Flavor Physics at e^+e^- Colliders

Boštjan Golob University of Ljubljana/Jožef Stefan Institute & Belle/Belle II Collaboration

University of Ljubljana

"Jožef Stefan" Institute Status & Plans

Examples of measurements

Summary

Alps 2017: an Alpine LHC Physics Summit

Obergurgl, April 2017

B. Golob, Belle II 1/19

e⁺e⁻ Accelerators?

Eastbound \rightarrow considering acc. relevant (subjective) to this talk \rightarrow Far East

Obergurgl, April 2017

B. Golob, Belle II 2/19

Accelerator

"SuperKEKB"

Tokyo (40 mins by Tsukuba Exps)

Inclusive Neutrals Summary

Status

Super KEKB

SuperKEKB:

e⁻ (HER): 7.0 GeV e⁺ (LER): 4.0 GeV

 $E_{CMS} = M(Y(4S))c^{2}$ (\rightarrow BB) [M(Y(1S))c^{2},M(Y(6S))c^{2}]

 $dN_f/dt = \sigma(e^+e^- \rightarrow f)\mathcal{L}$

 \mathcal{L} =8x10³⁵ cm⁻² s⁻¹

Obergurgl, April 2017

Inclusive Neutrals Summary

Status

Accelerator "BEPC - II"

BEPC-II:

E_{CMS} =2.0 – 4.6 GeV

 $\begin{array}{cc} \mathsf{M}(\psi(3770))\mathsf{c}^2, \ \mathsf{M}(\psi(4040))\mathsf{c}^2\\ (\rightarrow \mathsf{D}\overline{\mathsf{D}}) & (\rightarrow \mathsf{D}\overline{\mathsf{D}}^*) \end{array}$

$\mathcal{L} = 1 \times 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$

Obergurgl, April 2017

Super KEKB luminosity planning

 $http://lhc-commissioning.web.cern.ch/lhc-commissioning/schedule/LHC\%20schedule\%20beyond\%20LS1\%20MTP\%202015_Freddy_June2015.pdf$

Belle 2 planning

Final focusion of the second s

BEAST PHASE I: Simple background commissioning detector (diodes, TPCs, crystals). No final focus (i.e. no luminosity, single beam background studies possible).

 $\begin{array}{c} 40 \\ 20 \\ 20 \\ -20 \\ -40 \\ -20 \\ -40 \\ -20 \\ -40 \\ -20 \\ -40 \\ -20 \\ -40 \\ -20 \\ -40 \\ -20 \\ -40 \\ -20 \\ -40 \\ -20 \\ -$

BEAST PHASE II: More elaborate inner packground commissioning detector & full Belle II outer detector. Superconducting final focus, no vertex detectors.

Physics Running

Oct 2018
$$\rightarrow$$

Feb – Jun 2016

Inclusive Neutrals Summary

Belle 2 Roll-in (April 11th)

F

Inclusive Neutrals Summary

Status

Belle 2 Roll-in (April 11th)

after 1 minute 30 seconds

B. Golob, Belle II 8/19

Inclusive Neutrals Summary

Status

Belle 2 Roll-in (April 11th)

Obergurgl, April 2017

B. Golob, Belle II 9/19

B. Golob, Belle II 10/19

Properties of e^+e^- Colliders (as compared to LHC)

- low energy
- low trigger rate / Event size
 (30 kHz 1st level, 5 kHz high level; 300 kB event size)
- low multiplicity (2(10))

Obergurgl, April 2017

B. Golob, Belle II 11/19

Properties of e^+e^- Colliders (as compared to LHC)

- low energy
- low trigger rate / Event size
 (30 kHz 1st level, 5 kHz high level; 300 kB event size)
- low multiplicity ($\mathcal{O}(10)$)
- good hermiticity
- specific methods for full event reconstruction

fully (partially) reconstruct B_{tag} ; reconstruct *h* from e.g. $B_{sig} \rightarrow hvv$ or $B_{sig} \rightarrow \tau (\rightarrow hv)v$; no additional energy in EM calorim.; signal at $E_{ECL} \sim 0$;

 B_{tag} full reconstruction (NeuroBayes)

