Natural SUSY at the ILC: from MZ to the GUT scale

S.-L. Lehtinen, M. Berggren, J. List (DESY) H. Baer (Oklahoma), K. Fujii, J. Yan (KEK), T.Tanabe (Tokyo)

ALPS conference, Obergurgl, Austria, April 17-22 2017

Mikael Berggren [Light Higgsinos @ ILC](#page-41-0) ALPS Apr '17 1/19

 $E|E \cap Q$

Outline

1 [Light higgsinos: Motivation](#page-2-0)

2 [The ILC](#page-3-0)

[Measurements at the International Linear Collider](#page-4-0)

4 [Probing the GUT-scale at ILC \(& LHC\)](#page-14-0)

- [Need to add the Higgs](#page-18-0)
- [Unification, Discrimination, Prediction](#page-24-0)

[Conclusions](#page-36-0)

 $E|E \cap Q$

Why study light higgsinos

- The superpartners of un-coloured SM bosons mix to $\tilde{\chi}_{1-4}^0$ and $\tilde{\chi}_{1-2}^{\pm}$, governed by μ , M_1 , M_2 , tan β .
- Naturalness and small fine tuning require μ parameter at the EW scale:

$$
m_Z^2 = 2 \frac{m_{H_d}^2 + \Sigma_d^d - (m_{H_u}^2 + \Sigma_u^u) \tan^2 \beta}{\tan^2 \beta - 1} - 2\mu^2
$$

- μ small \Rightarrow light higgsinos. Typical mass difference 10 20 GeV
- $\bullet \Rightarrow$ challenging for LHC if other sparticles are heavy

[The ILC](#page-3-0)

What is the International Linear Collider (ILC) integrated luminosities <mark>[f</mark>b]
25
Luminosities [fb

- Electron-positron collider at $\sqrt{s} = 250 500$ GeV (1TeV) L_e
Lum
- Polarisation of electrons 80%, positrons 30%
- Well-defined initial state: 4-momentum and spin configuration.
- Clean and completely reconstructable final state
- Almost 4π detector coverage. No trigger needed
- Under political consideration in Japan

Benchmarks studied

- $\tilde{\chi}^0_1$, $\tilde{\chi}^0_2$, $\tilde{\chi}^\pm_1$ observable, in ILC1 $\tilde{\chi}^0_3$ accessible with a small cross section
- Other sparticles heavy
- \bullet Mass gaps \sim 10 − 20 GeV \Rightarrow higgsinos decay via a virtual Z/W

	ILC1	ILC ₂	nGMM1
	103	148	151
$\tilde{\chi}^{\pm}_1$	117	157.8	159
$\tilde{\chi}^0_2$	124	158.3	156
	267	539	1530
$\frac{\tilde{\chi}^0_3}{\tilde{g}}$	1560	2830	2860

Masses (GeV) in three benchmarks

Cross sections for production in e^+e^- at $\sqrt{s} = 500$ GeV several hundred fb

Detailed simulation study: 500 GeV, 500 fb⁻¹

 $e^+e^- \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^- \rightarrow \tilde{\chi}_1^0 q \bar{q}' \tilde{\chi}_1^0 e \nu_e$
in the International Large Data in the International Large Detector

Soft tracks - no problem for ILC

- Event generation Whizard 1.95, hadronisation Pythia 6.422
- Detailed ILD-specific software for simulation and reconstruction (Mokka & Marlin)
- Beam spectrum, ISR and $\gamma\gamma$ "pile-up" included

K ロ ▶ K 個 ▶ K ヨ ▶ K ヨ ▶ - ヨ(ヨ) 19 Q @

Neutralino measurement

- Neutralino signal: $e^+e^-\rightarrow \tilde{\chi}^0_1\tilde{\chi}^0_2\rightarrow \tilde{\chi}^0_1\tilde{\chi}^0_1e^+e^-(\mu^+\mu^-)$ $\rightarrow \chi_1 \chi_2 \rightarrow \chi_1 \chi$ e ^W[−]
- Characterised by large missing energy and two fermions in the final state
- Main background 4-fermion processes $\nu\nu$ ll

ା≣ା≡ ଏପଟ

Mass extraction

• Kinematics: Maximum invariant mass gives the mass splitting. Then maximum of di-lepton energy gives the absolute masses since initial state known

4 D F

Mass extraction

• Kinematics: Maximum invariant mass gives the mass splitting. Then maximum of di-lepton energy gives the absolute masses since initial state known

4 D F

Cross section measurement

- Measure with different polarisation combinations
- · Polarisation dependence reveals higgsino nature
- \bullet Strategy: Fit overall shape to count events

