

Detectors – an Introduction

Historic Detector: Bubble Chamber

Invented 1952 by Donald Glaser (Noble Prize 1960)

- chamber with liquid (e.g. H₂) at boiling point ("superheated")
- charged particles leave trails of ions
 - formation of small gas bubbles around ions
 - take photos of interactions and look for interesting events...
- nice pictures, but SLOW!!!
 - only 1 photo/event every few seconds, need something faster \rightarrow electronic detectors

BEBC bubble chamber

Detectors – an Introduction

LHC Detectors

Detectors – an Introduction

Particle Physics Methods

- We use this at a particle accelerator
 - \Rightarrow protons are accelerated \Rightarrow energy
 - kinetic energy is transformed into matter at the collision
 - new particles are being produced (new matter)

The Perfect Detector...

- ...should reconstruct any interaction of any type with 100% efficiency and unlimited resolution
 - get "4-momenta" of basic physics interaction
 - --- = energy / momentum / mass + charge of ALL involved particles
 - in practice: limitations by detector inefficiency (not all particles detected) + detector resolution (measurements have statistical + systematic uncertainties)

High Energy Collider Detectors

Tracking Detector (or Tracker) = momentum measurement

- closest to interaction point: vertex detector (often silicon pixels)
 - measures primary interaction vertex and secondary vertices from decay particles
- main or central tracking detector

measures momentum by curvature in magnetic field + charge of particle

Calorimeters = energy measurement

- electro-magnetic calorimeters (light particles: e^- , e^+ , γ)
 - measures energy of light EM particles (electrons, positrons, photons) based on electromagnetic showers by bremsstrahlung and pair production
 - two concepts: homogeneous (e.g. CMS) or sampling (e.g. ATLAS)
- hadron calorimeters (heavy hadronic particles: π , K, p, n)
 - measures energy of heavy (hadronic) particles (pions, kaons, protons, neutrons) based on nuclear showers created by nuclear interactions

Muon Detectors = momentum measurement for muons (more precise)

- outermost detector layer, basically a tracking detector

Detectors – an Introduction

A typical Particle Detector

Cut-away view of ATLAS: several layers of detectors

Detectors – an Introduction

Muon Detector → muon ident. + muon mom. p + charge

Calorimeter → energy E

Coil

Tracker → momentum p + charge

Detector Challenges at LHC

High energy collisions

- sufficiently high momentum resolution up to TeV scale

High luminosity (high interaction rate)

- high rate capabilities, fast detectors (25 ns bunch crossing rate)
- High particle density
 - high granularity, sufficiently small detector elements to resolve particles

High radiation (lots of strongly interacting particles)

- radiation mainly due to particles emerging from collisions, not machine background
- radiation-hard detectors and electronics (have to survive ~10 years)

LARGE collaborations!!!

- ~O(3000) physicists for ATLAS and CMS each
- communication, sociological aspects
 - exponential raise of meetings, phone + video conferences...

Detectors - an Introduction

LARGE Detectors

• Everything is LARGE at the LHC...

Detectors – an Introduction

Radiation Doses at LHC

• ~ 2 x 10⁶ Gray / r_T^2 / year at LHC design luminosity

where r_{T} [cm] = transverse distance to the beam

Lots of R&D over >10 years to develop rad.-hard silicon detectors, gaseous detectors and electronics

(1 MeV n_{ea}/cm²/yr)

Challenging Conditions: Pile-up

2012 event with pile-up: 25 reconstructed primary vertices

Michael Hauschild - CERN, page 12

Tracking Detectors

How to measure momentum and charge?

Detectors – an Introduction

Tracker Technologies

- 3 major technologies of tracking detectors

Gaseous detectors

- ionization in gas
 - typically ~100 e⁻/cm \rightarrow not sufficient to create significant signal height above noise for standard amplifiers
 - typical amplifier noise = some 100...1000 ENC (equivalent noise charge, in electrons)
- requires gas amplification ~10⁴ to get enough signal over noise (S/N)
- Silicon detectors (solid state detectors)
 - creation of electron hole pairs in solid state material
 - typically ~100 e⁻ hole pairs/ μ m = 10⁴ more than in gaseous detectors
 - 300 µm thick detector creates high enough signal w/o gas amplification
 - ~30'000 charge carriers per detector layer, noise ~1000 ENC, S/N ~ 30:1

rarely used: fiber trackers

- scintillating fibers

scintillation light detected with photon detectors (sensitive to single electrons)