 E^{e-}_{beam} from Y(4S) mass

B. Golob, K. Trabelsi, P. Urquijo, Belle2-note-ph-2015-002

Belle 2: improved K_S reconstr.;

improved hadr. B tagging;

LHCb: σ ∝√s;

run 2 50% less eff. for hadronic triggers than run 1;

run 3 increase eff. for hadr. triggers by 2x w.r.t. run 1;

LHCb EPJC 73, 2373

Obergurgl, April 2017

BEPC-II / BES-III planning

part of existing data sets:

data	lumin.[fb-1]	year
ψ(3770)	2.9	2010/11
ψ(4040)	0.5	2011
4.18 GeV	3.1	2016

proposal until 2020 (3 years):

```
10<sup>10</sup> J/ψ
3 fb<sup>-1</sup> 4.6-4.65 GeV (Λ<sub>c</sub>)
5 fb<sup>-1</sup> 4.25-4.6 GeV (XYZ)
```

E _{miss}	Neutrals Summary	Subjects
Methods and Important insi	PROCESSES WHERE BEI GHT INTO NP COMPLEN	LLE 2 CAN PROVIDE IENTARY TO OTHER EXPERIMENTS:
E_{MISS} : $\mathcal{B}(B \rightarrow \tau \nu), \mathcal{B}(B - (Semi)Inclusiv)$	$\rightarrow X_c \tau v$), $\mathcal{B}(B \rightarrow h v v)$, $\mathcal{B}(E)$	$3 \rightarrow X_u \ell v$)
$\mathcal{B}(B \to s\gamma), A_{CP}(B)$	$B \rightarrow s\gamma$), $\mathcal{B}(B \rightarrow s\mathcal{U})$,	
NEUTRALS:		
$S(B \rightarrow K_S \pi^0 \gamma), S(B \rightarrow K_S \pi^0 \gamma)$	$(B \rightarrow \eta^{2} K_{S}), S(B \rightarrow K_{S} K_{S})$	$(K_{S}), \mathcal{B}(\tau \to \mu \gamma), \mathcal{B}(B_{S} \to \gamma \gamma), \dots$
DETAILED DESC	RIPTION OF PHYSICS PR	OGRAM AT BELLE 2 IN:
A.G. AKEROYD ET AL., ARXIV:	1002.5012	B.G.,, K, Trabelsi, P. Urquijo, BE LLE2-NOTE- PH-2015-002
Physics at Super B l	Factory	IMPACT OF BELLE II ON FLAVOR PHYSICS
Super B B. O'	Leary et al., arXiv: 1008.1541	

Progress Reports

Physics

Physics of B Factories

ED. A.J. BEVAN, B. GOLOB, TH. MANNEL, S. PRELL, AND B.D. YABSLEY, EUR. PHYS. J. C74 (2014) 3026

P. URQUIJO, BE LLE2-NOTE- PH-2015-002

BELLE II - LHCB MEASUREMENT EXTRAPOLATION COMPARISONS

Introd	uction
111100	aonon

Inclusive Neutrals Summarv

 $B \rightarrow D^* \tau v$

Belle, PRD 94, 072007, 700 FB⁻¹

$R(D^{(*)}) = \mathcal{B}(B \to D^* \tau \nu) / \mathcal{B}(B \to D^* \ell \nu) \qquad \ell = e, \mu \qquad \text{Test of LFU}$ $R(D)_{SM} = 0.300 \pm 0.008$

H. NA ET AL., PHYS.REV.D 92, 054410 (2015)

R(D*)_{SM} =0.252 ±0.003

S.Fajfer et al., Phys.Rev.D85(2012) 094025 use NN with M^2_{miss} ,

data sample with low M²_{miss} used to fit the background contribution

 $E_{vis}, \cos\theta_{B-D^*}$

B. Golob, Belle II 17/19

Inclusive Neutrals Summary

Neutrals

$\mathsf{CPV} \Vdash B \to SQQ$

Some uncertainties cancel in ΔS (VTX RECONSTR., FLAVOR TAG, LIKELIHOOD FIT); BETTER K_S EFF. WITH VTX HITS - LARGER VTX RADIUS, 30%);

VTX RECONSTR. IMPROVED WITH BETTER TRACKING;

Introductio	n

Inclusive Neutrals Summary

Neutrals

EXOTIC STATES Belle II / BES III

X(3872) discovery by Belle (2003) (meson molecule?) clear that exotic ($\neq q\overline{q}$, qqq) states exist PQ discovery by LHCb (2015)

Belle II & BES III can produce those clearly and abundantly

e.g. Y states in e+e-(quark gluon hybrids?)

