Circuit protection aspects, CLIQ simulations and STEAM

Marco Prioli, L. Bortot, M. Maciejewski, A. Fernandez B. Auchmann, A. Verweij CERN, TE-MPE

Outline

- 1. Circuit protection aspects
 - Circuit protection @ FCC week 2016
 - Circuit layouts for the latest magnet designs
- 2. The STEAM project
 - New perspectives for circuit and quench simulations
 - Main STEAM features
 - First results of CLIQ simulations

Outline

- 1. Circuit protection aspects
 - Circuit protection @ FCC week 2016
 - Circuit layouts for the latest magnet designs
- 2. The STEAM project
 - New perspectives for circuit and quench simulations
 - Main STEAM features
 - First results of CLIQ simulations

Circuit protection @ FCC week 2016*

• Definition of the FCC powering sector (PS)

*Concepts for magnet circuit powering and protection (M. Prioli)

(Link)

Circuit protection @ FCC week 2016*

*Concepts for magnet circuit powering and protection (M. Prioli) (Link)

CĖRN

Circuit protection @ FCC week 2016*

• A string of magnets can *always* be protected, for any magnet design and given constraints, by adapting the number of circuits, so by subdividing a powering sector in multiple circuits

- Magnets can be compared analysing the resulting circuit complexity
 - Number of circuits N in one Powering Sector (PS)
 - 20N circuits for the entire machine

New magnets parameters

	Load line margin	Current @ B _{nom} [kA]	Differential inductance (2 apertures) [mH]	Stored energy @ I _{nom} (2 apertures) [MJ]
Cos-theta 28b38 v.5	18%	10.275	734	39
Cos-theta v22b	14%	11.23	566	38
Block coil v26cmag	18%	8.47	1265	45
Block coil v20ar	14%	10.99	571	36
Common coil v1h_intgrad	18%	9.025	1824	74
Common coil v1h2_1ac1	14%	16.80	287	43
Canted cos-theta	14%	18	254	44

|B| (T)

Common coil v1h2_1ac1

Circuits layouts for Cos-theta 18% LL*

N. of circuits per PS	1	2	3	4	6	8
N. of circuits entire FCC	20	40	60	80	120	160
Magnets per circuit	215	108	72	54	36	27
Inductance per circuit [H]	158	79	53	39	26	20
Stored energy per circuit [GJ] (<1.6) (>3)	8.3	4.2	2.8	2.1	1.4	1.0
Ramp time [min]	20	20	20	20	20	20
V _{PC} [V] (<500) (>1000)	1352	676	451	338	225	169
V _{FPA,max} [kV]	1.0	1.0	1.0	1.0	1.0	1.0
V _{FPA,max,fault} [kV]	3.3	2.6	2.4	2.3	2.2	2.2
τ _{circ} [s] (<150) (>250)	811	406	270	203	135	101
MIITS [A ² s]*10 ⁹ (<10) (>20)	43	21	14	11	7	5
A_{busbar} [mm ²], Δ T=300K	550	390	310	270	220	190

CERN

*Comparison of magnet designs from a circuit protection point of view (A. Verweij) (Link)

Circuits layouts for Cos-theta 14% LL

N. of circuits per PS	1	2	3	4	6	8
N. of circuits entire FCC	20	40	60	80	120	160
Magnets per circuit	215	108	72	54	36	27
Inductance per circuit [H]	122	61	41	30	20	15
Stored energy per circuit [GJ] (<1.6) (>3)	8.1	4.1	2.7	2.0	1.4	1.0
Ramp time [min]	20	20	20	20	20	20
V _{PC} [V] (<500) (>1000)	1139	570	380	285	190	142
V _{FPA,max} [kV]	1.0	1.0	1.0	1.0	1.0	1.0
$V_{\rm FPA,max,fault}$ [kV]	3.3	2.6	2.4	2.3	2.2	2.2
τ _{circ} [s] (<150) (>250)	684	342	228	171	114	85
MIITS [A ² s]*10 ⁹ (<10) (>20)	43	22	14	10	7	5
A_{busbar} [mm ²], Δ T=300K	550	390	320	270	220	190