Detectors – an Introduction

Tracking Detector Principles

Typical: several layers of sensitive detector elements

- each layer gives a 2D hit coordinate (+ detector position \rightarrow 3D)
- Magnetic field bends (charged) particle trajectories

- resolution of each hit depends on size d of detector elements

 \rightarrow take the width of an equivalent Gaussian distribution as resolution

e.g. for d = 30 $\mu m ~\rightarrow~$ ~10 μm resolution

Michael Hauschild - CERN, page 15

Magnet Concepts at LHC experiments

- + large homogenous field inside coil
- needs iron return yoke (magnetic shortcut)
- limited size (cost)
- coil thickness (radiation lengths)

CMS, ALICE

Detectors – an Introduction

(air-core) toroid

- + can cover large volume
- + air core, no iron, less material
- needs extra small solenoid for general tracking
- non-uniform field
- complex structure

ATLAS

ATLAS and CMS Coils

Michael Hauschild - CERN, page 17

Momentum Measurement

Only) charged particles are deflected by magnetic fields

-- homogeneous B-field \rightarrow particle follows a circle with radius r

 $p_t[GeV/c] = 0.3 \cdot B[T] \cdot r[m]$

measurement of *p_t* by measuring the radius

- this is just the momentum component perpendicular to the B-field
 transverse momentum p_t
- no particle deflection parallel to magnetic field
- → if particle has longitudinal momentum component
 → particle follows a helix

total momentum p to be measured by dip angle λ

$$p = \frac{p_t}{\sin \lambda}$$

Basic Gaseous Detector – Geiger-Müller Tube

Geiger-Müller tube by Hans Geiger and Walther Müller 1928

- tube filled with inert gas (He, Ne, Ar) + organic vapour (e.g. CH_4) or CO_2
- central thin wire (20 50 μ m Ø), high voltage (several 100...1000 Volts) between wire and tube

- strong increase of E-field close to the wire
 - electron gains more and more energy
- above some threshold (>10 kV/cm)
 - electron energy high enough to ionize other gas molecules
 - newly created electrons also start ionizing
- avalance effect: exponential increase of electrons (and ions)
 - measurable signal on wire
 - organic substances or CO₂ responsible for "quenching" (stopping) the discharge
 - absorption of UV photons

Solid State Detectors

Basic element of a solid state (silicon) detector is... a diode

- p-type and n-type doped silicon material is put together

- zone free of charge carriers
 - no holes, no electrons
 - thickness of depletion region depends on voltage, doping concentration

charged particle can create new electron/hole pairs in depletion area sufficient to create a signal

Ν

typically 20'000 – 30'000 electron/hole pairs in 300 µm thick material

Detectors – an Introduction

Ρ

Silicon Strip Detectors

Now take a large Si crystal, e.g. 10 x 10 cm², 300 μm thick

make bottom layer p-type

and subdivide the top n-type layer into many strips with small spacing

many diodes next to each other with position information (strip number)

- Advantage compared to wire/gas detectors
 - → strip density (pitch) can be rather high (e.g. ~20 µm)

high single point accuracy: $\sigma_x = 20 \ \mu m / \sqrt{12} = 5.8 \ \mu m$

but also many electronics channels

Michael Hauschild - CERN, page 21

Detectors – an Introduction

۵

Si-Detector Electronics and Si-Pixels

- Silicon strip detectors have a laaaarge number of electronics channels, ~10⁷ each for ATLAS and CMS Si trackers
 - requires highly integrated chips for amplification, shaping, zero suppression (only information of strips with signals is read-out) and multiplexing (put all strip signals on a few cables only)
 - electronics is directly connected to the sensor (the "multi-diode") via wire bonds

Detectors – an Introduction

ATLAS Inner Tracker

Detectors - an Introduction

The ATLAS Pixel Detector

Re-insertion in December 2013 during Long Shutdown 1

Michael Hauschild - CERN, page 24

CMS Full Silicon Tracker

- 4-layers Si Pixel
 - \Rightarrow 3 \rightarrow 4 layers in 2017
- 10-layers Silicon
 Strips
 - 210 m², largest silicon detector ever built

Tracker Inner Barrel TIB

Material Budget

Tracking Detectors should be light-weighted and thin

- multiple scattering by material degrades resolution at low momenta
- unwanted photon conversions in front of calorimeters
- material often very inhomogeneous (in particular Si detectors)

Power & cooling adds most of the material

not the Si sensor material

Detectors – an Introduction

Calorimeters

How to measure energy?