Y(4260); BESIII 0.8 fb⁻¹ at E_{cms} =4.26 GeV $\rightarrow J/\psi \pi^+\pi^$ studies of properties (combined with LQCD?) may reveal nature of exotic states

B. Golob, Belle II 19/19

		Neutrals				Sur
E _{miss}		Summary				
	Observables	Belle or LHCb*	B	elle II	L	HCb
		(2014)	5 ab ⁻¹	¹ 50 ab ⁻	1 8 fb ⁻¹ (20	018) 50 fb $^{-1}$
UT angles	$\sin 2\beta$	$0.667 \pm 0.023 \pm 0.012 (0.9^{\rm o})$	0.4°	0.3°	0.6°	0.3°
	α [°]	85 ± 4 (Belle+BaBar)	2	1		
	$\gamma [\circ] (B \rightarrow D^{(*)} K^{(*)})$	68 ± 14	6	1.5	4	1
	$2\beta_s(B_s \rightarrow J/\psi\phi)$ [rad]	$0.07 \pm 0.09 \pm 0.01^{\ast}$			0.025	0.009
Huonic penguins	$S(B \rightarrow \phi K^0)$	0.90+0.09	0.053	0.018	0.2	0.04
	$S(B \to \eta' K^0)$	$0.68 \pm 0.07 \pm 0.03$	0.028	0.011	20.000 (10.000	
	$S(B \rightarrow K_S^0 K_S^0 K_S^0)$	$0.30 \pm 0.32 \pm 0.08$	0.100	0.033		
	$\beta_s^{\text{eff}}(B_s \to \phi \phi) \text{ [rad]}$	$-0.17\pm0.15\pm0.03^*$	541.44 C C C		0.12	0.03
	$\beta^{\rm eff}_s(B_s \to K^{*0} \bar{K}^{*0})$ [rad]	a .			0.13	0.03
Direct CP in hadronic Decays	$\mathcal{A}(B \to K^0 \pi^0)$	$-0.05 \pm 0.14 \pm 0.05$	0.07	0.04		
JT sides	V _{cb} incl.	$41.6 \cdot 10^{-3} (1 \pm 2.4\%)$	1.2%			
	$ V_{cb} $ excl.	$37.5 \cdot 10^{-3} (1 \pm 3.0\%_{ex.} \pm 2.7\%_{th.})$	1.8%	1.4%		
	$ V_{ub} $ incl.	$4.47 \cdot 10^{-3} (1 \pm 6.0\%_{ex.} \pm 2.5\%_{th.})$	3.4%	3.0%		
	$ V_{ub} $ excl. (had. tag.)	$3.52 \cdot 10^{-3} (1 \pm 10.8\%)$	4.7%	2.4%		~
eptonic and Semi-tauonic	$\mathcal{B}(B \to \tau \nu) \ [10^{-6}]$	$96(1 \pm 26\%)$	10%	5%		_
	$\mathcal{B}(B \to \mu \nu) [10^{-6}]$	< 1.7	20%	7%		
	$R(B \rightarrow D \tau \nu)$ [Had. tag]	$0.440(1 \pm 16.5\%)^{\dagger}$	5.6%	3.4%		
	$R(B \to D^* \tau \nu)^{\dagger}$ [Had. tag]	$0.332(1 \pm 9.0\%)^{\dagger}$	3.2%	2.1%		
Radiative	$\mathcal{B}(B \to X_s \gamma)$	$3.45 \cdot 10^{-4} (1 \pm 4.3\% \pm 11.6\%)$	7%	6%		-
	$A_{CP}(B \rightarrow X_{s,d}\gamma)$ [10 ⁻²]	$2.2\pm4.0\pm0.8$	1	0.5		
	$S(B \rightarrow K_S^0 \pi^0 \gamma)$	$-0.10 \pm 0.31 \pm 0.07$	0.11	0.035		
	$2\beta_s^{\text{eff}}(B_s \to \phi \gamma)$				0.13	0.03
	$S(B \rightarrow \rho \gamma)$	$-0.83 \pm 0.65 \pm 0.18$	0.23	0.07		
	$\mathcal{B}(B_s \to \gamma \gamma)$ [10 ⁻⁶]	< 8.7	0.3	*		
Electroweak penguins	$\mathcal{B}(B \to K^{*+} \nu \overline{\nu}) \ [10^{-6}]$	< 40	< 15	30%		
	$\mathcal{B}(B \to K^+ \nu \overline{\nu}) \ [10^{-6}]$	< 55	< 21	30%		
	$C_7/C_9 \ (B \to X_s \ell \ell)$	~20%	10%	5%		
	$\mathcal{B}(B_s \to \tau \tau)$ [10 ⁻³]		< 2	77.0		_
	R/D) [10-9]	a a+1.1.			0.5	0.2