4 D F

通信 めなめ

Cross section measurement

- Measure with different polarisation combinations
- · Polarisation dependence reveals higgsino nature
- \bullet Strategy: Fit overall shape to count events

Cross section measurement

- Measure with different polarisation combinations
- · Polarisation dependence reveals higgsino nature
- \bullet Strategy: Fit overall shape to count events

Chargino measurement

- Chargino signal: $e^+e^-\rightarrow \tilde{\chi}^+_1\tilde{\chi}^-_1\rightarrow \tilde{\chi}^0_1 q\bar{q}'\tilde{\chi}^0_1 e \nu_e(\mu\nu_\mu)$
- Characterised by large missing energy, two jets from one W* and a lepton from the other W*

 $E|E \cap Q$

(□) () +

Chargino measurement

- Chargino signal: $e^+e^-\rightarrow \tilde{\chi}^+_1\tilde{\chi}^-_1\rightarrow \tilde{\chi}^0_1 q\bar{q}'\tilde{\chi}^0_1 e \nu_e(\mu\nu_\mu)$
- Characterised by large missing energy, two jets from one W^{*} and a lepton from the other W*

 $E|E \cap Q$

So, we have three masses and four cross-section (two processes \times two beam-polarisations), with permil to percent precision.

- What can we say about SUSY parameters based on these observables?
- Which parameters are determined and how accurately?
- Can we test the SUSY model type?
- Can we make predictions about the unobserved part of the spectrum?
- Is there more to be used from the ILC data?

K □ ▶ K 何 ▶ K 글 ▶ K 글 ▶ [글] 는 K) Q (^

So, we have three masses and four cross-section (two processes \times two beam-polarisations), with permil to percent precision.

- What can we say about SUSY parameters based on these observables?
- Which parameters are determined and how accurately?
- Can we test the SUSY model type?
- Can we make predictions about the unobserved part of the spectrum?
- Is there more to be used from the ILC data?

K □ ▶ K 何 ▶ K 글 ▶ K 글 ▶ [글] 는 K) Q (^

So, we have three masses and four cross-section (two processes \times two beam-polarisations), with permil to percent precision.

- What can we say about SUSY parameters based on these observables?
- Which parameters are determined and how accurately?
- Can we test the SUSY model type?
- Can we make predictions about the unobserved part of the spectrum?
- Is there more to be used from the ILC data?

So, we have three masses and four cross-section (two processes \times two beam-polarisations), with permil to percent precision.

- What can we say about SUSY parameters based on these observables?
- Which parameters are determined and how accurately?
- Can we test the SUSY model type?
- Can we make predictions about the unobserved part of the spectrum?
- Is there more to be used from the ILC data?

Probing the GUT scale: Higgs is important!

- Assume ILC will measure m_h to 15 MeV precision
- No deviation from SM BRs but still important for the fit

Deviations of ILC1 Higgs branching ratios from SM

4 D F

What does the model type mean?

Model type: which are the parameters of the model

- Two types of model: GUT scale and weak scale
- GUT scale model assumes a specific cause of SUSY breaking \implies few parameters (4-6)
- Weak scale model does not assume knowledge about the cause of SUSY breaking \implies lots of parameters
	- But some violate lepton number, violate CP in new ways, increase rates of FCNC...
	- Thus usually use only 10-19 parameters
- A priori do not know it is a GUT model so fit weak scale pMSSM-5 or 10 (at 1 TeV)

What does the model type mean?

Model type: which are the parameters of the model

- Two types of model: GUT scale and weak scale
- GUT scale model assumes a specific cause of SUSY breaking \implies few parameters (4-6)
- Weak scale model does not assume knowledge about the cause of SUSY breaking \implies lots of parameters
	- But some violate lepton number, violate CP in new ways, increase rates of FCNC...
	- Thus usually use only 10-19 parameters
- A priori do not know it is a GUT model so fit weak scale pMSSM-5 or 10 (at 1 TeV)

Probing the GUT scale: Fitting SUSY parameters

K □ ▶ K 何 ▶ K 로 ▶ K 로 ▶ 그리는 K Q Q @

Probing the GUT scale: Weak scale fits

- Purpose to test gaugino mass unification
- Input Higgs and SUSY obs. (incl \tilde{g} fr. LHC).
- \bullet M_1 , M_2 , M_3 , tan β , and μ can be determined

