### Search for top squark pair-production in SUSY models with compressed spectra

Navid K. Rad HEPHY, Vienna, Austria (on behalf of CMS Collaboration)

> ALPS2017 04/21/2017



# Motivation

### Compressed SUSY:

- Relatively light stops are still possible!
- Coannihilation between stop and LSP can predict the right dark matter relic densities

### Target Model

• Direct stop production with a nearly degenerate neutralino as the LSP:

 $\Delta m = m_{stop} - m_{LSP} < 80 \text{ GeV}$ 

- two possible decay modes:
  - four-body:  $\tilde{t}_1 \to f f' b \tilde{\chi}_1^0$
  - flavor violating:  $\tilde{t}_1 \rightarrow c \tilde{\chi}_1^0$
- Assume 100% BR to the four-body decay
- For this search we consider the single leptonic decay channel



# Challenges

- Signature:
  - $\circ~$  (e / mu) ~,~ b-jet , missing energy ( $E_{T}^{\rm miss}$  ) from neutrino and LSP
- Main Challenge:
  - Small mass difference  $\rightarrow$  soft final state particles (small  $p_T$ )
- Too soft to be detected normally!
  - the trigger thresholds are much higher than typical energies of final state particles...
- Initial State Radiations (ISR):
  - radiation from the initial state partons
  - stop-stop system recoils against ISR and becomes boosted
  - final state particles become boosted enough to have a chance of being detected!
  - $\circ$  caveat: probability for a high  $\mathrm{P}_{\mathrm{T}}$  ISR is low



# **Baseline selection**

- Signal characteristics:
  - 1 ISR Jet
  - Soft lepton
  - Moderate-high missing energy (from LSP and neutrino)
  - up to 2 soft b-tagged jets ( unlikely for smaller  $\Delta m$  )
- Backgrounds:
  - Main: W+Jets, tt+jets
  - $\circ$  Others: Drell-Yan, Z $\rightarrow$ vv, QCD, single top production, diboson
- Require events with:
  - ISR: a high  $P_T$  jet ( >100 GeV)
  - Single Lepton: one isolated lepton
  - moderate-high missing energy and hadronic activity  $(E_T^{miss} > 200 \text{ GeV}, H_T > 300 \text{ GeV})$
  - Soft jets from decay, <= 2 hard jets
- Discriminatory Variables
  - Transverse mass (m<sub>T</sub>)  $m_T = \sqrt{2 \cdot p_T^{\ell} \cdot E_T^{\text{miss}} (1 \cos \Delta \phi(\vec{\ell}, \vec{p}_T^{\text{miss}}))}.$
  - Lepton Pt

## **Baseline selection**



# Signal and Control Regions

#### **Signal Regions**

Lepton  $P_T < 30 \text{ GeV}$ 



## Results



no significant deviation from SM is observed

## Interpretation



Observed mass limits at 95% CL reach up to ~330GeV in this simplified model

# Summary

- Compressed spectra are highly motivated by naturalness and cosmological arguments
- Soft final state particles make searches in compressed regions very difficult
- Optimized SRs for sensitivity to different kinematical regimes
- semi-data driven background techniques used for this analysis
- No deviation from SM is observed
- Limits are set on the top squark mass in this simplified model

Improved version of this search is in preparation for the full 2016 dataset!

# Thank you!



# Backup



All hadronic stop search: CMS-PAS-SUS-16-049

ALPS2017



## **Background Estimations**

| Background                     | CR1a               | CR1b              | CR1c              | CR2              | $CR(t\bar{t})$    |
|--------------------------------|--------------------|-------------------|-------------------|------------------|-------------------|
| W+jets                         | 1292±20            | $697 \pm 15$      | $384{\pm}10$      | $426.8 \pm 5.2$  | $271.9 \pm 4.4$   |
| tī                             | $132.2 \pm 9.3$    | $66.7 {\pm} 6.3$  | $45.8 {\pm} 5.0$  | $493 {\pm} 17$   | $2222 \pm 31$     |
| $Z(\rightarrow \nu\nu) + jets$ | $0.36 {\pm} 0.07$  | $0.10 {\pm} 0.03$ | $9.0{\pm}1.0$     | $0.80{\pm}0.08$  | $3.12 {\pm} 0.23$ |
| $Z/\gamma^*$ +jets             | $51.00 {\pm} 0.83$ | $2.48{\pm}0.17$   | $2.05 {\pm} 0.23$ | $8.92{\pm}0.18$  | $6.21 {\pm} 0.23$ |
| QCD                            | $25.4{\pm}5.0$     | -                 | $15.0{\pm}4.1$    | $21.9 \pm 3.8$   | $12.5 {\pm} 2.4$  |
| Single top quark               | $35.6 \pm 3.1$     | $18.3 {\pm} 2.0$  | $10.3 {\pm} 1.6$  | $111.2 \pm 4.2$  | $266.4{\pm}6.0$   |
| VV                             | $88 \pm 11$        | $34.2 {\pm} 6.7$  | $37.0 \pm 7.1$    | $18.8 {\pm} 2.6$ | $15.9 {\pm} 2.0$  |
| Total SM                       | $1624{\pm}25$      | $818{\pm}18$      | $503 \pm 14$      | $1081 \pm 19$    | 2798±32           |
| Data                           | 1594               | 778               | 576               | 905              | 2150              |