ary

- omplementarity is n absolute must in tensity frontier
- eed to do some e)analysis of Belle lata
- ardly waiting to start latataking with Belle II

20/19

Inclusive Neutrals Summary

Semil. tagging

$$B \rightarrow \tau v, Hvv, X_C \tau v, ...$$

possible to reconstruct events with v's;

fully (partially) reconstruct B_{tag} ; reconstruct h[±] from B_{sig} ; no additional energy in EM calorim.; signal at E_{ECL} ~0;

Partial reconstruction (semileptonic tagging):

$$\cos \theta_{B-D^*\ell} \equiv \frac{2E_{\text{beam}}E_{D^*\ell} - m_B^2 - M_{D^*\ell}^2}{2|\vec{p}_B| \cdot |\vec{p}_{D^*\ell}|}$$

 $\epsilon_{tag} \sim 1\%$

B. Golob, Belle II 22/19

n.b.: σ(R(D*))/R(D^(*)) ~4% @20 ab⁻¹

B. Golob, Belle II 25/19

B. Golob, Belle II 26/19

Inclusive Neutrals

Inclusive

 $B \rightarrow S\gamma$ DIRECT CPV

SEMI-INCLUSIVE, SUM OF MANY EXCLUSIVE STATES: ALL FLAVOR SPECIFIC FINAL STATES;

<D>: AVERAGE DILUTION DUE TO FLAVOUR MISTAG, ~1

- ΔD : DIFFERENCE BETWEEN FLAVOUR MISTAG FOR B AND \overline{B} , << 1
- A_{DET} : DETECTOR INDUCED ASYMMETRY

$$A_{CP} = (-0.8 \pm 2.9)\% \text{ HFAG, 2014}$$

SM: $A_{CP} \sim (0.44 \pm 0.24_{0.14})\%$

Integrated Luminosity [ab-1]

Year

	Observables	Belle or LHCb [*]	Be	lle II	L	HCb
		(2014)	5 ab ⁻¹	50 ab ⁻¹	2018	50 fb^{-1}
Charm Rare	$\mathcal{B}(D_s \to \mu \nu)$	$5.31 \cdot 10^{-3} (1 \pm 5.3\% \pm 3.8\%)$	2.9%	0.9%		-
	$\mathcal{B}(D_s \to \tau \nu)$	$5.70 \cdot 10^{-3}(1 \pm 3.7\% \pm 5.4\%)$	3.5%	2.3%		
	$\mathcal{B}(D^0 \to \gamma \gamma) \ [10^{-6}]$	< 1.5	30%	25%		
Charm CP	$A_{CP}(D^0 \to K^+ K^-) \ [10^{-4}]$	$-32\pm21\pm9$	11	6		
	$\Delta A_{CP}(D^0 \to K^+ K^-) [10^{-3}]$	3.4*			0.5	0.1
	A_{Γ} [10 ⁻²]	0.22	0.1	0.03	0.02	0.005
	$A_{CP}(D^0 \to \pi^0 \pi^0) \ [10^{-2}]$	$-0.03 \pm 0.64 \pm 0.10$	0.29	0.09		
	$A_{CP}(D^0 \to K_S^0 \pi^0) \ [10^{-2}]$	$-0.21 \pm 0.16 \pm 0.09$	0.08	0.03		
Charm Mixing	$x(D^0 \to K_S^0 \pi^+ \pi^-) \ [10^{-2}]$	$0.56 \pm 0.19 \pm \frac{0.07}{0.13}$	0.14	0.11		
	$y(D^0 \to K_S^0 \pi^+ \pi^-) \ [10^{-2}]$	$0.30 \pm 0.15 \pm 0.05 \\ 0.08$	0.08	0.05		
	$ q/p (D^0 \to K_S^0 \pi^+ \pi^-)$	$0.90 \pm \frac{0.16}{0.15} \pm \frac{0.08}{0.06}$	0.10	0.07		
	$\phi(D^0 \to K^0_S \pi^+ \pi^-) \ [^\circ]$	$-6 \pm 11 \pm \frac{4}{5}$	6	4		
Tau	$\tau \to \mu \gamma \ [10^{-9}]$	< 45	< 14.7	< 4.7		
	$\tau \to e \gamma \ [10^{-9}]$	< 120	< 39	< 12		
	$\tau \to \mu \mu \mu \ [10^{-9}]$	< 21.0	< 3.0	< 0.3		

