Future DM Direct Detection Experiments

Javier Tiffenberg †

April 20, 2017

† Fermi National Laboratory

April 20, 2017

This talk..

- Why we need Future Direct Detection Experiments?
- Direct detection channels and techniques
- Summary of future experiments
- Timeframes

We have an LHC, do we really need DD?

April 20, 2017

We have an LHC, do we really need DD?

April 20, 2017

Energy scales are very different

IE: in simplified models

production vanishes if g_q is tiny but σ_{SI}^0 is unchanged if M_{med} is small

🛟 Fermilab

Complementarity

- production is hard if mediator is light
- DD is less dependent on the detailed structure of the interaction
- production does not depend on the astrophysical assumptions

Take away

- We don't know what DM is, we need a to cast a wide net
- DD and accelerator experiments look at different things. Fortunately there is some overlap. It would be great to have both signals.
- Convincing power: a positive signal is not enough. Extraordinary claims require extraordinary evidence.

Adapted from Lin-17

Direct detection candidates

- $\bullet\,$ Nuclear recoil to get coherent enhancement of $\sigma_{n\text{-}DM}$
- Nuclear / electron recoil discrimination is desired
- $\bullet\,$ Light targets for WIMPs masses $<10~{\rm GeV}$
- Targets: noble gases, cryogenic crystals, semiconductors, scintillators

- Electron recoil
- Targets: Novel gases, cryogenic crystals, semiconductors

- Conversion into photon, photoelectric absorption
- Targets: resonant cavities, semiconductors

April 20, 2017

Standard WIMP: noble liquids

Single phase

Marrodán Undagoitia, Teresa et al. J.Phys. G43 (2016)

Experiment	Technique	Fiducial target		
DarkSide-20k	Single phase	20T - LAr		
DEAP-50T	Single phase	50T - LAr		
XMASS-1.5	Single phase	1.5T - LXe		
XENON-nT	Dual phase	4.5T - LXe		
LZ	Dual phase	5.7T - LXe		
DARWIN	Dual phase LXe	30T - LXe		

There is a well defined program for the next 15-20 years

🞝 Fermilab

April 20, 2017

Standard WIMP: SuperCDMS and EURECA

Standard WIMP: SuperCDMS and EURECA

SuperCDMS/EURECA

Cryostat will be sized to hold much more than initial G2 payload; offers prime realestate in the sub-40 mK, ultra-low radioactive background, ultra-low noise zone!

- Active development in adapting SuperCDMS cryogenics, towers and readout to EURECA specifications
- EURECA: next-generation "cryogenic" dark matter experiment; joint collaboration between present-day EDELWEISS (Ge) and CRESST (CaWO_a).
- Positioned to expand payload to explore high mass WIMPs if a signal is seen, OR upgrade with improved detectors to reach neutrino floor in 1-10 GeV/c² region.

ICHEP, August 2016

SuperCDMS Rough Timeline

ICHEP, August 2016

16

April 20, 2017

Standard WIMP: SuperCDMS and EURECA

Standard WIMP: CRESST-III

Upcoming projects: CRESST-III

arXiv:1503.08065

Goal: lower threshold to 100 eVnr

- \rightarrow smaller crystals of best background quality (250 g \rightarrow 24 g)
- → all-scintillating detector design all material surrounding the detectors is scintillating → avoid partial energy depositions

Status:

Prototype already exceeds design goal: 50 eVnr threshold

Alps 2017

- first 4 modules were mounted in February 2016
- · cool-down soon

Standard WIMP: CRESST-III

April 20, 2017

DAMIC

DAMIC uses scientific CCD as target material to detect the ionization produce by nuclear recoils in the silicon lattice

DAMIC-1K

- A kg-size experiment with 0.1 dru background and \leq 2e- threshold
- exploration of low-mass WIMPs and dark sector candidates

Standard WIMP: semiconductor detectors

April 20, 2017

Standard WIMP: light gases

G. Gerbier - 2017

Alps 2017

Standard WIMP: light gases

140 cm diameter project with compact shield option implementation at SNOLAB by 2018

Alps 2017

Standard WIMP: light gases

📲 🗱 🕻 🕂 Fermilab

Standard WIMP: super fluid He

Reading Out ⁴He Quasiparticles (quantum evaporation)

S. Hertel - 2017

Alps 2017

Standard WIMP: super fluid He

Dark photon: Essig et al, cf. arXiv:1703:00910

There are well motivated light DM candidates that can be detected via electron scattering. Models with light mediators can be explored.

