

SPL - HOM Workshop 25-26 June 2009

Introduction to the SPL

- 1. Context
- 2. LP-SPL
- 3. SPL high power options

R. Garoby

25 June, 2009

1. Context

Main requirements of PS2 on its injector:

Requirement	Parameter	Value
2.2 x ultimato	Injection energy	4 GeV
brightness with nominal emittances	Nb. of protons / cycle for LHC (180 bunches)	6.7 × 10 ¹³
Single pulse filling of SPS for fixed target physics	Nb. of protons / cycle for SPS fixed target	1.1 × 10 ¹⁴
Provide all beam time structures for LHC	Bunch spacing	25/50/ 75 ns
	Number of bunches / missing bunches	1 - 168
Flexible control of emittance and intensity per bunch	$\varepsilon_{\chi,\gamma} / \varepsilon_L / N_b$	

R. G.

sLHC

4

25 June, 2009

Implementation of the new injectors: LP-SPL + PS2

Construction of LP-SPL and PS2 will not interfere with the regular operation of Linac4 + PSB for physics. Similarly, beam commissioning of LP-SPL and PS2 will take place without interference with physics.

First milestones
➢ Project proposal: 2011- 2012
➢ Project start: January 2013

Goal of the SPL study (2008-2012)

from Note on 31/03/2009 (EDMS Id 993472)

The goal of the SPL study is to prepare for a start of construction of the low power SPL optimized for PS2 and LHC at the beginning of 2013.

For that purpose, a detailed Conceptual Design Report and a cost estimate will be published in May 2012. The cost of leaving the possibility of a later upgrade to 5 GeV and high beam power will also be quantified.

SPL

2. LP-SPL

Stage 1: Linac4 - Main characteristics

lon species	H- ←		H ⁻ ⇒ charge exchange injection and painting in the synchrotron (PSB / PS2).
Output Energy Bunch Frequency Max. Rep. Rate Max. Beam Pulse Length Max. Beam Duty Cycle	160 352.2 2 1.2 0.24	MeV MHz Hz %	 Higher injection energy in PSB (160/50 MeV, factor 2 in $\beta\gamma^2$) \rightarrow same tune shift with twice the intensity.
Chopper Beam-on Factor Chopping scheme: 222 transmitted /1	pper Beam-on Factor 65 % pping scheme: 222 transmitted /133 empty buckets		Re-use of LEP RF components: klystrons, waveguides, circulators.
Source current RFQ output current Linac pulse current N. particles per pulse	80 70 40 1.0	mA mA mA × 10 ¹⁴	Chopping at low energy to reduce capture loss in the synchrotron (PSB / PS2).
Transverse emittance	0.4	π mm mrad	
Max. rep. rate for accelerat	ing struct	ures: 50 Hz 🖛	 Structures and klystrons dimensioned for 50 Hz Power supplies and electronics dimensioned for 2 Hz, 1.2 ms pulse.

Stage 1: Linac4 - Block diagram

Normal conducting RF accelerating structures: 4 types (RFQ, DTL, CCDTL, PIMS) Frequency: 352.2 MHz Duty cycle: 0.1% phase 1 (Linac4), 3-4% phase 2 (SPL), (design: 10%)

Stage 1: Linac4 - Civil engineering status

Linac4 tunnel ("cut and cover" excavation) seen from highenergy side.

Final concrete works starting at low-energy side, excavation proceeding at high energy side.

Tunnel level -12 m, length 100 m.

Delivery of tunnel and surface equipment building end of 2010.

Stage 1: Linac4 - Civil engineering status

High-energy side of Linac4 tunnel, with beam dump chamber and connecting tunnel to Linac2 line.

Stage 1 - Planning

sLHC

MILESTONES:

✓ Building delivery:December 2010

✓ Infrastructure installation: 2011

 ✓ Machine and equipment installation: 2012

✓ Linac commissioning: 2013

✓ PSB modifications: shutdown 2013/14.

✓ Beam from PSB: April 2014.

project duration: 6 years

Stage 2: LP-SPL - Main characteristics

				Required for flexibility and low loss in PS2
Ion species Output Energy Bunch Frequency Max, Rep, Rate	H ⁻ 4 352.2 2	GeV MHz Hz		Required by space charge tune spread at the specified beam brightness
Max. Beam Pulse Length Max. Beam Duty Cycle Nominal chopping factor	0.9 0.2 65	ms % %		Re-use of LEP RF components in Front-end (Linac4)
(Flexible chopping scheme) Source current Linac pulse current Number of ions per pulse	40 20 1.1	mA mA × 10 ¹⁴		Required for flexibility and low loss in PS2 (linac4 chopper with new driver)
Transverse emittance	0.4	π mm mrad		
accelerating structures and klystrons:	50	Hz +		 Structures and klystrons dimensioned for 50 Hz Power supplies and electronics dimensioned for 2 Hz, 2 ms pulse.

13

Frequency/temperature:

704 MHz and 2 K are confirmed,

Cavity gradient:

> 25 MV/m "on average" (= with a high yield) is very challenging and may be costly (in terms of reprocessing),

> 20 MV/m seems more achievable but will have an impact on linac length (or energy).

High-power RF cavity tests of fully equipped cryo-modules are mandatory for realistic SPL layout estimates!!

Ref.: Assessment of the basic Parameters of the CERN SPL, CERN-AB-2008-067-BI-RF, http://cdsweb.cern.ch/record/1136901/files/CERN-AB-2008-067.pdf

SC-linac (160 MeV \rightarrow 4 GeV) with ejection at intermediate energy

Stage 2: LP-SPL - Cryomodules

Medium β cryomodule

Energy gain (MeV/m)

Energy range: 160 MeV – 732 MeV 5 cell cavities Geometrical β : 0.65 Maximum energy gain: 19.4 MeV/m 54 cavities (9 cryomodules) Length of medium β section: ~110.35 m

High β cryomodule

Energy range: 732 MeV – 4 GeV 5 cell cavities Geometrical β : 1 Maximum energy gain: 25 MeV/m 152 cavities (19 cryomodules) Length of medium β section: ~286.2 m

3. SPL options

High Power proton beams (HP-SPL)

- Replacement of klystron power supplies, upgraded infrastructure (cooling & electricity, etc.)
- Addition of 5 high β cryomodules to accelerate up to 5 GeV (π production for v Factory))

SC-linac (160 MeV \rightarrow 5 GeV) with ejection at intermediate energy

SLHC

Beam characteristics of the main options

e+/e- acceleration

LHeC: 20 GeV e+/e- from the SPL (5-pass acceleration in the β =1 section) as a preinjector for a lepton ring in the LHC tunnel (Ring/Ring option)

20

THANK YOU FOR YOUR ATTENTION!

High power proton applications

ISOLDE & EURISOL

R. G.

25 June, 2009

Neutrino Factory