Circuits layouts for Block coil 18% LL*

N. of circuits per PS	1	2	3	4	6	8
N. of circuits entire FCC	20	40	60	80	120	160
Magnets per circuit	215	108	72	54	36	27
Inductance per circuit [H]	272	136	91	68	45	34
Stored energy per circuit [GJ] (<1.6) (>3)	9.7	4.9	3.2	2.4	1.6	1.2
Ramp time [min]	20	20	20	20	20	20
V _{PC} [V] (<500) (>1000)	1920	960	640	480	320	240
V _{FPA,max} [kV]	1.0	1.0	1.0	1.0	1.0	1.0
$V_{\rm FPA,max,fault}$ [kV]	3.3	2.6	2.4	2.3	2.2	2.2
τ _{circ} [s] (<150) (>250)	1152	576	384	288	192	144
MIITS [A ² s]*10 ⁹ (<10) (>20)	41	21	14	10	7	5
A_{busbar} [mm ²], Δ T=300K	540	380	310	270	220	190

CERN

*Comparison of magnet designs from a circuit protection point of view (A. Verweij) (Link)

Circuits layouts for Block coil 14% LL

N. of circuits per PS	1	2	3	4	6	8
N. of circuits entire FCC	20	40	60	80	120	160
Magnets per circuit	215	108	72	54	36	27
Inductance per circuit [H]	123	61	41	31	20	15
Stored energy per circuit [GJ] (<1.6) (>3)	7.8	3.9	2.6	1.9	1.3	1.0
Ramp time [min]	20	20	20	20	20	20
V _{PC} [V] (<500) (>1000)	1124	562	375	281	187	141
V _{FPA,max} [kV]	1.0	1.0	1.0	1.0	1.0	1.0
V _{FPA,max,fault} [kV]	3.3	2.6	2.4	2.3	2.2	2.2
τ _{circ} [s] (<150) (>250)	674	337	225	169	112	84
MIITS [A ² s]*10 ⁹ (<10) (>20)	41	20	14	10	7	5
A_{busbar} [mm ²], Δ T=300K	540	380	310	270	220	190

Circuits layouts for Common c. 18% LL*

N. of circuits per PS	1	2	3	4	6	8
N. of circuits entire FCC	20	40	60	80	120	160
Magnets per circuit	215	108	72	54	36	27
Inductance per circuit [H]	392	196	131	98	65	49
Stored energy per circuit [GJ] (<1.6) (>3)	16.0	8.0	5.3	4.0	2.7	2.0
Ramp time [min]	20	20	20	20	20	20
V _{PC} [V] (<500) (>1000)	2952	1476	984	738	492	369
V _{FPA,max} [kV]	1.0	1.0	1.0	1.0	1.0	1.0
$V_{\text{FPA,max,fault}}$ [kV]	3.3	2.6	2.4	2.3	2.2	2.2
τ _{circ} [s] (<150) (>250)	1771	886	590	443	295	221
MIITS [A ² s]*10 ⁹ (<10) (>20)	72	36	24	18	12	9
A_{busbar} [mm ²], Δ T=300K	710	500	410	360	290	250

*Comparison of magnet designs from a circuit protection point of view (A. Verweij) (Link)

Circuits layouts for Common c. 14% LL

N. of circuits per PS	1	2	3	4	6	8
N. of circuits entire FCC	20	40	60	80	120	160
Magnets per circuit	215	108	72	54	36	27
Inductance per circuit [H]	62	31	21	15	10	8
Stored energy per circuit [GJ] (<1.6) (>3)	9.2	4.6	3.1	2.3	1.5	1.1
Ramp time [min]	20	20	20	20	20	20
V _{PC} [V] (<500) (>1000)	863	432	288	216	144	108
V _{FPA,max} [kV]	1.0	1.0	1.0	1.0	1.0	1.0
V _{FPA,max,fault} [kV]	3.3	2.6	2.4	2.3	2.2	2.2
τ _{circ} [s] (<150) (>250)	518	259	173	130	86	65
MIITS [A ² s]*10 ⁹ (<10) (>20)	73	37	24	18	12	9
A_{busbar} [mm ²], Δ T=300K	720	510	410	360	290	250

Circuits layouts for CCT 14% LL

N. of circuits per PS	1	2	3	4	6	8
N. of circuits entire FCC	20	40	60	80	120	160
Magnets per circuit	215	108	72	54	36	27
Inductance per circuit [H]	55	27	18	14	9	7
Stored energy per circuit [GJ] (<1.6) (>3)	9.6	4.8	3.2	2.4	1.6	1.2
Ramp time [min]	20	20	20	20	20	20
V _{PC} [V] (<500) (>1000)	819	409	273	205	136	102
V _{FPA,max} [kV]	1.0	1.0	1.0	1.0	1.0	1.0
V _{FPA,max,fault} [kV]	3.3	2.6	2.4	2.3	2.2	2.2
τ _{circ} [s] (<150) (>250)	491	246	164	123	82	61
MIITS [A ² s]*10 ⁹ (<10) (>20)	80	40	27	20	13	10
A_{busbar} [mm ²], Δ T=300K	750	530	430	370	300	260