B. GOLOB, K. TRABELSI, P. URQUIJO, BELLE2-NOTE-PH-2015-002

Introv	auct	inn
	aaoi	

Inclusive Neutrals Summary

Introduction

- beam nonn 1 (40) mass

B. Golob, K. Trabelsi, P. Urquijo, Belle2-note-ph-2015-002

Belle 2: improved K_S reconstr.; improved hadr. B tagging;

LHCb: σ ∝√s;

run 2 50% less eff. for hadronic triggers than run 1;

run 3 increase eff. for hadr. triggers by 2x w.r.t. run 1;

LHCb EPJC 73, 2373

RELATIVE YIELD INCREASE

Emi

EARLY RUNNING

- NEED TIME FOR CALIBRATION OF DETECTORS AT Y(4S);
- MEASUREMENTS NOT REQUIRING SOPHISTICATED
 PID AND/OR VERTEX DETERMINATION;
- MAXIMIZE IMPACT ON EXISTING DATA SAMPLES (E.G. Y(**3S**));

DARK MATTER

 $e^+e^- \rightarrow \gamma A' \rightarrow \gamma \chi \chi$ (M_{χ} < M_A/2)

SINGLE γ TRIGGER REQUIRED; SIMPLIFIED: SINGLE γ , $E_{\gamma} > E_{CUT}$;

B. Golob, Belle II 31/19

Obergurgl, April 2017

Emi

Inclusive Neutrals Summary

Missing energy

$B \rightarrow \tau v, Hvv, ...$

• FULLY (HADRON TAG) OR PARTIALLY (SEMIL.TAG) RECONSTRUCT B_{TAG} ;

$B\!\to\tau v$

 $\mathcal{B}(B^+ \rightarrow \tau^+ \nu) = (0.72 \pm 0.26 \pm 0.11) \cdot 10^{-4}$

Belle, PRL110, 131801 (2013), 700 FB⁻¹

$$\mathcal{B}(B^+ \rightarrow \tau^+ \nu) = (1.25 \pm 0.28 \pm 0.27) \cdot 10^{-4}$$

Belle, arXiv:1503.05613, 700 fb⁻¹

main syst. is reducible: bKg. ECL shape, ϵ $B_{\text{tag}})$

Em

Inclusive Neutrals Summary

Missing energy

CORRESPONDING $|V_{UB}|$ UNCERTAINTY (EXPERIMENTAL):

SEMIL. TAG, 50 AB⁻¹: 4.5% HADR. TAG, 50 AB⁻¹: 3.5%

B. GOLOB, K. TRABELSI, P. URQUIJO,, BELLE2-NOTE-PH-2015-002

B \rightarrow K(*)vv Br's expected to be "measured" to 30%

$B^{+} \rightarrow \tau v$ projected accuracy on $\mathcal{B}(B^{+} \rightarrow \tau^{+} v)$

Inclusive Neutrals Summary

SuperKEKB

Obergurgl, April 2017

Introduction

Capacity of the

Inclusive Neutrals Summary

Introduction

013

Installation of 100 new long LER bending magnets done

Installation of HER wiggler chambers in Oho straight section is done.

Damping ring tunnel: built!

Obergurgl, April 2017

B. Golob, Belle II 36/19

B. Golob, Belle II 37/19