Towards technical solutions for HOM dampers, whether we'll need them or not

Discussion topic

Slides by W. Weingarten

Material mainly based on lecture "Couplers for cavities" by Ernst Haebel CERN Yellow report CERN-96-03 CAS - CERN Accelerator School : Superconductivity in Particle Accelerators, Hamburg, Germany, 17 - 24 May 1995, pp.231-264

1. What is the HOM spectrum?

26 June 2009

2. What is the upper limit of Q_{ext} from BBU point of view?

Is there a clear threshold value of Q_{ext} to avoid BBU?

On what parameters does this threshold depend?

spread in frequency, R/Q, Q

26 June 2009

3. What is the upper limit of Q_{ext} from the maximum HOM power point of view?

$$P = \frac{1}{2} \cdot (R / Q) \cdot Q \cdot I^2$$

Sum over all monopole modes assuming 6 % duty cycle (from Marcel S.)

Q _{ext}	10 ⁵	10 ⁶	10 ⁷
$\Sigma P_n [kW]$	0.1	1.1	11
(medium β)			
$\Sigma P_n [kW]$	3	30	300
(high β)			

26 June 2009

Can the HOMs be damped by beam tubes? Tacit supposition: Damping schemes on individual cavity cell excluded

- Can all modes be damped by sufficiently large beam tubes?
 - No, because of unrealistically large beam tube diameters
 - There remain confined modes
 - TM010, TM011
 - TE111, TM110
 - But: Even a mode frequency beyond cutoff is no guarantee for sufficient mode damping -> trapped modes

How to deconfine modes?

Figure: 1 A sketch of the prototype module in TRISTAN Accumulation Ring.

How to deconfine modes cont'd?

Beam tube loads?

Ferrites?

low power handling capacity if cold higher power handling capacity if warm mechanical and vacuum design not easy

Figure 1: CESR and ERL HOM loads. 1 – absorber plates, 2 – flange to cavity, 3 – 5 K He cooling loop, 4 – 80 K cooling loop, 5 – 80 K heater, 6 – 5 K heaters, 7 – HOM pickup.

26 June 2009

Waveguide dampers?

- termination load at room temperature
- fundamental mode rejection by proper choice of waveguide dimensions
- BUT: limited to higher frequencies
 engineering issues: Integration in cryostat not easy, RF windows, heat leaks

Waveguide dampers cont'd?

Coaxial transmission line dampers?

- termination load at room temperature
 - options:
 - Non-resonant vs. resonant
 - Probe antennas vs. loop antennas
 - Obtainable Q_{ext}: 5000

BUT:

- they don't have a cut-off frequency, hence need a filter to suppress the FM
- Iimitation of coupling strength by unwanted current flow through internal impedances for NON-resonant transmission line couplers
- must couple to both polarisations of transversal modes

Resonant coaxial transmission line dampers?

Compensate internal impedances: The HOM coupler becomes a resonator coupled to the cavity resonator. It may have two eigenfrequencies.

Obtainable Q_{ext}: 50

Pros:

- Couplers with several resonances possible (HERA, LEP, LHC, ILC are of this type)
- Demountability
- □ Fundamental mode rejection:
 - LEP: Fundamental mode E-field rejected by stop-filter in front of HOM coupler
 - Fundamental mode H-field rejected by loop plane perpendicular to cavity axis
 - Risk of detuning of notch filter
- BUT: High currents request for superconducting material prepared under ultra-clean conditions (like the cavity) and IHe cooling
 - Prone to electron emission from inside cavity

26 June 2009

Technical solution?

Technical solution cont'd?

Technical solution cont'd?

What are reasonable design criteria for HOM couplers?

- 1. What is max. tolerable Q_{ext} wrt BBU?
- 2. Is this Q_{ext} compatible with the max possible RF power throughput?
- **3**. Prone to multipactor, discharges and electron impact?
- 4. Demountability?
- 5. Ultra-clean processing possible?
- 6. Suitable interlocks?
- 7. Conduction cooling sufficient, or active IHe cooling needed?
- 8. Both polarisations being damped?
- 9. Risk of cold leaks to IHe mitigated?
- 10. ...

Possible design?

