Measurement of WW/WZ production in semileptonic decay channels and search for anomalous gauge couplings with the ATLAS detector at 8 TeV

Margherita Spalla, on behalf of the ATLAS Collaboration

Semileptonic diboson production

q

- Aims of the analysis:
 - Diboson cross section measurement.
 - Constrain new physics through limits on anomalous Triple Gauge Couplings (aTGC)
- We use 20.2 fb⁻¹ collision data at 8 TeV
- Two separate analysis channels for two hadronic W/Z topologies:
 - Resolved topology:
 - » Hadronic W/Z decay: two "standard" jets (W/Z \rightarrow jj)
 - » Provides the largest significance in cross section measurement
 - Boosted topology:
 - » Hadronic W/Z decay: one single large-R jet (W/Z \rightarrow J)
 - W/Z produced with a large Lorentz boost
 - » Provides best sensitivity to aTGC

ď

e/µ

Resolved

Boosted

W/7~

W/Z

Identifying WW/WZ \rightarrow I ν qq

1. <u>Select leptonic W</u>

Exactly one ELECTRON or MUON:

- with large $p_T > 30 \text{ GeV}$
- in central η region
- isolated

2. <u>Select hadronic W/Z</u>

Resolved channel: R=0.4 anti-K_t jets

- Exactly two separate jets of pt>25 GeV
- Further cuts on di-jet and lepton kinematics

Missing transverse energy:

 E_T^{miss} > 40 GeV (resolved)

Event display reference: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/EventDisplaysFromHiggsSearches

Identifying WW/WZ \rightarrow I ν qq

1. <u>Select leptonic W</u>

2. <u>Select hadronic W/Z</u>

Exactly one ELECTRON or MUON:

- with large $p_T > 30 \text{ GeV}$
- in central η region
- isolated

Missing transverse energy:

 E_T^{miss} > 50 GeV (boosted) **Boosted channel**: R=1 anti-K_t jet (*large-R jet*)

- Exactly one large-R jet of high pt: pt>200 GeV
- No additional R=0.4
 anti-K_t jets (to reduce top background)

NOTE: Boosted and Resolved phase spaces are <u>not</u> orthogonal

Event display reference: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/EventDisplayRun2Physics

Cross section measurement

Margherita Spalla

Cross section is measured in the *fiducial phase space*.

- Kinematic acceptance of measurement.
- Defined from MonteCarlo particle-level objects.
 » Nonzero boosted/resolved overlap

Cross section extraction

- From Binned Maximum Likelihood fit
 - Resolved: di-jet invariant mass m_{ii}
 - Boosted: large-R jet mass m

Largest systematics

- MonteCarlo modelling: generator comparison
 - » Resolved: Top, ~13%
 - » Boosted: W/Z+jets, ~60%

18/04/2017

Cross section results

Cross section results

Search for anomalous Triple Gauge Couplings (aTGC)

- Contribution from new physics: vector boson couplings may deviate from Standard Model.
- Model independent interpretations
 - Here results in Effective Field Theory framework
 - » Three free parameters
- aTGC tend to enhance the event rate at high $\ensuremath{p_{\text{T}}}$
- Strategy:
 - Cut on 65 GeV $< m_{jj}/m_J < 95$ GeV
 - Maximum Likelihood fit of $p_T(jj)$ or $p_T(J)$
 - » aTGC modelled with FullSim MonteCarlo
 - » <u>Resolved only</u>: m_{jj} sideband control region

Ref. in backup

Search for anomalous Triple Gauge Couplings (aTGC)

- Contribution from new physics: vector boson couplings may deviate from Standard Model.
- Model independent interpretations
 - Here results in Effective Field Theory framework
 - » Three free parameters
- aTGC tend to enhance the event rate at high $\ensuremath{p_{\text{T}}}$
- Strategy:
 - Cut on 65 GeV < m_{jj}/m_J < 95 GeV
 - Maximum Likelihood fit of $p_T(jj)$ or $p_T(J)$
 - » aTGC modelled with MonteCarlo
 - » <u>Resolved only</u>: m_{jj} sideband control region

aTGC limits: 95% Confidence Interval

• Best sensitivity from boosted

c_B/A² [TeV⁻²]

40

20

-20

-40

-10

18/04/2017

ATLAS Preliminary

 $\sqrt{s} = 8$ TeV, 20.2 fb⁻¹

-5

0

- Boosted results similar to best previously published constraints
 - » leptonic WW and WZ at 8 TeV (ATLAS/CMS)

obs. 95% CL, WV→lvji

exp. 95% CL, WV→lvjj

obs. 95% CL, WV→hJ

exp. 95% CL, WV→hvJ

 c_{WWW}/Λ^2 [TeV⁻²]

