

16 T Nb₃Sn block dipole EuroCirCol

Clément Lorin, Maria Durante, Michel Segreti

08 nov 2016

Barcelona

Acknowledgments: All WP5 members,

Helene Felice (CEA), Susana Izquierdo-Bermudez, Etienne Rochepault, Paolo Ferracin (CERN)

Eurocircol Design evolution

Quantity	old baseline	ASC2016	v20ar	Unit	(B) (T)
strand diameter	1.1 - 0.7	1.1 – 0.7	1.155 – 0.705	mm	16.55 15.68 14.81 13.95
nb of strands	24 – 37	24 – 39	21 – 35	N/A	13.08 UIU DASEIII 12.22 11.35
width	13.85	14.25	13.05	mm	10.48 9.622 8.755 7.889
average thickness	2.0 - 1.25	2.0 - 1.25	2.1 – 1.25	mm	7.023 6.157 5.290 4.024
Cu/nonCu	1.0 - 1.0	0.8 - 1.6	0.8–2.3	N/A	3.559 2.692 1.826
I _{nom}	8470	10930	10990	А	0.993 0.093 ROXIE 102 125 135 145 155 165 175 185 195 B (7)
B _{peak}	16.56	16.81	16.74	Т	16.81 15.93 15.05 14.17
LL margin (1.9 K)	16.8	13.95	14.01	%	13.28 12.40 11.52
Inductance diff. (2 ap)	88.19	48.06	39.80	mH/m	10.94 9.760 8.878 7.995
Stored energy (2 ap)	3340	3016	2518	kJ/m	7.113 6.231 5.349 4.467
Nb of turns	153 = 2+3+9+9 +32+32+33+33	114 = 3+3+9+9 +22+22+23+23	104 = 5+5+10+10 +18+18+19+19	-	3.585 2.702 1.820 0.938 0.656
Fx & Fy (per ½-coil)	8817 & -3703	8473 & -3572	8042 & -3347	kN/m	ROXIE 102 125 135 145 155 165 175 185 195 16.72 15.85 14.98
Hotspot	310	348	349	К	14.10 13.23 12.36 12.36 12.36 12.36
Bore thickness	6.0	6.3	1.75	mm	10.61 9.746 8.874
Midplane shim	2.0	1.45	1.75	mm	8.001 7.129 6.256 5.384
Ldxl (1 aperture)	373	263	218	HA/m	4.511 3.639 2.766
I/Ic HF-LF	-	-	0.47 - 0.61	-	
Conductor area (2 ap)	190	151.9	133.7	cm²	100 1/5 185 195 100 1/5 185 195
4578 x 14.3 x 8.7 weight	10820	8652	7614	tons	insulation = 0.15 mm
		↗	7		_

margin&cnc drop

bore tip th. decrease

Eurocirco Version v20ar – Emag 1/2

Δy1 [mm]	Δy2 [mm]	B [T]	b3	b5
+ 0.0	+ 0.0	16.0	2	3
- 0.5	+ 0.0	16.05	21	8
- 0.5	- 0.5	16.12	16	7
- 1.0	- 0.5	16.17	34	11
- 1.0	- 1.0	16.23	29	11

 2 turns (in red) could potentially be saved 133.7 cm² -> 131.5 cm²
 1.65 % or 125 tons

I have not managed to find a way to recover the harmonic content while keeping the field saving.

RELATIVE MULTIPOLES (1.D-4) 10000.00000 b 2: -11.13264b 3: 2.50314 -0.38669 b 5: 3.43328 b 6: -0.01247b 4: b 7: -1.93500 b 8: -0.00039 b 9: -1.38595

Cea Eurocirco Version v20ar – Emag 2/2

- Rod hole: size and positioning not yet defined (Axial loading).
- So far: 45 mm in diameter/223 mm and 63° wrt the aperture
- If closer to the ap. or bigger in diameter -> field drop to compensate...

