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Introduction

Precision prediction from parton shower

The formal accuracy of these showers remains governed by leading-order splitting
functions

m Combine parton shower with fixed-order matrix elements (improve hard
emissions)

m Match the shower evolution to higher-order analytical resummation

Our proposal ( For now, we concentrate on final-state showers.)
m Construct a framework to include NLO corrections into the Sudakov form factor
m Full evolution kernels are accurate to O(a?2) at leading color
m More subleading logarithmic terms will be resummed automatically

We work in the framework of dipole-antenna showers which combines dipole showers
with antenna subtraction formalism embodied in VINCIA!.

1. aplugin to the PYTHIA 8, see Peter’s talk, http ://vincia.hepforge.org/
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Sudakov form factor

Sudakov form factor

Sudakov form factor represents the no-branching probability. The differential branching
probability per phase-space element is given by the derivative of the Sudakov factor,

m Leading order Sudakov form factor (qq dipole as an example)
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m Leading order Sudakov form factor (qq dipole as an example)
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where Q(®4) is the resolution scale for real corrections.
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where Q(®4) is the resolution scale for real corrections. How to define Q(®4) ?
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Sudakov form factor

Sudakov form factor

Ordered and unordered Real correction can be written as two iterated 2 — 3 shower
paths.

o O — Q@) & 30 [ 04 0(CP - C(04)) Rasssasy
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choose smaller one as Q4 cluster 4 — 3 and get Q3
The branching is in ordered region if Q4 < Qs and it is in unordered region if Q4 > Q3.
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Sudakov form factor

Q Q
ordered unordered
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@ Accessible to ordinary LO showers < Inaccessible to ordinary LO showers
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Q(®4) = max(Q4, Q). In ordered region the second emission is considered as
unresolved. We use Q3 as the evolution scale (2—3 showers). In unordered region we
use the scale of four-parton state as the evolution scale (direct 2—4 showers).

: iati d4>4 23 yd3—4
Using antenna phase space factorization we have g5t = do;2°dd; =

2—>3 3—»4 _ 2—>3 3—4
/d¢ant ant - (/ d + d) aoe ant dd)ant
or unor
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Sudakov form factor

Expression of Sudakov factor
m The NLO Sudakov factor is written as the product of 2 —+ 3 and 2 — 4 ones :

ARG, QP) = Do 3(QF, P) A2 ,4(0F, @P)
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Sudakov form factor

Expression of Sudakov factor

m The NLO Sudakov factor is written as the product of 2 —+ 3 and 2 — 4 ones

A(Q, Q%) = Do ,3(QF, @P)A2—4(Q, @P)
m 2 — 3 Sudakov factor
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2—4 shower framework

2—4 shower framework

For a direct branching 1 2 — 3 4 5 6 the resolution scale is Q; = 2 min(p3*, p4%).
Partition the direct 2 — 4 phase space into two sectors

= Sector A, with condition p34° < p?4%6
= Sector B, with condition p3*5 > p4%.

The Sudakov factor can be written as

Do g(QF, @P) = 85 4(QF, QP)AF4(Q5, @°)

How to work with these two sectors
m Use the same 2 — 4 sub-antenna function(with full singularities) for sectors A and
B, such as &j.
m Use different path to parametrise phase space according to the choice of Q4

m Veto configurations which do not fall in the appropriate sector
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2—4 shower framework

2—4 shower framework

It is not possible to calculate the 2 — 4 Sudakov form factor analytically. This can be
done numerically via the veto algorithm. The trick is to find a simple function which is
larger than the integrand in any phase space points.

Shower algorithm

m Choose a trial function motivated by smoothly ordering showers :
251 (QF) Pimp a1 (QF)

= Generate a new scale Q form a random number R € [0, 1] according to
R = Dy ,4(QF, Q7) = exp[—Ayial(QF, Q7))

m Generate other kinematic variables according to the trial integral Ayig

m Check the sector condition

P2—>4 _ 04_3 ay
trial T /2 24
Qs 8ial

m Accept this trial with a probability
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It is not possible to calculate the 2 — 4 Sudakov form factor analytically. This can be
done numerically via the veto algorithm. The trick is to find a simple function which is
larger than the integrand in any phase space points.

Shower algorithm
m Choose a trial function motivated by smoothly ordering showers :
225,%(Q5) Pimp &y (QF)

trial
= Generate a new scale Q form a random number R € [0, 1] according to
R = D2_,4(QF, Q) = exp[—Auial(QF, @P)]
m Generate other kinematic variables according to the trial integral Ay
m Check the sector condition

2
m Accept this trial with a probability Pfrgf' = %%
S “trial

What we need is the sub-antenna functions.
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Sub-antenna functions

Sub-antenna functions

For a branching 1 2 — 3 4 5 6 we consider partons 1 and 2 (3 and 6) as the hard
radiators (recoilers) and partons 4 and 5 as the radiated soft and/or collinear partons.
For a qq parent antenna, the sub-antenna functions are equal to the full ones and we
use ag from paper [Gehrmann-De Ridder et al., 2005].