K □ ▶ K 何 ▶ K 로 ▶ K 로 ▶ 그리는 K Q Q @

Probing the GUT scale: Weak scale fits

4 ロ) 4 何) 4 ヨ) 4 ヨ) ヨ ヨ り 9 0 0

- This is at the 1 TeV scale.
- SUSY parameters change $w/$ scale governed by a system of coupled differential equations, the renormalisation group equataions (RGEs).
- What happens if one inputs the fitted values and precisions into the RGEs for $M_{1,2,3}$?
	- Do gaugino masses unify? Yes ...
	- \bullet ... and also M_3 : in ILC1 LHC will see the \tilde{g} .
	- ... or, conversely -in ILC2 predict the gluino mass after just 5 years of ILC data: $m_{\widetilde{g}} = 2870 \pm 210 \rm{GeV}$ Mikael Berggren

ィロ ▶ イ母 ▶ イヨ ▶

- This is at the 1 TeV scale.
- SUSY parameters change $w/$ scale governed by a system of coupled differential equations, the renormalisation group equataions (RGEs).
- What happens if one inputs the fitted values and precisions into the RGEs for $M_{1,2,3}$?
	- Do gaugino masses unify?
	- Yes ...
	- \bullet ... and also M_3 : in ILC1 LHC will see the \tilde{g} .
	- ... or, conversely -in ILC2 predict the gluino mass after just 5 years of ILC data: $m_{\widetilde{g}} = 2870 \pm 210 \rm{GeV}$ Mikael Berggren

∢ ロ ▶ - ィ _ロ ▶ - ィ

- **• This is at the 1 TeV scale.**
- SUSY parameters change $w/$ scale governed by a system of coupled differential equations, the renormalisation group equataions (RGEs).
- What happens if one inputs the fitted values and precisions into the RGEs for $M_{1,2,3}$?
	- Do gaugino masses unify?
	- \bullet Yes \ldots
	- \bullet ... and also M_3 : in ILC1 LHC will see the \tilde{g} .
	- ... or, conversely -in ILC2 predict the gluino mass after just 5 years of ILC data: $m_{\widetilde{g}} = 2870 \pm 210 \rm{GeV}$ Mikael Berggren

 $F = \Omega Q$

- **• This is at the 1 TeV scale.**
- SUSY parameters change $w/$ scale governed by a system of coupled differential equations, the renormalisation group equataions (RGEs).
- What happens if one inputs the fitted values and precisions into the RGEs for $M_{1,2,3}$?
	- Do gaugino masses unify?
	- \bullet Yes \ldots
	- \bullet ... and also M_3 : in ILC1 LHC will see the \tilde{g} .
	- ... or, conversely -in ILC2 predict the gluino mass after just 5 years of ILC data: $m_{\widetilde{g}} = 2870 \pm 210 \rm{GeV}$ Mikael Berggren

K □ ▶ K 何 ▶ K 글 ▶ K 글 ▶ [글] 는 K) Q (^

- **• This is at the 1 TeV scale.**
- SUSY parameters change $w/$ scale governed by a system of coupled differential equations, the renormalisation group equataions (RGEs).
- What happens if one inputs the fitted values and precisions into the RGEs for $M_{1,2,3}$?
	- Do gaugino masses unify?
	- \bullet Yes \ldots
	- \bullet ... and also M_3 : in ILC1 LHC will see the \tilde{g} .
	- ... or, conversely -in ILC2 predict the gluino mass after just 5 years of ILC data: $m_{\widetilde{g}}=2870\pm210{\rm GeV}$ Mikael Berggren

 $E|E$ Ω

- • Can we see the difference between models ?
- Compare results from ...
	- \bullet ILC1 = radiatively driven natural SUSY, with ...
	- \bullet nGMM1 = mirage unification.
- Clearly distinguishable!

◂**◻▸ ◂ਗ਼▸**

- • Can we see the difference between models ?
- Compare results from ...
	- \bullet ILC1 = radiatively driven natural SUSY, with ...
	- \bullet nGMM1 = mirage unification.
- Clearly distinguishable!

4 D F

通信 めなめ

- • Can we see the difference between models ?
- Compare results from ...
	- \bullet ILC1 = radiatively driven natural SUSY, with ...
	- $nGMM1 = m$ irage unification.
- Clearly distinguishable!

4 D F

通信 めなめ

- • Can we see the difference between models ?
- Compare results from ...
	- \bullet ILC1 = radiatively driven natural SUSY, with ...
	- $nGMM1 = m$ irage unification.
- Clearly distinguishable!

