# Searches for Dark Matter in Events with Hadronic Activity at ATLAS - ALPS 2017

19.04.17, Obergurgl Will Kalderon, Lund University (Sweden) On behalf of the ATLAS Collaboration

Will Kalderon, Lund University



## Introduction





### Introduction from <u>S.</u> Lowette and <u>P. Fox</u>

Jets + MET - cut and count



### Jets + more jets - resonance searches

Will Kalderon, Lund University



Overview



- Hadronic + MET:
  - jet+MET [<u>PRD 94 (2016) 032005</u>]
  - bb+MET [<u>ATLAS-CONF-2016-086</u>]
  - tt+MET [<u>ATLAS-CONF-2017-020</u>, <u>ATLAS-CONF-2016-077</u>]\*
  - mono-V [<u>Phys. Lett. B 763 (2016) 251</u>]\*\*
  - mono-H(bb) [<u>ATLAS-CONF-2017-028</u>]\*\*
- Resonance searches:
  - Dijet [arXiv: 1703.09127] (+ <u>Karishma</u>)
  - Dijet TLA\*\*\* [<u>ATLAS-CONF-2016-030</u>]
  - Dijet+ISR (j/γ) [<u>ATLAS-CONF-2016-070</u>]
  - di-b-jet [<u>ATLAS-CONF-2016-060</u>, <u>2016-031</u>]

~3fb<sup>-1</sup> 2015

~13fb<sup>-1</sup> 2015+2016

~37fb<sup>-1</sup> 2015+2016

\*1 and 2 lepton channels not covered here

\*\*see Hideki's talk

\*\*\* Trigger Level Analysis





Start point - mediator connecting quarks and dark matter

But what can we trigger on?



Will Kalderon, Lund University





mediator decays to dark matter - can't see...



Will Kalderon, Lund University





Solution 1: ISR -> jet + MET



Will Kalderon, Lund University





### Solution 2: 3<sup>rd</sup> generation couplings -> **tt / bb + MET** (especially interesting for (pseudo-)scalar mediators)



MET from χχ recoiling from bb/tt

Will Kalderon, Lund University





## mediator decays back to quarks -> Dijet (+TLA), di-b-jet

TLA = "Trigger Level Analysis"







### Reach lower mass mediators: ISR -> dijet + ISR



Will Kalderon, Lund University



## X+MET: trigger and QCD







- Trigger on MET
  - Restrict MET (and p<sub>T</sub>) due to trigger efficiency
- Reject QCD:
  - $\Delta \phi$ (jet,  $\vec{p}_T^{miss}$ ) > 0.4
  - tighter p<sub>T</sub> cut / b-tag / top tag
  - Restrict jet multiplicity
- Reject electroweak: veto leptons



Will Kalderon, Lund University

Background rejection

- Specific cuts reject main backgrounds
- Example: bb+MET
- Main background  $Z(\nu\nu)$  + bb
- Exploit difference in spin and mass of mediator vs Z
- well-separated bb pair (and from third jet if present)
- large  $b_1$ - $b_2 p_T$  imbalance



ATLAS-CONF-2016-086

 $\Delta R_{min} = min(\Delta R(b_1, b_2), \Delta R(b_1, j), \Delta R(b_2, j)) -$ 

### Estimate background shapes from MC

• Data-driven normalisation from simultaneous fits in control regions - as close as possible to SRs while maintaining acceptable statistics

Background estimation

- Serves also to reduce uncertainties since CR selections similar to SR -> statistical uncertainties often dominate
- Check background estimate in validation regions

### Example: jet+MET

Wμν CR used to constrain dominant Zνν background since much better stats than kinematically close Zμμ CR





### Resonance\* searches







\* dijet search also has angular analysis, as Karishma described

- Trigger on single jet
  - (For simplicity no gain with dijet triggers)
  - Kinematic thresholds define range of sensitivity
- Reject QCD:
  - Restrict  $|y^*| = 0.5(y_1-y_2)$
  - fit to smoothly falling QCD background



## Trigger limitations



- Trigger turn-on imposes p<sub>T</sub> requirement: 430/440 GeV for unprescaled trigger in 2016
- This equates to m<sub>jj</sub>>1.1 (1.7) TeV for |y\*|<0.6 (1.2)</li>
  - smaller y\* -> closer jets -> lower m<sub>jj</sub> for given p<sub>T</sub>
  - Can set limits only a certain distance from the edge of the fit range
- Dijet and di-b-jet: take this as lower bound
- Dijet+ISR: high-pT ISR jet/γ, low p<sub>T</sub> pair from resonance
- Dijet TLA: record less information per event -> can record more events -> lower threshold