Detectors – an Introduction

Particle Showers in Calorimeters

- Initial particle creates electro-magnetic shower of secondary particles (electrons, positrons, photons) in dense material
 - by bremsstrahlung and pair production
 - shower depth depends on radiation length X₀ (characteristic material constant)
 - → for e[±] = length after all but 1/e of energy lost by Bremsstrahlung
 - for γ = 7/9 of mean free path length for pair production

Energy Resolution of Calorimeters

- Number of particles in shower is proportional to energy of initial particle $N_{shower} \propto \frac{E}{E_c}$
 - error of energy measurement determined by (statistical) fluctuations in the number of shower particles $\sigma_{N_{Shower}} \propto \sqrt{N_{Shower}}$

 $\frac{c}{E}$

- resulting relative energy measurement error is

 $\frac{\sigma_E}{E} \propto \frac{a}{\sqrt{E}} \oplus b \oplus$

$$\frac{\sigma_E}{E} \propto \frac{1}{\sqrt{E}}$$

Critical Energy (typically ~10 MeV)

More contributions from detector inhomogeneities and electronic noise convolution

constant term

inhomogenities

non-linearities

relationship valid for all types of calorimeters (homogeneous + sampling, electromagnetic and hadronic)

noise term

electronics noise

Detectors – an Introduction

stochastic

(statistic) term

number of shower particles

Calorimeter Concepts

Homogeneous calorimeters (e.g. CMS)

- absorber material (generation of the shower) = detector material
 - typically an electromagnetic shower is created in an optical transparent absorber, photons created in the shower are collected and detected with some photo detector

Sampling calorimeters (e.g. ATLAS)

 passive (heavy) absorber material (iron, copper, lead, tungsten, uranium) interleaved with active detector material

Detectors – an Introduction

CMS: Homogeneous EM Calorimeter

Clear advantage: good energy resolution

- the entire shower is kept in active detector material
 - no shower particle is lost in passive absorber

Disadvantages

۵

- limited granularity, no information on shower shape in longitudinal direction (along particle flight direction)
 - position information is useful to resolve near-by energy clusters, e.g. single photons versus two photons from π^0 decay

Detectors – an Introduction

ATLAS: Sampling EM Calorimeter

- Typical sampling calorimeters use iron or lead absorber material, variety of detectors in between possible
 - --- gas detectors (MWPCs), plastic scintillators, liquid noble gases (LAr, LKr)
- LAr with "acordeon" shaped Fe-Pb-Fe absorbers at ATLAS
 - LAr is ionized by charged shower particles
 - Charge collected on pads
 - ionization chamber, no "gas" amplification
 - pads can be formed as needed \rightarrow high granularity

 acordeon structure helps to avoid dead zones (cables etc.)

simulated shower

ATLAS/CMS Hadron Calorimeters

• Measure energy of heavy hadronic particles: π , K, p, n, ...

Energy resolution much worse than for el.-magn. calorimeters

shower created by nuclear interactions (hadronic shower, fewer particles in shower) usually only a few nuclear interaction lengths deep (5 – 6 λ_1)

Both ATLAS and CMS use scintillators as detector material

need many optical fibers to transport light from scintillators to photo detectors

ATLAS Muon Detector

Muon detectors are tracking detectors (e.g. wire chambers)

- they form the outer shell of the (LHC) detectors
- they are not only sensitive to muons (but to all charged particles)!
- → just by "definition": if a particle has reached the muon detector
 → it's considered to be a muon
- all other particles should have been absorbed in the calorimeters

Challenge for muon detectors

- large surface to cover (outer shell)
 - keep mechanical positioning stable over time

Aluminum tubes with central wire filled with 3 bar gas

ATLAS Muon System

- → 1200 chambers with 5500 m²
- needs also good knowledge of (inhomogeneous) magnetic field

Detectors – an Introduction

ATLAS Muon Detector Elements

Cross plate Multilayer In-plane alignment Longitudinal beam

ATLAS Detector Status

(a 100 megapixel camera with 40 MHz framerate = 1 PB/second)