» CMS semileptonic WW/WZ at 8 TeV

Summary

- Analysis exploits both resolved and boosted topologies
- 4.5 σ evidence of resolved WW/WZ
 - 1.3 σ in boosted channel
- Measured fiducial cross sections in agreement with SM (NLO)
- Constraint on aTGC
 - Boosted signature provides limits similar to current best published limits

Ref. to shown plots: STDM-2015-23 (paper in preparation) https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2015-23/

Backup

Data-driven corrections to MC: resolved channel

- Applied to W/Z+jets only
- Reweighting as a function of:
 - Δ φ (jj)
 - p_T(j₁)
- Order of 5-10%
- Derived in m_{jj} sideband control region:

 $m_{jj}' \notin [65, 95] \mathrm{GeV}$

Data-driven corrections to MC: boosted channel 2000

- Applied to top and W/Z+jets
- Constant Scale Factors (SF)

 - Top correction: order of 15% W/Z+jets correction: order of 15% region
- W/Z + jets control region:
 - m_1 sidebands. $\widetilde{m}_J \notin [65, 95] \mathrm{GeV}$
- Top control region:

 - at least one b-taggeu surun not overlapping with the large-R jet אָרָיי אָרָיי ווי>1 א

Margherita Spalla

QCD multijet estimation

- Template shape estimated from QCD control region
 - » About 2.5% of total background
- Template normalization from E_T^{miss} fit
 - multijet E_T^{miss} template: from QCD control region
 - E_T^{miss} templates for other processes:
 - » WW/WZ, W/Z+jets, top
 - » from MC
 - » summed in a single template in the fit
 - Resulting normalization is scaled by efficiency of dropped cuts

QCD control region

- Electron channel: invert electron quality criteria and isolation
- Muon channel: invert muon impact parameter and isolation

E _T ^{miss} FIT REGION	
Resolved	Boosted
All cuts but: E_T^{miss} $\Delta \eta (j,j)$ $\Delta \phi (E_T^{miss}, j_1) (\mu \text{ ch. only})$ $m_T (\mu \text{ ch. only})$	All cuts but: E _T ^{miss}

NOTE:

In boosted analysis, QCD multijet is negligible in muon channel

Cross section extraction

Number of signal events

- From Binned Maximum Likelihood fit
- Fit variable:
 - Resolved: di-jet invariant mass m_{ii}
 - Boosted: large-R jet mass m_J

- L: integrated luminosity
- D_{fid} : <u>corrects for</u> the difference between fiducial phase space and the actual selection on reconstructed objects. N^{WV} [reco, selected]

$$D_{\rm fid} \sim \frac{1}{N^{WV}[WV \to \ell \nu qq, \text{ inFiducial}]}$$

Systematic uncertainties

- Detector-related uncertainties
 - Larger component:
 - » Resolved: small-R jet energy scale / resolution
 - » Boosted: large-R jet energy <u>and mass</u> scale / resolution
- Modelling uncertainties
 - » Generator comparison / theoretical uncertainties on process cross section
 - » Data-driven SF where applicable
 - Larger contribution
 - » Resolved: Top / signal modelling
 - » Boosted Top / W/Z+jets modelling

aTGC parameters in Effective Field Theory Referencies Annals Phys. **335** (2013) 21

- EFT assumed to be valid below an energy scale Λ
- Introduces three CP-conserving dimension-six operators
 - Their coupling constants are the aTGC parameters of interest

$$O_{W} = (D_{\mu}\Phi)^{\dagger}W^{\mu\nu}(D_{\nu}\Phi),$$

$$O_{B} = (D_{\mu}\Phi)^{\dagger}B^{\mu\nu}(D_{\nu}\Phi),$$

$$O_{WWW} = Tr[W_{\mu\nu}W^{\nu\rho}W^{\mu}_{\rho}].$$

$$\Phi = \text{Higgs doublet}_{B^{\mu\nu}, W^{\mu\nu} = \text{ combinations of derivatives}} \int_{\Lambda^{2}} \frac{c_{WWW}}{\Lambda^{2}}$$

$$\frac{c_{WWW}}{\Lambda^{2}}$$

Alternative description: effective Lagrangian, not discussed in this talk

aTGC results from ATLAS leptonic WW at 8 TeV

20