Basic approach:

- ~Fz = 2518 kN/side
- Yield strength ss316LN: 930 MPa [MPA = N/mm²]
- 30 mm in diameter for 4 rods
- Margin: yield strength 450 MPa -> 42 mm

Mechanical parameters

• Young modulus modifications

[GPa]	New baseline 7oct16			Old baseline			
Temp	300 K	4.2 K	direction	300 K	4.2 K	direction	
Nb ₃ Sn	25* +10	27.5	azimuthal/hori	44	44	azimuthal/hori	
Nb ₃ Sn	30 +20%	33	radial/verti	52	52	radial/verti	
Ti6Al4V	115	126.5	isotrope	130	130	isotrope	

measured values 20 GPa instead of 25 GPa

Structure overview

- 63 mm thick shell
- 750 µm ←
- 50 µm ↓
- 1.75 mm thick bore tip
- Contacts/symmetry:
 - sliding; 0.2 friction
 - glued: coils with pole vertically and with shoes
 - rail is a block for rigidity

Coil stress distribution

• Where is the 200 MPa limit coming from? comparison measurements vs simulation with... von Mises

Eur: CirCol

Coil peak stress [MPa]

MPa	Кеу	Cool-down	16.0 T	16.8 T
von Mises stress	121	196	175	177
σIII (close to σx)	135	210	196	196
contact traction			+8	-7

Aluminum shell

 Rp0.2
 RT
 cold

 AL 7075
 480 MPa
 690 MPa

von Mises

Key

Cold – 4.2 K

Euro CirCol

Rpp0.2RTcold/tensionMagnetil180 MPa723 MPa/200 MPa

Key

Eur CirCol

Cold – 4.2 K

16.8 T (105% nominal)

Iron pad1

Cold – 4.2 K

Eur CirCol

R_{p0.2}

von Mises

tension max

I

Б

Magnetil

RT

180 MPa

Key

cold/tension

723 MPa/200 MPa

.156E+09

.178E+09

.200E+09

MN DMX =.421E-03 DMX =.349E-03 DMX = .501E - 04MN MN SMN =4678.81 SMN =3239.37 SMN =3375.83 MX SMX =.670E+09 SMX =.492E+09 SMX =.664E+09 4678.81 3239.37 3375.83 .744E+08 .738E+08 .547E+08 .109E+09 .148E+09 .149E+09 .221E+09 .223E+09 .164E+09 .295E+09 .219E+09 .298E+09 .274E+09 .369E+09 .372E+09 .328E+09 .443E+09 .447E+09 .383E+09 .517E+09 .521E+09 .590E+09 .438E+09 .595E+09 .664E+09 .492E+09 .670E+09 DMX = .349E - 03DMX = .421E - 03DMX =.501E-04 SMX =.456E+09 SMX =.566E+09 SMX =.320E+09 0 0 0 .507E+08 .629E+08 .356E+08 .101E+09 .126E+09 .712E+08 .152E+09 .189E+09 .107E+09 .203E+09 .251E+09 .142E+09 .253E+09 .314E+09 .178E+09 .304E+09 .377E+09 .214E+09 .355E+09 .440E+09 .249E+09 .405E+09 .503E+09 .285E+09 .456E+09 .320E+09 .566E+09 DMX = .421E - 03DMX =.349E-03 SMX =.566E+09 SMX =.456E+09 0 0 .222E+08 .222E+08 .444E+08 .444E+08 .667E+08 .667E+08 .889E+08 .889E+08 .111E+09 .111E+09 .133E+09 .133E+09