Subdetector	Number of Channels	Approximate Operational Fraction
Pixels	92 M	98.2%
SCT Silicon Strips	6.3 M	98.6%
TRT Transition Radiation Tracker	350 k	97.3%
LAr EM Calorimeter	170 k	100%
Tile calorimeter	4900	99.2%
Hadronic endcap LAr calorimeter	5600	99.6%
Forward LAr calorimeter	3500	99.8%
LVL1 Calo trigger	7160	100%
LVL1 Muon RPC trigger	370 k	99.75%
LVL1 Muon TGC trigger	320 k	100%
MDT Muon Drift Tubes	357 k	99.7%
CSC Cathode Strip Chambers	31 k	98.4%
RPC Barrel Muon Chambers	370 k	96.6%
TGC Endcap Muon Chambers	320 k	99.6%

Detectors – an Introduction

How to Select Interesting Events?

Bunch crossing rate: 40 MHz, ~20 interactions per BX (10⁹ evts/s)

- can only record ~1000 event/s (1 MB each), still ~1 GB/s data rate
- Need highly efficient and highly selective TRIGGER
 - raw event data (1 PB/s) are stored in pipeline until trigger decision

ATLAS + CMS triggers have 2 levels

- → Level-1: hardware (FPGAs), ~3 µs decision time, 40 MHz → 100 kHz
- → Level-2: software (computer farm), ~4 s decision time, 100 kHz → 1 kHz

Detectors – an Introduction

From Physics to Raw Data

Actually recorded are raw data with ~1 GB/s for ATLAS/CMS

- mainly electronics numbers

e.g. number of a detector element where the ADC (Analog-to-Digital converter) saw a signal with x counts...

Detectors – an Introduction

۵

From Raw Data To Physics

reconstruction + analysis of the event(s)

Detectors – an Introduction

Simulation (Monte Carlo)

Even with best calibration + alignment

- some detector influence, e.g. efficiency for track reconstruction etc. will not be known well enough from data
- Use detector simulation (Monte Carlo) to "unfold" detector influence

Event "generator" simulates physics processes

Full detector description

- geometry, detector volumes, detector response (noise etc.)
- physics interactions with matter and tracking particles through detector volumes
- also needed for detector design studies before detector actually built

Detectors – an Introduction

ATLAS (A Toroidal LHC ApparatuS)

CMS (Compact Muon Spectrometer)

Detectors – an Introduction

ATLAS/CMS Concept Overview

The two large LHC detectors have somewhat different concepts

- small inner tracker with moderate field (small 2 T solenoid)
- electron identification by transition radiation tracker
- sampling calorimeter with high granularity outside solenoid
 - air-core toroid system for good muon momentum measurement

emphasis on granular calorimeter and good muon measurement

- CMS

- large inner tracker with high B-field (large 4 T solenoid)
- no dedicated particle identification detector
- homogeneous crystal calorimeter with good energy resolution inside solenoid emphasis on good general tracking and good energy resolution

However, both detector concepts have very similar performance for Higgs physics (efficiency, mass resolution...)

Detectors – an Introduction

First Digging started in 1998

Point 1 - UX15 vault demolition of central pillar - September 20, 2000 - CERN ST-CE

Gallo-roman remains on future CMS site

ATLAS cavern September 2000

Michael Hauschild - CERN, page 43

The ATLAS Site 2005

CERN Main Entrance B

LHC Cooling Towers

Globe of Innovation & Science

ATLAS Control Room and Visitor Centre

Detectors – an Introduction

ATLAS Underground Cavern

Detectors – an Introduction

Michael Hauschild - CERN, page 45

= 55 m

= 32 m

= 35 m

Start of ATLAS Detector Construction

Transport and lowering of first superconducting Barrel Toroid coil

Detectors – an Introduction

CMS Lowering of 2000 t Central Part

Detectors – an Introduction

ATLAS Barrel Toroid Complete (Nov 2005)

Detectors – an Introduction

Detector Technology and Arts

Stage Design of Opera "Les Troyens" in Valencia, October 2009

Detectors – an Introduction

The first Higgs at LHC (4 April 2008)

Detectors – an Introduction

First LHC Collisions at High Energy

Michael Hauschild - CERN, page 51