Future DM Direct Detection Experiments

Javier Tiffenberg†

April 20, 2017

† Fermi National Laboratory

This talk..

- Why we need Future Direct Detection Experiments?
- **•** Direct detection channels and techniques
- Summary of future experiments
- **•** Timeframes

We have an LHC, do we really need DD?

We have an LHC, do we really need DD?

Energy scales are very different

IE: in simplified models

production vanishes if g_q is tiny but σ^0_SI is unchanged if M_med is small

춘 Fermilab

Complementarity

- **•** production is hard if mediator is light
- DD is less dependent on the detailed structure of the interaction
- **•** production does not depend on the astrophysical assumptions

Take away

- We don't know what DM is, we need a to cast a wide net
- DD and accelerator experiments look at different things. Fortunately there is some overlap. It would be great to have both signals.
- Convincing power: a positive signal is not enough. Extraordinary claims require extraordinary evidence.

Adapted from Lin-17

Direct detection candidates

- Nuclear recoil to get coherent enhancement of $\sigma_{\rm n-DM}$
- Nuclear / electron recoil discrimination is desired
- Light targets for WIMPs masses < 10 GeV
- Targets: noble gases, cryogenic crystals, semiconductors, scintillators

- **•** Electron recoil
- Targets: Novel gases, cryogenic crystals, semiconductors

- **Conversion into photon, photoelectric absorption**
- **Targets: resonant cavities, semiconductors**

춘 Fermilab

8 **Alps 2017 Alps 2017 April 20, 2017**

Standard WIMP: noble liquids

e/N recoil discrimination in LAr but not in LXe

e/N recoil discrimination in LAr and in LXe

춘 Fermilab

Marrodán Undagoitia, Teresa et al. J.Phys. G43 (2016)

There is a well defined program for the next 15-20 years

춘 Fermilab

Standard WIMP: SuperCDMS and EURECA

Standard WIMP: SuperCDMS and EURECA

SuperCDMS/EURECA

Cryostat will be sized to hold much more than initial G2 payload; offers prime realestate in the sub-40 mK, ultra-low radioactive background, ultra-low noise zone!

- Active development in adapting SuperCDMS cryogenics, towers and readout to EURECA specifications
- EURECA: next-generation "cryogenic" dark matter experiment; joint collaboration between present-day EDELWEISS (Ge) and CRESST (CaWO₄).
- Positioned to expand payload to explore high mass WIMPs if a signal is seen, *OR upgrade with improved detectors to reach neutrino floor in 1-10 GeV/c2 region.*

ICHEP, August 2016

춮 Fermilab

12 Alps 2017 April 20, 2017

15

SuperCDMS Rough Timeline

ICHEP, August 2016

16

Standard WIMP: SuperCDMS and EURECA

Standard WIMP: CRESST-III

Upcoming projects: CRESST-III

arXiv:1503.08065

Goal: lower threshold to 100 eVnr

- \rightarrow smaller crystals of best background quality (250 g \rightarrow 24 g)
- → all-scintillating detector design all material surrounding the detectors is scintillating \rightarrow avoid partial energy depositions

Status:

- Prototype already exceeds design goal: 50 eVnr threshold
- first 4 modules were mounted in February 2016
- cool-down soon

Standard WIMP: CRESST-III

DAMIC

DAMIC uses scientific CCD as target material to detect the ionization produce by nuclear recoils in the silicon lattice

DAMIC-1K

- A kg-size experiment with 0.1 dru background and \leq 2e-threshold
- exploration of low-mass WIMPs and dark sector candidates

Standard WIMP: semiconductor detectors

Standard WIMP: light gases

Ampl region:
r2

 $C = R_{in} = 7/5$ mm

Spherical gas detectors New Experiments With Spheres

Drift region
E=A/R²

- => **Low threshold (low C), does not depend on size**
- **Fiducial volume selection by risetime**
- **Flexible (P, gaz)**
- Large mass / large volume (30 kg) with single channel
- Simple, sealed mode
- 2 LEP cavity 130 cm Ø tested
- **1 low activity 60 cm Ø in operation @ LSM**