For a gg or gg dipole it is non-trivial to define sub-antenna functions.

color dipole A
¢ orodrp 10[0d

There are two color dipoles for Higgs
decaying into gluon-gluon which can
generate two color-unconnected 2 — 3
emissions.
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radiators (recoilers) and partons 4 and 5 as the radiated soft and/or collinear partons.
For a qq parent antenna, the sub-antenna functions are equal to the full ones and we
use ag from paper [Gehrmann-De Ridder et al., 2005].

For a gg or gg dipole it is non-trivial to define sub-antenna functions.

.

q orodip 10[0d

color dipole A

There are two color dipoles for Higgs

decaving into aluon-aluon which can ME is symmetric under cyclic interchanges
ene)r(atg two 3olor-u?1connected 2—-3 of the momenta. More than one

geners sub-antenna functions contribute

emissions.
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Sub-antenna functions

Sub-antenna functions

For a branching 1 2 — 3 4 5 6 we consider partons 1 and 2 (3 and 6) as the hard
radiators (recoilers) and partons 4 and 5 as the radiated soft and/or collinear partons.
For a qE] parent antenna, the sub-antenna functions are equal to the full ones and we
use a4 from paper [Gehrmann-De Ridder et al., 2005].

sub-antenna functions for gg dipole
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Sub-antenna functions

Sub-antenna functions

As numerical validation we compare the leading-color matrix element squared for
H — 919293594 With our sub-antenna function.

_ IM(h— gg)I?
IM(1,2,3,4)
+10(23,1,34)10(2,3,4) + £2(34,2,41)19(3,4,1)
+9(41,3,12)10(4,1,2) + 2(12,4,23)10(1, 2, 3))

Ry (£(1.2.3,4)+(2.3,4,1) +£(3,4,1,2) + £(4,1,2,3)

H— gggg <R¢>

using rz
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Numerical results

Numerical results

>10? >10°
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© ©
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Due to momentum recoil effects, the local In the 2 — 4 shower, the iterated 2 — 3
definition of the evolution scale may not be branchings are matched by sub-antenna
the smallest global scale in a given event. functions ff and the direct 2 — 4 branchers
The pure 2 — 3 shower can generate are used to populate the unordered phase
some contributions classified as Q4 > Q3. space.

As shown in the right-hand plots, the 2 — 4 shower fills in the unordered phase space,
and, in the limit Q4 ~ Qj3, consistently matches onto the 2 — 3 result.
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Conclusion and outlook

Conclusion and outlook

Conclusion

= We presente a framework for including the NLO corrections into Sudakov
form-factor

= A crucial new ingredient development is the direct 2—4 branchings

m We define sub-antenna functions for double gluon emissions

m As a validation, we compare 2 — 4 and 2 — 3 showers at phase-space boundary
Outlook

m In near future extend 2 — 4 showers to include g — qg splittings

m Include the second-order correction for 2 — 3 showers

= Inlong term we will turn our attention to the initial state
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Thank you for your attention !
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Phase space integral
Using the antenna phase-space factorization

d®m1(P1s- - Pmet) = APm(P1, - - -5 PIs PKs - - - s Pmyt) X APant (i, ], k)
2 — 4 phase space integration can be written as

d4(3,4,5.6) _ [ patha: d®an(34,45,6) dbani(3,4,5)
do,(1,2) pathb: d®ani(3,45,56) ddant(4,5,6)

where d®an(i,/, k) = 15z 2 dQPd¢

L
2 sjjk
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2—4 shower framework

2—4 trial function

1 4 _ (as)Z 128

Technically, we generate these phase spaces by oversampling. And we set the lower
and upper limit for {(3—4 one) independent on the evolution scale and calculate
integral /c.

Solution for Q

m with as fixed, Q% = m? exp (—\/Inz(c%/mz) + 2fR/&§) where
fa = —472In R/(IN(2)Cl;)

2 —1/W_1(-y)
= with one-loop running as, Q* = ‘t(’;z k4/(22 where
In k2 m? /472 In k2 m? /4N? .
m exp { frb2 — Ink‘éow} and W_;(2) is the Lambert W
functlon

Hai Tao Li Monash University NLO showers
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check singularities of df (1 2->ijkl)

infrared limits df(i,j, k, ) limits valid sector
Jo kg =0 qu/ Aand B
Jg = 0, kglllg Sijn(z) o= 3 Pig—a(2) AandB
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check singularities of df (1 2->ijkl)
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check singularities of d

(1 2->ijkI)
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check singularities of 9 (1 2->ijkl)

infrared limits 2(i,J, k, |) expression valid sector
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check singularities of 9 (1 2->ijkl)
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check singularities of 9 (1 2->ijkl)
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@ Gehrmann-De Ridder, A., Gehrmann, T., and Glover, E. W. N. (2005).
Antenna subtraction at NNLO.
JHEP, 09 :056.
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