#### Will Kalderon, Lund University





- Dominated by QCD fit to smooth spectrum  $f(z) = c_1(1-z)^{c_2}z^{c_3+c_4\ln z}$
- Dijet+ISR, di-b, TLA: "global" fit: single fit spanning whole range
  - Upper range of TLA had to be restricted
- Dijet: set of overlapping fits in smaller windows
- Small (%-level) uncertainties jet energy scale for signal, pseudo-experiments on background estimate





## Results - bb/tt + MET



ATLAS-CONF-2016-077





- tt+MET does not provide DM limits in ATLAS-CONF-2017-020
- Pseudoscalar limits in backup
- <u>P. Fox</u>:  $\sigma \sim g^2 => \sigma(g=3.5) \sim 10\sigma(g=1.0)$

## Results - bb resonances

 di-b resonance search: excludes leptophobic Z' at 1.5 TeV



NIVERS

 low-mass di-b resonance search: excludes SSM Z' 0.65-1.1 TeV



## Results - dijet (+X) Z'

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/EXOTICS/index.html



Will Kalderon, Lund University

# **ATLAS** Results and Complementarity



Will Kalderon, Lund University

DM Mass [TeV]

# **ATLAS** Results and Complementarity

Complementarity with Direct Detection experiments



Will Kalderon, Lund University



## Summary



- Large number of ways to search for dark matter coupling to quarks at a hadron collider
- Two sets of strategies presented here:
  - qq -> mediator -> MET (+ something to trigger on)
     "cut and count"
  - qq -> mediator -> qq (+ optional ISR)
    - "fit to smooth background"
- Strong complementarity of results, overlap dependent on model parameters
- Updated results from several searches, plus lots more 13 TeV data, coming soon!







### Bonus slides follow from here

Will Kalderon, Lund University



## Jet+MET signal regions



### PRD 94 (2016) 032005

| Selection criteria                                                                       |               |               |               |               |               |               |       |  |
|------------------------------------------------------------------------------------------|---------------|---------------|---------------|---------------|---------------|---------------|-------|--|
| Primary vertex                                                                           |               |               |               |               |               |               |       |  |
| $E_{\mathrm{T}}^{miss} > 250~\mathrm{GeV}$                                               |               |               |               |               |               |               |       |  |
| Leading jet with $p_{ m T}>250~{ m GeV}$ and $ \eta <2.4$                                |               |               |               |               |               |               |       |  |
| At most four jets with $p_{ m T}>30~{ m GeV}$ and $ \eta <2.8$                           |               |               |               |               |               |               |       |  |
| $\Delta \phi({ m jet}, {ec p}_{ m T}^{ m miss}) > 0.4$                                   |               |               |               |               |               |               |       |  |
| Jet quality requirements                                                                 |               |               |               |               |               |               |       |  |
| No identified muons with $p_{ m T}>10~{ m GeV}$ or electrons with $p_{ m T}>20~{ m GeV}$ |               |               |               |               |               |               |       |  |
| Inclusive signal region                                                                  | IM1           | IM2           | IM3           | IM4           | IM5           | IM6           | IM7   |  |
| $E_{ m T}^{ m miss}$ (GeV)                                                               | > 250         | > 300         | > 350         | > 400         | > 500         | > 600         | > 700 |  |
| Exclusive signal region                                                                  | EM1           | EM2           | EM3           | EM4           | EM5           | EM6           |       |  |
| $E_{ m T}^{ m miss}$ (GeV)                                                               | [250–<br>300] | [300–<br>350] | [350–<br>400] | [400–<br>500] | [500–<br>600] | [600–<br>700] |       |  |