G. Gerbier - 2017 17 Alps 2017 April 20, 2017

 r_1

Standard WIMP: light gases

140 cm diameter project with compact shield option implementation at SNOLAB by 2018

Standard WIMP: light gases

Standard WIMP: super fluid He

Reading Out ⁴He Quasiparticles (quantum evaporation)

S. Hertel - 2017

Standard WIMP: super fluid He

Dark photon: Essig et al, cf. arXiv:1703:00910

There are well motivated light DM candidates that can be detected via electron scattering. Models with light mediators can be explored.

Light dark matter: electron recoil in LXe

$\mathbf{U}_{\mathbf{A}'}(1)$ concept

- 10 kg scale liquid xenon TPC with complete focus on S2 signal and mitigation of e- backgrounds
- Without concern for S1 (primary scintillation collection)
	- the design is far simpler
	- and cheaper
	- contains less plastics (easier to achieve purity)
- A 2 kg scale prototype is already built
	- LLNL detector for CENNS
	- Update prototype design for 10 kg active while studying ebackground mitigation
- Underground deployment at SURF
	- Small footprint, likely compatible with BLBF space

Light dark matter: electron recoil in LXe

A 10 Kg experiment can have discovery potential if dark-counts are low.

Timescale for data taking: 2020

24 Alps 2017 April 20, 2017

춘 Fermilab

Light dark matter: electron recoil in silicon

SENSEI: Sub-Electron-Noise SkipperCCD Experimental Instrument

Light dark matter: electron recoil in silicon

The SENSEI project

- It uses SkipperCCDs as target material to detect DM-e interactions
- **Main difference:** the Skipper CCD allows multiple sampling of the same pixel without corrupting the charge packet.

Pixel value $= \frac{1}{N} \Sigma_i^N$ (pixel sample)_i

Zero noise detector. Threshold can be set to 2e limited by dark counts

Light dark matter: electron recoil in silicon

Light Dark Photon

Timescale for data taking: 2017 for 1g detector 2019 for 100g

춘 Fermilab

Alps 2017

Summary

- Direct detection is a very active area
- We need both DD and accelerator based experiments
- Most of the larger efforts are focused on WIMPs
- Several new techniques to explore DM candidates beyond the WIMP paradigm
- Electron recoil experiments can explore large areas of the parameter space
- I apologize in advance to all the experiments that I didn't include

BACK UP SLIDES

Back of the envelope calculation

A 100g detector that takes data for one year \rightarrow Expo = 36.5kg \cdot day

Assuming same background as in DAMIC:

- **5 DRU** (events∙kg $^{-1}\cdot$ day $^{-1}\cdot$ keV $^{-1}$) in the 0-1keV range
	- \rightarrow N_{bkg} = 36.5 kg · day \times 5 DRU = 182.5 events
- Dominated by external gammas \rightarrow flat Compton spectrum

Back of the envelope calculation

A 100g detector that takes data for one year \rightarrow Expo = 36.5kg \cdot day

Assuming same background as in DAMIC:

- **5 DRU** (events∙kg $^{-1}\cdot$ day $^{-1}\cdot$ keV $^{-1}$) in the 0-1keV range
	- \rightarrow N_{bkg} = 36.5 kg · day \times 5 DRU = 182.5 events
- Dominated by external gammas \rightarrow flat Compton spectrum

182.5 events over the 278 charge bins in the 0-1keV range

Expect 0.65 bkd events in the lowest $(2 e^-)$ charge-bin

춮 Fermilab

From arXiv:1610.00006

SENSEI

Plots from: Rouven Essig, Tomer Volansky & Tien-Tien Yu.

춘 Fermilab

April 20, 2017

Alps 2017