4 D F

 Ω

• Heavier neutralino/chargino masses

- $m_{\tilde{\chi}^0_3} = 263 \pm 4 \text{GeV}$
- $m_{\tilde{\chi}^0_4} = 509 \pm 10 {\rm GeV}$, $m_{\tilde{\chi}^\pm_2} = 509 \pm 10 {\rm GeV}$
	- \Rightarrow Motivation for ILC energy upgrade e.g. to $\sqrt{s} \sim 1$ TeV
- Rough ranges for all other masses

K □ ▶ K 何 ▶ K 글 ▶ K 글 ▶ [글] 는 K) Q (^

• Heavier neutralino/chargino masses

\n- \n
$$
m_{\tilde{\chi}^0_3} = 263 \pm 4 \text{GeV}
$$
\n
\n- \n
$$
m_{\tilde{\chi}^0_4} = 509 \pm 10 \text{GeV}, \, m_{\tilde{\chi}^{\pm}_2} = 509 \pm 10 \text{GeV}
$$
\n
\n- \n
$$
\implies \text{Motivation for ILC energy upgrade e.g. to } \sqrt{s} \sim 1 \text{ TeV}
$$
\n
\n

• Rough ranges for all other masses

4 0 8

 $E|E$ Ω

• Heavier neutralino/chargino masses

\n- \n
$$
m_{\tilde{\chi}^0_3} = 263 \pm 4 \, \text{GeV}
$$
\n
\n- \n
$$
m_{\tilde{\chi}^0_4} = 509 \pm 10 \, \text{GeV}, \, m_{\tilde{\chi}^\pm_2} = 509 \pm 10 \, \text{GeV}
$$
\n
\n- \n
$$
\implies \text{Motivation for ILC energy upgrade e.g. to } \sqrt{s} \sim 1 \, \text{TeV}
$$
\n
\n

• Rough ranges for all other masses

- • Light higgsinos motivated by naturalness, and are not excluded by H_C
- ILC would probe higgsinos complementary to LHC reach
	-
	-
- ILC would measure properties of higgsinos to sub-percent-level precision.
- Precise measurements allow for extracting GUT and weak scale parameters and predicting mass scales of unobserved sparticles

- • Light higgsinos motivated by naturalness, and are not excluded by H_C
- ILC would probe higgsinos complementary to LHC reach
	- Either exclude masses up to $\sqrt{s}/2 = 500$ GeV for 1 TeV upgrade \rightarrow wide coverage of natural SUSY scenarios
	- or discover regardless of mass scale of heavier states
- ILC would measure properties of higgsinos to sub-percent-level precision.
- Precise measurements allow for extracting GUT and weak scale parameters and predicting mass scales of unobserved sparticles

- • Light higgsinos motivated by naturalness, and are not excluded by H_C
- ILC would probe higgsinos complementary to LHC reach
	- Either exclude masses up to $\sqrt{s}/2 = 500$ GeV for 1 TeV upgrade \rightarrow wide coverage of natural SUSY scenarios
	- or discover regardless of mass scale of heavier states
- ILC would measure properties of higgsinos to sub-percent-level precision.
- Precise measurements allow for extracting GUT and weak scale parameters and predicting mass scales of unobserved sparticles

- • Light higgsinos motivated by naturalness, and are not excluded by LHC.
- ILC would probe higgsinos complementary to LHC reach
	- Either exclude masses up to $\sqrt{s}/2 = 500$ GeV for 1 TeV upgrade \rightarrow wide coverage of natural SUSY scenarios
	- or discover regardless of mass scale of heavier states
- ILC would measure properties of higgsinos to sub-percent-level precision.
- **•** Precise measurements allow for extracting GUT and weak scale parameters and predicting mass scales of unobserved sparticles

4 ロ) 4 何) 4 ヨ) 4 ヨ) ヨ ヨ り 9 0 0

- • Light higgsinos motivated by naturalness, and are not excluded by LHC.
- ILC would probe higgsinos complementary to LHC reach
	- Either exclude masses up to $\sqrt{s}/2 = 500$ GeV for 1 TeV upgrade \rightarrow wide coverage of natural SUSY scenarios
	- or discover regardless of mass scale of heavier states
- ILC would measure properties of higgsinos to sub-percent-level precision.
- **•** Precise measurements allow for extracting GUT and weak scale parameters and predicting mass scales of unobserved sparticles

These results

would provide clear motivation for ILC 1 TeV upgrade or other, even higher energy c[oll](#page-39-0)i[de](#page-41-0)[r](#page-35-0)[s](#page-36-0)

Mikael Berggren [Light Higgsinos @ ILC](#page-0-0) ALPS Apr '17 19 / 19

 $E|E$ narr

Thank You !