.156E+09

.178E+09

.200E+09

Iron pad2

cold/tension RT Magnetil 180 MPa 723 MPa/200 MPa

Eur CirCol

tension max

б

 $R_{p0.2}$

Titanium pole

Eur CirCo

Cea Eurocirco Block magnet comparison

	Bore	Pole tip	displace	ment [µm]	∆disp [µm]	Strai	n [µm/m]	Δε [μm/m]	∆ε/∆disp	Material pro	perties
Magnet	field [T]	thickness [mm]	cold	powering	pow-cold	cold	powering	pow-cold	[με/μm]	Nb3Sn	Ti-6Al-4V
ECC block v20ar	16.8	1.75	-198	-49	149	-5887	-1580	4307	29	ECC (E~25;30;27.5;33 GPa)	116 GPa / 126.5 GPa
ECC block v19ar	16.8	1.75	-169	-57	112	-5231	-1598	3633	32	LARP (E~44 GPa,52 GPa)	130 GPa / 130 GPa
ECC block v18ar	16.8	1.9	-162	-50	112	-4558	-1019	3539	32	LARP (E~44 GPa,52 GPa)	130 GPa / 130 GPa
ECC block v17ar	16.8	2	-167	-55	112	-4436	-955	3481	31	LARP (E~44 GPa,52 GPa)	130 GPa / 130 GPa
ECC block v16ar	16.8	6.3	-179	-72	107	-4878	-1272	3606	34	LARP (E~44 GPa,52 GPa)	130 GPa / 130 GPa
Fresca2	13	5	-304	-140	164	-5048	-2480	2568	16	LBNL (E~44 GPa,44 GPa)	100 GPa / 120 GPa
Fresca2	13	6.5	-306	-142	164	-5051	-2481	2570	16	LBNL (E~44 GPa,44 GPa)	100 GPa / 120 GPa
Fresca2	13	8	-307	-141	166	-5058	3 -2472	2586	16	LBNL (E~44 GPa,44 GPa)	100 GPa / 120 GPa
Fresca2	15	8	-409	-190	219	-7187	-3778	3409	16	LBNL (E~44 GPa,44 GPa)	100 GPa / 120 GPa
Fresca2	13	16	-232	-101	132	-3931	-1042	2889	22	LBNL (E~44 GPa,44 GPa)	100 GPa / 120 GPa
RMM_graded_v21_d	16	1	-174	-56	118	-4617	-1071	3546	30	LBNL (E~44 GPa,44 GPa)	110 GPa / 120 GPa
RMM_graded_v21_c	16	2	-173	-55	118	-4666	-1056	3610	31	LBNL (E~44 GPa,44 GPa)	110 GPa / 120 GPa
RMM_graded_v21_b	16	4	-171	-55	116	-4757	-1115	3643	32	LBNL (E~44 GPa,44 GPa)	110 GPa / 120 GPa
RMM_graded_v21_a	16	6	-168	-58	111	-4832	-1245	3587	32	LBNL (E~44 GPa,44 GPa)	110 GPa / 120 GPa
HD3	14	1.65	-134	-51	83	-3690	-667	3023	36	LARP (E~44 GPa,52 GPa)	110 GPa / 120 GPa

ECC displacement and strain impacted by material properties not by bore tip thickness

RMM_graded and ECC similar behavior with similar properties

Fresca2 biggest displacement – HD3 smallest displacement...

HD3: Helene Felice (CEA) RMM_graded: Susana Izquierdo-Bermudez (CERN) Fresca2: Etienne Rochepault, Paolo Ferracin (CERN)

EurocirCol HD2 training

Recent Test Results of the High Field Nb₃Sn Dipole Magnet HD2

P. Ferracin, B. Bingham, S. Caspi, D. W. Cheng, D. R. Dietderich, H. Felice, A. R. Hafalia, C. R. Hannaford, J. Joseph, A. F. Lietzke, J. Lizarazo, G. Sabbi, X. Wang

Fig. 5. Bore field (T) as a function of training quenches. The short sample limit of 15.6 T bore field corresponds to a coil peak field of 16.5 T.

Fig. 10. Cross-section cuts of HD2 coil #1 in the center of straight section (top) and close to the beginning of the hard-way (bottom).

