The SPL: basic parameters for HOM simulations

F. Gerigk for the SPL study group SPL HOM workshop, CERN, 25.06.2009

http://www.cern.ch/project-spl

Outline

- introduction,
- SPL staged construction,
- main parameters,
- HOM parameters & input for simulations,

SPL construction, stage 1:

Linac4 (160 MeV)

352.2 MHz

- Iow-power (<5 kW), Iow duty cycle (0.1%) PSB injector</p>
- under construction and designed for high duty cycle (HP-SPL),
- tunnel can be extended in a straight line for the SPL,
- radiation protection and civil engineering works foresee highduty cycle operation (up to 10%),
- start of operation foreseen for 2014,

SPL construction, stage 2:

LP-SPL (4 GeV)

- construction of Low-Power SPL together with PS2,
- main users: PS2 (LHC), ISOLDE upgrade, EURISOL-0 (?),
- operation in 2020

kinetic energy	4 GeV
beam power (@ 4 GeV)	0.14 MW
repetition rate	0.6 - 2 Hz
pulse length	0.9 ms
average pulse current	20 mA
protons p. pulse	1.1 10 ¹⁴
length (SC linac)	427 m

SPL construction, stage 3:

HP-SPL (5 GeV)

352.2 MHz

704.4 MHz

- addition of klystrons,
- cavities from 4 to 5 GeV,
- replacement of all modulators,
- upgrade of electric/cryogenic infrastructure,
- possible high-power users: EURISOL, neutrinos, LHeC,
- possible start of operation: 2020

kinetic energy	5 GeV
beam power	3-8 MW
repetition rate	50 Hz
pulse length	up to 1.2 ms
average pulse current	0-40 mA
protons p. pulse	1.5 10 ¹⁴
length (SC linac)	502 m

low-beta cryo-module

high-beta cryo-module

doublet focusing, 8 cavities (704 MHz) per cryo-module

S

operation type	low-power	high-power low-current	high-power high-current
E [GeV]	4	2.5 (or 5)	2.5 (and 5)
P _{beam} [MW]	0.192	3 (6)	4 (+4)
f _{rep} [Hz]	2	50	50
l _{average} [mA]	0-20	0-20	0-40
t _{pulse} [ms]	≤0.9	≤1.2	≤0.8 (+0.4)
Nprotons/pulse [10 ¹⁴]	≤1.1	≤1.5	≤2 (+1)
main user	PS2/ISOLDE	PS2/neutrinos/ EURISOL	PS2/neutrinos/ EURISOL
		+ LHeC (tbd)	

HOM parameters

HOM frequency scatter

beam current (safety factor & fluctuations) (R/Q)Q

SPL HOM parameters, 25 June 2009, F. Gerigk

Collection of SPL HOM data

HOM parameters

Monopole modes in SPL cavities

mode	frequency [MHz]	(R/Q)† [Ω]	<u>Comment</u>	Time stamp				
low beta section: β=0.65, 5-cell cavity								
TM _{010,4/5π}	703.7	1	HFSS	28 May 2009				
TM _{010,π}	704.4	318	HFSS, accelerating mode	28 May 2009				
TM _{011,3/5π}	1765	3	HFSS	28 May 2009				
TM _{011,4/5π}	1774	4	HFSS	28 May 2009				
high beta section: β=1.0, 5-cell cavity								
TM _{010,π}	704.5	525	HFSS, accelerating mode	28 May 2009				
TM _{011,4/5π}	1328	37	HFSS	28 May 2009				
TM _{011,π}	1332	137	HFSS	28 May 2009				
TM _{021,π}	2090	25	HFSS	28 May 2009				

† linac definition

Dipole modes in SPL cavities

mode frequency [MHz] (R/Q) [Ω] Comment Time stamp

Cornell study: M. Liepe (TTC 6/09)

- Deformation of cavities due to tuning of the fundamental mode frequency,
- assuming ± 1MHz error after fabrication ⇔ ± 1/16 mm random deformation of all cavity dimensions,
- Cornell ERL 7-cell cavity, 1300 MHz

Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE)

Example: Cavities with +-1/16 mm Deformations

Cornell Laboratory for

Example of Trapping of HOMs in Deformed Accelerator-based Sciences and Education (CLASSE) Cavities: 3.06 MHz mode in cavity type #3

In cavity #n: Q = 3.6.106

Matthias Liepe

SPL HOM parameters, 25 June 2009, F. Gerigk

HOM frequency scatter

- Cavity shape deformations introduce HOM frequency scatter (good) but also variations in (R/Q) and Q (bad).
- Factors of 10 to 100 have been observed at TTF/FLASH and JLAB.
 - explains differences in calculated (R/Q) values for Tesla cavities by different teams,
 - safety factor of 10 (for Q x (R/Q), or the beam current) seems reasonable!
- HOM scatter in FLASH/TTF: between 1-10 MHz, 3 MHz measured (in all FLASH cavities) for dipole mode at 1.7 GHz,
 - I MHz scatter for 704 MHz SPL cavities seems to be a reasonable value,

Bunch charge fluctuations

- Iongitudinal plane: bunch charge jitter drives HOM voltage build-up for frequencies outside of machine lines
 - so far we have assumed 10% random variation (bunch to bunch),
 - 10% seems realistic (SNS, expectations for Linac4), but how random is the change?
 - \rightarrow no-one has bunch to bunch measurements.
- transverse plane: HOM voltage build-up outside of machine lines is driven by the changing amplitudes (transverse position of bunches),
 - bunch charge jitter does not seem to change the picture (see talk of M. Schuh),

ISIS H- source test stand

ISIS H- source test stand

5 pulses

5 pulses

ISIS H- source test stand

current [mA]

SPL HOM parameters, 25 June 2009, F. Gerigk

bunch charge fluctuations

 ISIS measurements indicate that the fluctuations take place with a high frequency (MHz range),

➡10% in amplitude is confirmed,

assumption of random fluctuation seems realistic, though the measurement data will be analysed in more detail (~1000 data sets are available),

more data from different source types needed!!

Conclusions

- HOM characteristics for SPL cavities are available but subject to change when beam pipe apertures, irises, etc are defined,
- safety factor of 10 for (R/Q)*Q (or the current) seems justified because of (R/Q)*Q changes during the cavity tuning
- bunch charge fluctuations need more experimental data, for now the assumption of a random 10% variation (bunch to bunch) seems not too bad.