#### Will Kalderon, Lund University



Jet+MET control regions

#### **LUND** UNIVERSITY

### PRD 94 (2016) 032005

| Background process                        | Method                         | Control sample             |  |
|-------------------------------------------|--------------------------------|----------------------------|--|
| $Z( ightarrow  u ar{ u})+{\sf jets}$      | MC and control samples in data | $W( ightarrow \mu u)$      |  |
| $W( ightarrow e u)+{\sf jets}$            | MC and control samples in data | W( ightarrow e u)          |  |
| $W(	o 	au  u) + {\sf jets}$               | MC and control samples in data | W( ightarrow e u)          |  |
| $W( ightarrow \mu  u)+{ m jets}$          | MC and control samples in data | $W( ightarrow \mu u)$      |  |
| $Z/\gamma^*(	o \mu^+\mu^-)+{ m jets}$     | MC and control samples in data | $Z/\gamma^*(	o\mu^+\mu^-)$ |  |
| $Z/\gamma^*(	o 	au^+	au^-)+{ m jets}$     | MC and control samples in data | W( ightarrow e u)          |  |
| $Z/\gamma^*( ightarrow e^+e^-)+{ m jets}$ | MC only                        |                            |  |
| $tar{t}$ , single top                     | MC only                        |                            |  |
| Diboson                                   | MC only                        |                            |  |
| Multijets                                 | data driven                    |                            |  |
| Noncollision                              | data driven                    |                            |  |

 $W\mu\nu$  CR has better stats to constrain  $Z\nu\nu$ 

Jet smearing method: MET due to fluctuations in jet response

#### Will Kalderon, Lund University



## Jet+MET CR plots









Will Kalderon, Lund University



## Jet+MET SR plots



### PRD 94 (2016) 032005



#### Will Kalderon, Lund University



## bb+MET SRs & CRs



### ATLAS-CONF-2016-086

| Quantity                             | SR    | CRZ1b     | VRZ2b     | CRW1b     | VRW1b     | CRW2b | VRLR  |
|--------------------------------------|-------|-----------|-----------|-----------|-----------|-------|-------|
| $\mathcal{N}_{lepton}$ (baseline)    | 0     | 2 (SFOS)  | 2 (SFOS)  | 1         | 1         | 1     | 0     |
| $\mathcal{N}_{lepton}$ (high-purity) | 0     | 2 (SFOS)  | 2 (SFOS)  | 1         | 1         | 1     | 0     |
| $\Delta \phi_{\min}^{j}$             | > 0.4 | > 0.4     | > 0.4     | > 0.4     | > 0.4     | > 0.4 | > 0.4 |
| $\mathcal{N}_{jets}$                 | 2 – 3 | 2 – 3     | 2 – 3     | 2 - 3     | 2 - 3     | 2 – 3 | 2-3   |
| <i>N</i> <sub>bjets</sub>            | = 2   | = 1       | = 2       | = 1       | = 1       | = 2   | = 2   |
| jet 1 $p_{\rm T}$ [GeV]              | > 100 | > 100     | > 85      | > 100     | > 100     | > 100 | > 100 |
| jet 2 <i>p</i> <sub>T</sub> [GeV]    | > 20  | > 20      | > 20      | > 30      | > 30      | > 20  | > 20  |
| jet 3 $p_{\rm T}$ [GeV]              | < 60  | < 60      | < 60      | < 60      | < 60      | < 60  | < 60  |
| $p_{\rm T}^{\rm b-jet1}$ [GeV]       | > 50  | > 50      | > 50      | > 50      | > 50      | > 50  | > 50  |
| $E_{\rm T}^{\rm miss}$ [GeV]         | > 150 | < 100     | < 80      | > 130     | > 150     | > 120 | > 150 |
| $E_{\rm T}^{\rm miss,cor}$ [GeV]     | -     | > 120     | > 100     | -         | -         | -     | -     |
| $\Delta \hat{R}_{min}$               | > 2.8 | > 2.8     | > 2.8     | > 2.5     | > 2.8     | > 2.8 | < 2.5 |
| $\Delta \eta(b_1, b_2)$              | > 0.5 | -         | -         | -         | > 0.5     | -     | > 0.5 |
| $Imb(b_1, b_2)$                      | > 0.5 | -         | -         | -         | -         | -     | > 0.5 |
| $m_{\mathrm{T}}^{lep}$               | -     | -         | -         | [30, 100] | [30, 100] | > 30  | -     |
| $m_{\ell\ell}$                       | -     | [75, 105] | [80, 100] | -         | -         | -     | -     |
| lepton 1 $p_{\rm T}$ [GeV]           | -     | > 30      | > 30      | > 30      | > 30      | > 30  | -     |
| lepton 2 $p_{\rm T}$ [GeV]           | -     | > 25      | > 25      | -         | -         | -     | -     |
| $\Delta \phi(b_1, b_2)$              | > 2.2 | > 2.2     | -         | [1, 2.2]  | > 2.2     | > 2.2 | > 2.2 |

$$Imb(b_1, b_2) = \frac{p_{\rm T}(b_1) - p_{\rm T}(b_2)}{p_{\rm T}(b_1) + p_{\rm T}(b_2)} > 0.5 \quad \text{aka } p_{\rm T}(b1) > 3^* p_{\rm T}(b2)$$



## bb+MET SR plots



#### ATLAS-CONF-2016-086



Will Kalderon, Lund University



## bb+MET CR plots



### ATLAS-CONF-2016-086



Figure 2: Representative distributions for the three control regions of the analysis. All backgrounds are normalised to the fit results. The dominant post-fit systematic uncertainties are included in the systematic band.