| Variable                          | SR1a–c, CR1a–c                                                     | SR2, CR2                  | $CR(t\bar{t})$                                   |  |  |
|-----------------------------------|--------------------------------------------------------------------|---------------------------|--------------------------------------------------|--|--|
| $E_{\rm T}^{\rm miss}$ (GeV)      | >300                                                               | >300                      | >200                                             |  |  |
| $H_{\rm T}$ (GeV)                 | >400                                                               | -                         | >300                                             |  |  |
| $p_{\rm T}({\rm ISR  jet})$ (GeV) | >100                                                               | >325                      | > 100                                            |  |  |
| Number of hard jets               | $\leq 2$                                                           | $\leq 2$                  | $\leq 2$                                         |  |  |
| $\Delta \phi$ (hard jets) (rad)   | <2.5                                                               | <2.5                      | <2.5                                             |  |  |
| Number of b jets                  | 0                                                                  | $\geq 1 \text{ soft}$     | $(\geq 1 \text{ soft and } \geq 1 \text{ hard})$ |  |  |
|                                   | 0                                                                  | 0 hard                    | or ( $\geq 2$ hard)                              |  |  |
| $p_{\mathrm{T}}(l)$ (GeV)         | [5,12][12,20][20,30] (SR)                                          | [5,12][12,20][20,30] (SR) | 5                                                |  |  |
|                                   | >30 (CR)                                                           | >30 (CR)                  | 25                                               |  |  |
| $ \eta(l) $                       | < 1.5                                                              | <2.4                      | <2.4                                             |  |  |
| Q(l)                              | -1 (a,b) any (c)                                                   | any                       | any                                              |  |  |
| Lepton rejection                  | no $\tau$ , or additional <i>l</i> with $p_{\rm T} > 20 {\rm GeV}$ |                           |                                                  |  |  |
| $m_{\rm T}$ (GeV)                 | <60 (a), 60–95 (b), >95 (c)                                        | -                         |                                                  |  |  |

## **Systematics**

| Systematic Effect       | SR1a  | SR1b  | SR1c | SR2  | relation btw. SRs |
|-------------------------|-------|-------|------|------|-------------------|
|                         | [%]   | [%]   | [%]  | [%]  |                   |
| Pile-up                 | 0.6   | 0.9   | 0.3  | 0.3  |                   |
| JEC                     | 6.1   | 6.1   | 7.2  | 3.6  |                   |
| JER                     | 0.3   | 0.5   | 1.1  | 0.5  |                   |
| BTag-l                  | 0.8   | 0.5   | 2.8  | 3.5  |                   |
| BTag-b                  | 0.5   | 0.1   | 1.0  | 1.5  |                   |
| Lepton efficiency       | 5.0   | 5.0   | 5.0  | 5.0  | correlated        |
| W $p_T$                 | 7.5   | 8.2   | 7.0  | 1.7  |                   |
| tt $p_T$                | 0.2   | 0.4   | 1.5  | 2.6  |                   |
| W polarization          | 2.1   | 1.9   | 0.6  | 0.5  |                   |
| Single top xsec         | 0.9   | 1.2   | 0.9  | 6.5  |                   |
| $Z/\gamma^*+$ jets xsec | 1.3   | 0.1   | 0.1  | 0.5  |                   |
| VV xsec                 | 2.9   | 3.0   | 3.7  | 1.2  |                   |
| CR/SR transf. fact. W   | 8.2   | 16.9  | 19.7 | 10.7 |                   |
| CR/SR transf. fact. tt  | 1.4   | 1.2   | 2.4  | 5.6  | uncorrelated      |
| QCD estimation          | < 0.1 | < 0.1 | 0.4  | 0.1  |                   |
| $Z_{Inv}$ estimation    | 0.3   | 0.6   | 5.5  | 1.0  |                   |
| Total                   | 14.3  | 20.8  | 24.2 | 15.9 |                   |

## **Signal Regions**

#### SR1 (targeting smaller $\Delta m$ )

- Lepton  $P_{T} < 30 \text{ GeV}$
- Higher MET and H<sub>T</sub> cuts
  (MET >300 GeV & HT>400 GeV)
- <u>Veto any b-jets (signal b-jets too soft)</u>
- Split in MT around W peak (low, medium, high)

SR1a: MT < 60 GeV



- SR1c: MT > 95 GeV
- in SR1a and SR1b take only events with negative lepton (making use of W charge asym.)

#### SR2 (targeting larger $\Delta$ m)

- Lepton  $P_T < 30$  GeV
- Harder ISR Jet ( $P_{T}$ > 325 GeV)
- require 1 soft b-jet ( $P_T < 60$  GeV) and no hard b-jet ( $P_T > 60$  GeV)

### $P_{T}$ Splitting:

 All SR's are split in 3 P<sub>T</sub> bins to take advantage of shape difference between bkg and signal (3\*4=12)

### **CMS** Detector



## **Compact Muon Solenoid (CMS)**





NLO+NLL production cross sections for the case of equal degenerate squark and gluino masses as a function of mass at  $\sqrt{s} = 13$  TeV (Ref.: <u>arXiv:1407.5066</u>)