K ロ ▶ (d) | K 글) | K 글) | 글| 글| 10 0 0 0

BACKUP

ILC1 unpolarised cross sections

ILC1: $m_0 = 7025 \text{ GeV}, m_{1/2} = 568.3 \text{ GeV}, A_0 = -11426.6 \text{ GeV}, \tan\beta = 10, \mu = 115 \text{ GeV}, m_A = 1000 \text{ GeV}$

(ロ) (個) (目) (目) (目) ヨー のんぐ

Fit observables

\n- mass
$$
\tilde{\chi}_1^0
$$
, $\tilde{\chi}_2^0$, $\tilde{\chi}_1^{\pm}$ (1%)
\n- xsv for $\tilde{\chi}_1^+ \tilde{\chi}_1^- \rightarrow q\bar{q}' l\nu_l$ (l=e, mu) (3%) for $\mathcal{P}(e^- = \mp 80\%, e^+ = \pm 30\%)$
\n- xsv for $\tilde{\chi}_1^0 \tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 l l = e$, mu) (3%) for $\mathcal{P}(e^- = \mp 80\%, e^+ = \pm 30\%)$
\n

• Higgs mass
$$
\Delta = 30
$$
 MeV

• Higgs BRs
$$
h \to bb, h \to cc, h \to \tau\tau, h \to gg, h \to \gamma\gamma,
$$

 $h \to ZZ^*, h \to WW^*$

K ロ ▶ (d) | K 글) | K 글) | 글| 글| 10 0 0 0

[Fitting parameters](#page-45-0)

Probing the GUT scale: Fitting SUSY parameters

KED KARD KED KED EN AGA

Fitted parameters of ILC1

- Underlying theory is a 6-parameter GUT model (NUHM2)
- A priori do not know it is a GUT model so fit weak scale pMSSM-10 (at 1 TeV)

Probing the GUT scale: Weak scale fits

 $\breve{\varkappa}$

- Purpose to test gaugino mass unification
- Input Higgs and SUSY obs. (incl \tilde{g} fr. LHC).
- \bullet M_1 , M_2 , M_3 , tan β , and μ can be determined

Dreliminary SUSY+higgs from IL g from LHC [~] M1=250.3+3.8-3.8

 3^2 ¹⁰

M₁ [GeV]

230 240 250 260 270

KED KARD KED KED EN AGA

- • Can we predict more from these data ?
- Do 10-parameter fit of ILC1 SUSY+higgs.
- Measurements/predictions for \bullet
	-
	- -
- Once again: Clearly Yes.

- • Can we predict more from these data ?
- Do 10-parameter fit of ILC1 SUSY+higgs.
- Measurements/predictions for all of SUSY.
	- Quite precise for the rest of the gauginos.
	- Very preliminary 95% CL ranges:

• Once again: Clearly Yes.

Predicted masses of states beyond

KED KARD KED KED EE MAA

- • Can we predict more from these data ?
- Do 10-parameter fit of ILC1 SUSY+higgs.
- Measurements/predictions for all of SUSY.
	- Quite precise for the rest of the gauginos.
	- Very preliminary 95% CL ranges:
		- $\bullet \sim 1$ TeV predictions for the others higgses.
		- $\bullet \gg 1$ TeV predictions for \tilde{f} :s

• Once again: Clearly Yes.

KED KARD KED KED EE KARD

Predicted masses of states beyond

- • Can we predict more from these data ?
- Do 10-parameter fit of ILC1 SUSY+higgs.
- Measurements/predictions for all of SUSY.
	- Quite precise for the rest of the gauginos.
	- Very preliminary 95% CL ranges:
		- $\bullet \sim 1$ TeV predictions for the others higgses.
		- $\bullet \gg 1$ TeV predictions for \tilde{f} :s
- Once again: Clearly Yes.

Predicted masses of states beyond

KED KARD KED KED EE KARD

Model dependent Higgs measurements at ILC and LHC

Projected Higgs coupling precision (7-parameter fit)

 Ω

Dark matter predictions

- Dark matter relic density $\Omega_{ILC1}/\Omega_{Planck} = 0.054 \pm 0.001$ \implies Strong hint that non-SUSY DM or non-thermal production of higgsinos exists
- Spin-independent WIMP-nucleon scattering cross section $\sigma^{\textit{SI}} = 1.5 \times 10^{-8} \text{ pb}$
- WIMP annihilation cross section $<\sigma v>=2.6\times10^{-25} \text{ cm}^3 \text{s}^{-1}$

KED KARD KED KED EE KARD