Fig. 7. Left: cross-section of coil layer 1 and layer 2 in the straight section. Right: side and top view of the coil. All the recorded training quenches occurred in the layer 1 pole turn, in the last 100 mm of the straight section, before the hard-way bend (areas comprised between dashed lines).

retested as under different pre-load conditions. The removal of the bore tube determined an increase of the coil clear aperture from 36 mm to 43 mm. The magnet reached a maximum bore field of 13.4 T after 46 quenches: no correlation was found between pre-load levels and quench performance. Consistently with previous tests, the quenches were located on the pole turn of layer 1, at the end of the straight section. No quenches were detected in the central part of the straight section or in the ends (after the hard-way bend). The voltage tap signals identified a

bore tip thickness HD2: 0.85 mm

Margin 14% instead of 18% and cnc 0.8 instead of 1.0

- -> 20% conductor saving
- Bore tip thickness 1.75 mm instead of 6.3 mm
- -> 12% conductor saving
- Potential additional saving (2 turns):

EuroCirCo Conclusion

- 2D mechanics looks good but one of the pad:
- No show-stopper for a thin bore tip
 - Fresca2 tests will provide new interesting data
- Geometrical conductor dimension variations? Jc?
- Splices dimensions?

NEVER GIVE UP

Extra slides:

- -double aperture
- -3D ends
- -1 double-pancake design -critical Nb₃Sn surface
- -stress distribution (quench)

(1 slide)
(3 slides)
(4 slides)
(1 slide)
(8 slides)

Double aperture

- On going work (M. Segreti cast3m)
- Magnetic and mechanical ready. Not matched with v20ar so far.

Ba Eurocircol 3D ends – Return end

Tp HF cable ~ 98 mm Tp LF cable ~ 97 mm 99 mm arc splice length -> 163°arc angle

Cea Eurocirco 3D ends – Room for splices

- Splice length
 - R1 = 42 mm
 - R3 = 15 mm
 - Lo = 35 mm
- Lsplice = 100 mm
- Extra end length = 20 mm

Different splices (double pancake) Do we need room in-between the two coils?

Cea Eurocirco Single double pancake design

Quantity	old baseline	ASC2016	v20ar	v22ar
strand diameter	1.1 – 0.7	1.1-0.7	1.155 – 0.705	1.19 - 0.74
nb of strands	24 – 37	24 – 39	21 – 35	37-60
width	13.85	14.25	13.05	23.25
average thickness	2.0 - 1.25	2.0 - 1.25	2.1 – 1.25	2.15 - 1.35
Cu/nonCu	1.0 - 1.0	0.8 - 1.6	0.8– 2.3	0.8 – 2.25
I _{nom}	8470	10930	10980	19730
B _{peak}	16.56	16.81	16.74	16.70
LL margin (1.9 K)	16.8	13.95	14.01	14.35
Inductance diff. (2 ap)	88.19	48.06	39.80	12.32
Stored energy (2 ap)	3340	3016	2518	2532
Nb of turns	153 = 2+3+9+9 +32+32+33+33	114 = 3+3+9+9 +22+22+23+23	104 = 5+5+10+10 +18+18+19+19	56 = 5+10 +20+21
Fx & Fy (per ½-coil)	8817 & -3703	8473 & -3572	8042 & -3347	7675 & -3538
Hotspot	310	348	348	329
Bore thickness	6.0	6.3	1.75	1.75
Midplane shim	2.0	1.45	1.75	2.55
LdxI (1 aperture)	373	263	218	122
I/Ic HF-LF	-	-	0.47 - 0.61	0.44 - 0.60
Conductor area (2 ap)	190	151.9	133.7	134.0
4578 x 14.3 x 8.7 weight	10820	8652	7614	7633

Cea Eurocirco Single double pancake design

Cea Eurocirco Single double pancake design

2 block designs

CAST3M

The full analysis was performed by Michel Segreti

Normal stress distribution

σ xx distribution

Eurocircol 2 extrem cases 1/2

Tiina gives us the temperature distribution at each conductor after a quench

Peak gradient at the end t = 500 ms (gradient values almost constant from t = 400 ms to t = 500 ms)