Light dark matter: electron recoil in LXe

U_A(1) concept

- 10 kg scale liquid xenon TPC with complete focus on S2 signal and mitigation of e- backgrounds
- Without concern for S1 (primary scintillation collection)
 - the design is far simpler
 - and cheaper
 - contains less plastics (easier to achieve purity)
- A 2 kg scale prototype is already built
 - LLNL detector for CENNS
 - Update prototype design for 10 kg active while studying ebackground mitigation
- Underground deployment at SURF
 - Small footprint, likely compatible with BLBF space

Light dark matter: electron recoil in LXe

A 10 Kg experiment can have discovery potential if dark-counts are low.

Timescale for data taking: 2020

April 20, 2017

辈 Fermilab

Light dark matter: electron recoil in silicon

SENSEI: Sub-Electron-Noise SkipperCCD Experimental Instrument

Light dark matter: electron recoil in silicon

The SENSEI project

- It uses SkipperCCDs as target material to detect DM-e interactions
- Main difference: the Skipper CCD allows multiple sampling of the same pixel without corrupting the charge packet.
- Pixel value = $\frac{1}{N}\Sigma_{i}^{N}$ (pixel sample)_i
- Zero noise detector. Threshold can be set to 2e limited by dark counts

Light dark matter: electron recoil in silicon

Light Dark Photon

Timescale for data taking: 2017 for 1g detector 2019 for 100g

🛟 Fermilab

Summary

- Direct detection is a very active area
- We need both DD and accelerator based experiments
- Most of the larger efforts are focused on WIMPs
- Several new techniques to explore DM candidates beyond the WIMP paradigm
- Electron recoil experiments can explore large areas of the parameter space
- I apologize in advance to all the experiments that I didn't include

BACK UP SLIDES

April 20, 2017

Back of the envelope calculation

A 100g detector that takes data for one year \rightarrow Expo = 36.5kg \cdot day

Assuming same background as in DAMIC:

- 5 DRU (events·kg⁻¹·day⁻¹·keV⁻¹) in the 0-1keV range
 - ightarrow N_{bkg} = 36.5 kg \cdot day imes 5 DRU = 182.5 events
- \bullet Dominated by external gammas \rightarrow flat Compton spectrum

Back of the envelope calculation

A 100g detector that takes data for one year \rightarrow Expo = 36.5kg \cdot day

Assuming same background as in DAMIC:

- 5 DRU (events·kg⁻¹·day⁻¹·keV⁻¹) in the 0-1keV range
 - \rightarrow $\rm N_{bkg}$ = 36.5 kg \cdot day \times 5 DRU = 182.5 events
- \bullet Dominated by external gammas \rightarrow flat Compton spectrum

182.5 events over the 278 charge bins in the 0-1keV range

Expect 0.65 bkd events in the lowest (2 e⁻) charge-bin

"Singles"BackgroundRates	ElectronRecoil				NuclearRecoil($\times 10^{-6}$)	
(counts/kg/keV/year)	GeHV	Si HV	Ge iZIP	Si iZIP	Ge iZIP	Si iZIP
Coherent Neutrinos					2300.	1600.
Detector-Bulk Contamination	21.	290.	8.5	260.		
MaterialActivation	1.0	2.5	1.9	15.		
Non-Line-of-SightSurfaces	0.00	0.03	0.01	0.07	-	
Bulk Material Contamination	5.4	14.	12.	88.	440.	660.
Cavern Environment	-	-	-	-	510.	530.
Cosmogenic Neutrons					73.	77.
Total	27.	300.	22.	370.	3300.	2900.

From arXiv:1610.00006

SENSEI

Plots from: Rouven Essig, Tomer Volansky & Tien-Tien Yu.

🗱 Fermilab