#### Will Kalderon, Lund University

### List for all hadronic + MET searches

- Statistical uncertainty on background estimate
- Detector effects:
  - Jet and MET energy scale and resolution
  - Tagging efficiencies (where relevant)
  - Lepton selection etc in CRs
- Theoretical uncertainties:
  - Scales and generator choice in MC simulation
- Additional signal uncertainties
  - ISR strength, cross-section
- Many of these cancel to some degree thanks to closeness of SR and CR

30 / 21

Example: tt+MET ATLAS-CONF-2017-020 Dominant

> 16% 9%

20%

ATLAS DM Hadronic searches, 19.04.17

Had.+MET Uncertainties





ATLAS TLA - custom calibration





- Trigger-Level Analysis: custom jet calibration
- Record events at 2kHz (vs 1kHz for main ATLAS stream)
   -> no time for tracking to run

Will Kalderon, Lund University



Di-b-jet: b-tagging



### di-b-jet: b-tag jets

- Gives additional sensitivity to b-quark resonances
- Efficiencies around 60% for 1 TeV jet, with light rejection factor around 30



Will Kalderon, Lund University



- Background uncertainties are purely from the fit:
  - Function choice and parameter uncertainty
  - Evaluated with pseudo-experiments: take nominal background estimate, Poisson fluctuate, refit; take RMS of new estimates
- Detector and theory systematics only relevant for signal simulation. Dominant:
  - Jet energy scale and resolution
  - b-tagging efficiencies (for di-b)



## Results - bb/tt+MET





#### Will Kalderon, Lund University



## Jet+MET comparison



- New PICO-60 result on right
- Jet+MET 3.2 fb<sup>-1</sup>, γ+MET 36.4 fb-1

Axial Vector Mediato

 $g = g_{\gamma} = g_{\alpha}$ ATLAS √s = 13 TeV, 3.2 fb<sup>-</sup>

0.5

m<sub>x</sub> = 150 GeV, m<sub>x</sub> = 1 TeV

1

1.5

10

0



di-b-jet b\* limits



### ATLAS-CONF-2016-060



Will Kalderon, Lund University

# ATLAS Spin-Dependent, neutron





#### Will Kalderon, Lund University



## Spin-Independent



https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/ CombinedSummaryPlots/EXOTICS/index.html ATLAS Preliminary March 2017 **DM Simplified Model Exclusions** 10<sup>-37</sup> • Dijet TLA  $\sigma_{SI}$  (DM-nucleon) [cm<sup>2</sup>] s = 13 TeV, 3.4 fb<sup>-1</sup>  $10^{-38}$  $E_T^{miss} + \gamma$ ATLAS-CONF-2016-030 Dijet 8 TeV 10<sup>-39</sup> **Dijet TLA** s = 8 TeV, 20.3 fb<sup>-1</sup> Phys. Rev. D. 91 052007 (2015) Dijet 8 Te  $10^{-40}$ Dijet  $10^{-41}$ s = 13 TeV, 37.0 fb<sup>-1</sup> arXiv:1703.09127 [hep-ex] Dijet  $E_T^{miss} + \gamma$  $10^{-42}$ s = 13 TeV, 36.4 fb<sup>-1</sup> CERN-EP-2017-044  $10^{-43}$ PandaX arXiv:1607.07400  $10^{-44}$ LUX PandaX  $10^{-45}$ arXiv:1608.07648; arXiv:1602.03489  $10^{-46}$ Vector mediator, Dirac DM  $10^{-47}$  $g_{_{_{\rm I}}} = 0.25, \, g_{_{_{\rm I}}} = 0, \, g_{_{_{\rm DM}}} = 1$ ATLAS limits at 95% CL, direct detection limits at 90% CL -48 10 10<sup>3</sup> 10<sup>2</sup> 10 DM Mass [GeV]

Will Kalderon, Lund University