

Barcelona, Spain – 7th November 2016

Conductor Activity within EuroCirCol

B. Bordini

EuroCirCol WP5 Workshop

Wire procured in 2016

• Received 53 km of 1 mm RRP wire

• Wire from 4 billets 120/127 and 5 billets 150/169

• The sub-element size is about: 62-64 μm for the 120/127; and and 54-55 μm for the 150/169

7th November 2016

Wire procured in 2016 Critical Current Density at 16 T (peak field)

7th November 2016

R١

Wire procured in 2016 **Residual Resistivity Ratio**

Required Target value > 80 (used diffusion barrier with inclusions)

7th November 2016

RN

Cable I_c vs. Transversal Load CERN Sample Holder Conceptual Design

- Sample holder for testing superconducting Rutherford cables under transverse load of up to 250 MPa on a 10 mm wide cable in the existing FRESCA test station.
- The high pressure region of the sample holder will extend over the entire 700 mm field uniformity length in FRESCA

- The transverse pressure is provided by using the bladder and key method to create pre-stresses at room temperature.
- The final pressure is reached due to difference in thermal contraction in the different materials in the sample holder

ltem	Material	E Young (GPa)		R _{p,0.2} (MPa)		αΔΤ
		293 K	4.2 K	293 K	4.2 K	(mm/m)
Shell	Al 7075	73	80	480	690	4.0
U-cage	Ti6Al4V	110	130	700	1000	1.7
Pads	Ti6Al4V	110	130	700	1000	1.7
Cable	Nb ₃ Sn	30	42	-	-	3.9

7th November 2016

7th November 2016

Conductor Activity Within EuroCirCol - B.Bordini

EuroCirCol 10

Conductor Activity Within EuroCirCol - B.Bordini

EuroCirCol 11

Cable I_c vs. Transversal Load **TWENTE Sample Holder**

Electromagnetic press

- Double NbTi pancake; *F*_{max} = 260 kN
- Steel + 50 μ m kapton anvil; (45×15.2) mm² , σ_{max} = 340 MPa

H.H.J. ten Kate et al, IEEE Trans. Appl. Supercond. 1993

Courtesy of Mark Dhalle

Cable I_c vs. Transversal Load Test at TWENTE on a RRP cable (11 T project)

1% fully reversible reduction at 150 MPa

No irreversible Degradation until 220 MPa

Powerful and Rapid Test Set-Up for Cables; Relatively Short Samples; Significant field gradients

Courtesy of Mark Dhalle

Wire I_c vs. Transversal Load **UNIGE sample holder**

Extremely Rapid and Versatile Test Set-Up for Superconducting Wires

Courtesy of Carmine Senatore

7th November 2016

Irreversible stress limit above 200 MPa

Irreversible stress limit at the same level as PIT wires, ~130 MPa

Extremely Rapid and Versatile Test Set-Up for Superconducting Wires

Courtesy of Carmine Senatore

7th November 2016

Characterization of Nb₃Sn Under

Transversal Stress – on going activity 1/2

- To get more independent and efficient, the superconductor laboratory at CERN has bought and commissioned:
 - > A DAQ system to read the strain gages of the cable sample holder
 - A pump to pressurize the bladder
- AT CERN a 10 mm wide cable based on 18 PIT wires (1 mm in diameter) was tested
 - The critical current values are similar to what already published*
 - It was also found that the PIT cable was in reversible regime at least till 135 MPa

• At CERN four 10 mm wide cable samples are in preparation:

- > 2 samples based on a 1 mm RRP wire (FRESCA2 wire)
- 2 samples based on 1 mm PIT wire (FRESCA2 wire)

*IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 24, NO. 3, JUNE 2014

Characterization of Nb₃Sn Under Transversal Stress – on going activity 2/2

- The same cables in preparation at CERN, will be shipped at TWENTE
 - > Starting from January TWENTE will start working on the sample preparation and testing \rightarrow comparison CERN/TWENTE results
- In July UNIGE has received 40 m of PIT wire:
 - > 1 mm FRESCA2 wire: 10 m round; 10 m 15% rolled
 - > 0.85 mm High-Lumi wire (old, no bundle barrier): 10 m round; 10 m 15% rolled
- UNIGE has reacted the 1 mm wire and started the critical current measurements on the round wire

Conclusions

- CERN has procured 53 km of the 1 mm RRP wire for the ERMC and RMM program
- Started the study of the performance of Nb₃Sn as a function of the transversal load
 - CERN has upgraded its set-up and tested a 10 mm wide PIT cable
 - Four cable samples (two RRP and two PIT) are in preparation at CERN;
 - 1. 10 mm wide cables based on 18 FRESCA2 wires (1 mm in diameter)
 - Starting from January 2017, TWENTE will start the preparation of samples of the same 10 mm wide cables
 - UNIGE started the preparation and test of the 1 mm PIT wire: both the round and the 15% rolled wire

