The Swiss Contribution – First CCT Design Considerations

EuroCirCol WP5-CM 16 Bernhard Auchmann, PSI/CERN with contributions from PSI: C. Calzolaio, R. Deckardt, R. Felder, C. Hug, M. Negrazus, S. Sanfilippo, S. Sidorov and LBNL: L. Brouwer, S. Caspi

Towards a EuroCirCol Design

- 1. Prove that a large Rutherford cable can be wound CCT-style around a 50-mm aperture.
- 2. Provide design following strictly EuroCirCol criteria.

Windability

- The ideal CCT magnet places the cable radially on the mandrel.
- This approach induces moderate hardway bend on the midplane, and strong hardway bend (bending rad. ~ mandrel rad.) on the pole.
- A tilted-racetrack-shaped solution exists that has zero hardway bend (and a discontinuity on the midplane).
- Assumption: We can use an interpolation between the radial solution (around the midplane) and the tilted solution on the pole to improve windability.

Winding Test 1-3

• Conclusion: A very wide cable like the LD1 cable (1.38 mm x 22 mm) can be wound into a 56-mm ID channel (50-mm mandrel clear bore).

V2 vs. V1

- Correction of the J_c degradation (V1 Jc was 3% too low; thanks to D. Schörling for helping to debug).
- Current margins reduced from 100% to 70% in the outer layers to match cosine-theta design.
- Ongoing work and caveats:
 - Multipole variation without further optimization is 20 units b_2 , 13 units b_3 .
 - 3-D peak field calculation under way, may lead to increase in B_{peak} .
 - Minimum rib thickness to be confirmed by production tests.
 - Computation of physical length vs. magnetic length under way.

Results v2

- Coil data
 - Current: 18010 A

Layer #	n _s	cuNc	" n_{Turn}"	loadline marg.	current marg.	T _{peak} [K]	V _{grnd} [V]	J _{cu} [A/mm²]
1	28	0.85	17.5	14.2	104	290	930	1237
2	24	1.2	31.5	14.6	93	343	1028	1216
3	22	1.85	43.5	15.5	83	303	933	1115
4	20	2.75	54.5	16.1	71	325	931	1086

Conductor use

• Total: 9.49 kt

4578 magnets 8700 kg/m³ 1294 turns for 14.3 m magnetic length

- NonCu: 3.56 kt
- Cu: 5.93 kt
- Total inductance: 17.1 mH/m, Total energy: 3.1 MJ/m

Comparison with Cosine Theta

- Cos-theta can pack more x-section "turns" on the innermost layer.
- CCT has to use higher currents to achieve similar ampere-turns.
- CCT outer-layer conductor length grows with radial position.
- CCT tilted-helix winding increases SC use by ~10%.
- CCT has larger stored energy \rightarrow needs more copper.
 - Note the field pattern. CT field lines more compact \rightarrow lower energy.
 - Roughly same peak fields.

26 turns in cos-theta vs. 17 "turns" in CCT on Layer 1 11 kA in cos-theta vs 18 kA in CCT

Mechanical Model 2D

- CCT does not require azimuthal prestress.
- Radial prestress on the midplane provided by "scissor" laminations.

SUPERCONDUCTING COIL COMPRESSION BY SCISSOR LAMINATIONS

Albert Ijspeert, Jukka Salminen, CERN, Geneva, Switzerland

V2 Mechanical Model 2D

- Update wrt. V1:
 - Al shrink cylinder instead of SS shell.
 - Optimization of loading.
 - Updated E-moduli.
- Next steps:
 - Finish 3-D periodic model with load transfer from Opera 3D.
 - Optimize external structure.

• Shell: 5-cm-thick torus to provide enough stiffness pushing on the off-center laminations.

• Future work: more sophisticated shape on ID can potentially minimize stress peak on midplane.

- Former:
 - Stress limit of Al-Bronze at cryogenic temperature not known. Room-temperature limit 250-310 MPa.
 - Steel structure to be studied.

- Conductor:
 - Very low stresses at room-temperature thanks to AI shell.
 - 115 MPa coil stress at 16 T. To be confirmed and investigated in 3D model!

A PSI-built Technology Model

- CCT HFM technology is still young much needs to be tried out.
- CCT is a small-lab friendly technology.
- LBNL strongly support our endeavor with weekly counsel, exchange between labs, and, if required, use of facility.
- Some ingredients of a PSI 2-layer high-field CCT magnet:
 - wide aspect-ratio cable.
 - if possible, inclined winding on small diameter.
 - thin spar (inner tube) and external mechanical structure.
 - study of alternative protection strategies.
- Important upcoming decisions: Nb-Ti or Nb₃Sn and coil ID.
 - Nb-Ti: No reaction, simpler insulation, harder winding, risk of worse performance of potted magnet (lower enthalpy margin).
 - Nb₃Sn: Closer to FCC goals (strain sensitivity), LBNL experience and support, relatively simple reaction, larger risk of conductor damage, 10-T is a much larger step into the unknown.

Nb-Ti Winding Test @ LBNL

- Preliminary conclusion: much harder to deform plastically than Nb₃Sn.
 - Cable provided by CERN.
 - "The hog wire".

 To be repeated next week at PSI with appropriate winding table.

First PSI Winding Test

• With support from LBNL and CERN:

- 11-T cable (provided by CERN) on 56-mm ID.
- Confirmed LBNL winding tests. Inclined channels make a magnet with 11-T cable appear a realistic option.

Summary

- Improvement in efficiency with respect to V1.
- Still 25% more SC than cosine theta.
- Steady progress on 3D magnetic and mechanical modeling.
 - L. Brouwer from LBNL at PSI for coming 2 weeks.
 - Work on 3D quench modeling is starting as well.
- Should PSI provide input to the cost model?
- Focus shifting to manufacturing issues for PSI technology model.
- A PostDoc and a PhD will start on December 1st.
- Highly motivated team at PSI with LBNL support as well as CERN guidance and support.

THE END

A 10-T CCT with 11-T Cable?

- 10 T@15 kA with 22% loadline margin, 115% current margin.
- 100 m unit length (40 IL, 60 OL)
- 20 ms protection budget (or EE with 25 ms delay).

	B _{peak}	Loadline	Temperature	Current
Layer 1	10.2 T	22.0404%	5.20042 K	115.874%
Layer 2	8.67524 T	30.4575%	6.58488 K	180.66%