Block	Temp [K] at the block interfaces t = 500 ms	Average Temp [K] in associated block t = 500 ms	15 17 19 21 23
1	74	75	16 4 18 20 22
2	73	74	
3	72	74	7 9 11 13 2
4	70	72	6 8 10 12 14
5	307	141	
6	186	141	3 5
7	182	154	2 4
8	179	157	

	Max gradient [K] at the block interfaces t = 500 ms
1-5	233 K
2-6	113 K
3-7	110 K
4-8	109 K

Hot spot localization (conductor 24) 40 5 42

Eurocirco 2 extrem cases 2/2

As the mechanical model is discretized from coil block (not from each conductor) \rightarrow 2 cases are studied for the mechanical computation after a quench:

Case a) The average temperature in each block is imposed \rightarrow especially to see the impact on SigmaXX

Case b) The temp at the block interfaces is imposed in each block (this correspond to the max temp gradient)

ightarrow especially to see the impact on SigmaXY

σxx distribution: no impact

Case a

σxy distribution: 50 % higher

Case a

Von Mises distribution

Case a

Stress in blocks	Collaring (MPa)	Cool-down (MPa)	Energization (MPa)	After quench	
				Case a	Case b
σ xx max	98	229	202	244	245
О уу тах	48	60	87	124	175
σ xy max	29	59	59	66	91
Von Mises max	90	225	204	237	238

As σ_{xx} max is the same in cases a and b \rightarrow it seams not necessary to discretize up to the conductor level for the mechanical computation after a quench

Questions:

- 1) What is the max acceptable compression stress in the coil blocks after a quench (150 MPa or 200 MPa)? The hot spot temp in one conductor is 307 K i.e. a little more than room temp
- 2) What is the max acceptable shear stress in the coil blocks at each main step and especially after a quench?

Eurocircol 50 mm aperture

Cable parameter	value	unit	
strand diameter	1.1-0.7	mm	
nb of strands	22 – 35	N/A	
width	12.86 - 12.86	mm	
average thickness	2.0 - 1.25	mm	
insulation	0.15	mm	
Cu/nonCu	0.8-1.9	N/A	
I _{nom}	10625	А	
B _{peak}	16.72	т	
LL margin (1.9 K)	13.8	%	
Inductance diff. (2 ap)	38.5	mH/m	
Stored energy (2 ap)	2295	kJ/m	
Conductor area (2 ap)	126.4	cm²	
Nb of turns	104 = 4+4+8+8 +19+19+21+21	-	
Fx (per ½-coil)	7771	kN/m	
Fy (per ½-coil)	-2971	kN/m	
Hotspot	348	К	
Wall thickness	0.3	mm	
MAIN FIELD (T) MAGNET STRENGTH (T/(m^(n-1	.))	- 16	.003346 16.0033
NORMAL RELATIVE MULTIPOLES b 1: 10000.00000 b 2: b 4: 0.87612 b 5: b 7: -2.03167 b 8: b10: -0.00001 b11:	(1.D-4): 16.77678 b 3: 4.23708 b 6: 0.00017 b 9: -0.31116 b12:	-1.59701 0.02142 -1.71466 -0.00000	

C22

Coil horizontal displacement

- Jc (1.9 K, 16 T) = 2245 A/mm²
- no cabling degr.
- C0 = 267845 AT/mm²

$$\begin{cases} J_{c} = \frac{C(t)}{B} b^{0.5} (1-b)^{2} \\ B_{c2}(T) = B_{c20}(1-t^{1.52}) \\ C(t) = C_{0}(1-t^{1.52})^{\alpha} (1-t^{2})^{\alpha} \end{cases}$$

where $t = T/T_{c0}$ and $b = B/B_{c2}(t)$ with *B* the magnetic flux density on the conductors. $T_{c0} = 16$ K, $B_{c20} = 29.38$ T, $\alpha = 0.96$, are fitting parameters computed from the analysis of measurements on the conductor.

- Similarly:
 - Jc (1.9 K, 16 T) = 2312 A/mm²
 - 3% cabling degr.
 - C0 = 275880 AT/mm²