in Lyon 2015:
 - Install 1 collimator per side in IP5 on beam 2
 - TCTPH.4R5.B2 and TCL.4L5.B2

Design of wire in-jaw collimator


Design:

- High DC current (up to 350 A)
- Thin wire (Ø_{CU}≤ 2.5 mm)

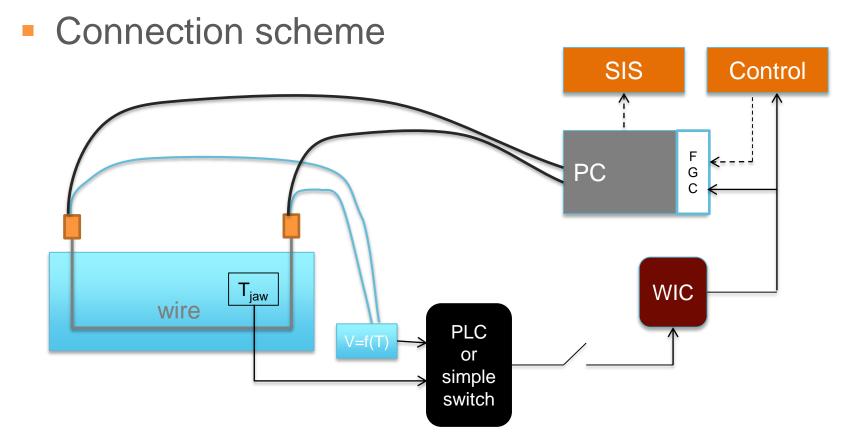
Vacuum tank

Jaws

- In-jaw wire (depth $\leq 3 \text{ mm}$)
- Maintain TCTP complete functionality!

Cooling pipes CuNi10

Tungsten inserts (Inermet[®] IT180)

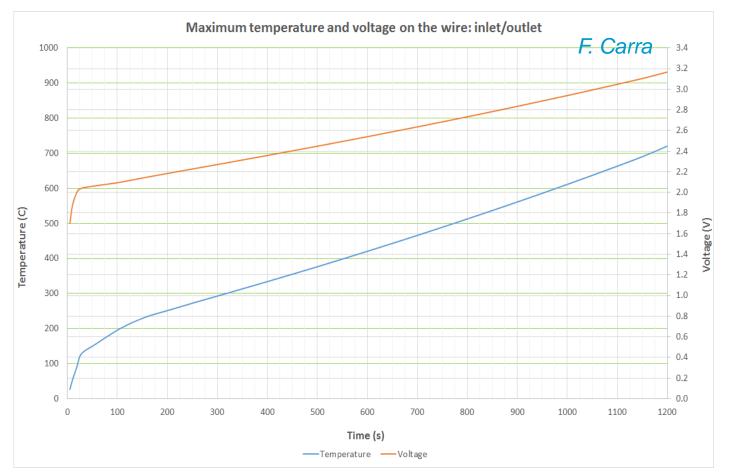

BBLRC wire

Glidcop "T" support

Glidcop Al-15 housing

and back stiffener


Wire protection and interlocks


PC hardware limited to 300A + 10A/s

In-jaw wire being tested

Wire temperature and voltage simulations to compare to test

Time evolution of the wire temperature (blue line) at locations where it reaches maximum temperature; and of the corresponding voltage (red line) between the wire extremities, assuming a current of 378 A, no water-cooling in the jaw, no thermal losses due to radiation, only heat conduction

Failure scenarios: standard operations

- Wire switched on during standard operations by mistake:
 - Maximum current = 300A, at rate 10A/s
 - LHC Optics Web Home:
 - LHC RunII pp physics injection, optics 2016
 - LHC Run II pp physics Collision (0.4m), optics 2016
 - Kick given by a magnetic field B_w to a beam of rigidity (Bρ)

$$\Delta r' = -\frac{B_w L_w}{(B\rho)}$$
$$B_w = \frac{\mu_0 I_w}{2\pi r}$$

Biot-Savart law

Failure scenarios: standard operations

	TCT.4R5.B2		TCL.4L5.B2	
	Injection energy	Collision energy	Injection energy	Collision energy
β at collimator (m)	159	2148	79	772
σ (mm)	1.08	1.04	0.76	0.62
collimator setting (σ)	13	9	25	15
r (mm)	17.00	12.38	21.98	12.37
B (T)	3.53E-03	4.85E-03	2.73E-03	4.85E-03
Δr' (µrad) @ 300A	2.61	0.25	2.02	0.25
σ' (µrad)	6.77	0.48	9.61	0.81
ratio Δr'/σ'	0.39	0.51	0.21	0.31

- The maximum kick < beam-beam effect, which so far has not caused any machine protection issues
- SIS interlock on the status of the PC will dump beam before maximum kick is ever be reached

Failure scenarios: MDs

 During MDs, the intensity of the weak beam limited by maximum 2 full bunches. Full machine protection analysis will be prepared for the MDs, also to approach the weak beam with the TCTW

The wire is on and the power converter trips:

- The current excursion will follow the time-constant of the L-R circuit and the PC crowbar, so it will be faster than 10A/s, but we should simply go back to "non compensated LRBB"
- The effect of electromagnetic induction of this rather slow rapture of the 300 A circuit into neighbouring cables should be low, since the power cables are symmetrically laid

During MDs

	TCT.4R5.B2		TCL.4L5.B2	
	Injection energy	Collision energy	Injection energy	Collision energy
β at collimator (m)	159	2148	79	772
σ (mm)	1.08	1.04	0.76	0.62
collimator setting (σ)	-	4	-	4
r (mm)	-	7.17	-	5.5
B (T)	-	8.37E-03	-	1.09E-02
Δr' (µrad) @ 300A	-	0.43	-	0.56
σ' (µrad)	6.77	0.48	9.61	0.81
ratio Δr'/σ'	-	0.88	-	0.89

With only 2 nominal bunches maximum

Conclusion (1)

- In-jaw wire collimators provide a mean for LRBB proof of concept
- Installed in IP5 during EYETS 2016-17
- Protection of the wire from overheat via WIC and integral temperature measurements
 - Note, T should never reach melting, and StSt casing of the copper wire will assure no vacuum degradations nor deterioration of collimator performance

Conclusion (2)

- Machine protection foreseen is believed adequate
- Maximum kick from wire estimated for accidental powering
 - Max kick < beam-beam < beam divergence</p>
 - SIS should act before it is reached thanks to limits in di/dt
- MDs scenarios will need further definition and full MP studies
 - Max kick < beam-beam < beam divergence</p>
 - Weak beam limited to 2 nominal bunches