Circuit protection aspects: conclusions

- For all magnet designs:
 - Reduction in the circuit complexity
 - The layout with 6 circuits per powering sector fulfils the largest number of constraints

	Cos-theta	Block coil	Common coil	Canted cos-theta
Circuit complexity	<u>.</u>	<u>.</u>	<u>.</u>	<u>.</u>
Circuit energy	\odot	\odot	\odot	\odot
Ramp-up, V _{PC}	\bigcirc	\bigcirc	\bigcirc	\bigcirc
FPA, τ_{circ}	\bigcirc	\bigcirc	\bigcirc	\bigcirc
FPA, MIITS	\bigcirc	\bigcirc	<u></u>	<u></u>

Outline

- 1. Circuit protection aspects
 - Circuit protection @ FCC week 2016
 - Circuit layouts for the latest magnet designs
- 2. The STEAM project
 - New perspectives for circuit and quench simulations
 - Main STEAM features
 - First results of CLIQ simulations

Outlook for circuit and quench simulations

- To understand if this proposal is feasible, circuit simulations are needed
 - Quenching magnet
 - CLIQ protection system
 - Lumped element model of the other magnets in the chain
 - Other components (e.g. Power Converter (PC), nonlinear switches)
 - ... Quench protection system, controller of Power Converter
- CLIQ introduces a coupling between circuit and quench simulations

Field-circuit coupling

Circuit model

Cadence PSpice

Field-circuit coupling

• Coupling scheme: Waveform Relaxation – Gauss-Siedel scheme

- Advantages
 - Multiple solvers with individual adaptive time stepping
 - No assumptions about current decay
 - No assumptions about field and inductance evolution
 - Convergence error under control

Field and Circuit automated workflows

 400 FEM domains* for common coil • Potentially 5000 elements for circuit (slide 15)

STEAM architecture

Motivation for simulation coupling:

Multi-physics

Multiple coupled physical domains

Multi-rate

• Time constants ranging from µs to minutes

Multi-scale

 Geometrical dimensions differ by several orders of magnitude µm to km

Cos-theta v22b

l _{tp} [mm]	14
ρ ₀ [ohm*m]	1.334e-10
ρ_1 [ohm*m/T]	4.2e-11

Cos-theta v22b

 C_{CLIQ} =20 mF, U_{CLIQ} =2 kV

• Current [A] and resistance $[\Omega]$ evolution

Coupling losses [W/m³]

200

150

100

50

Cos-theta v22b

$C_{\text{CLIQ}}=20 \text{ mF}, U_{\text{CLIQ}}=2 \text{ kV}$

• Temperature [K]

• Voltage to ground [V]

Block coil v20ar

 $C_{\text{CLIQ}}=20 \text{ mF}, U_{\text{CLIQ}}=2 \text{ kV}$

Current [A] and resistance
[Ω] evolution

Coupling losses [W/m³]

Block coil v20ar

 $C_{\text{CLIQ}}=20 \text{ mF}, U_{\text{CLIQ}}=2 \text{ kV}$

 $\begin{array}{c} \times 10^{3} \\ 0.4 \\ 0.2 \\ 0 \\ 0.2 \\ 0 \\ 0.2 \\ 0 \\ 0.2 \\ 0.4 \\ 0.2 \\ 0 \\ 0.2 \\ 0.4 \\ 0.2 \\ 0.4 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0.6 \\ 0.8 \\ 1 \\ 1.2 \\ -1.2 \\ -1.27 \times 10^{3} \end{array}$

474

Peak voltage to ground @ 110ms

• Temperature [K]

Voltage to ground [V]

٠

Common coil v1h2

 $2 \times C_{\text{CLIQ}} = 20 \text{ mF}, U_{\text{CLIQ}} = 2 \text{ kV}$

Current [A] and resistance
[Ω] evolution

Coupling losses [W/m³]

Common coil v1h2

$2 \times C_{\text{CLIQ}} = 20 \text{ mF}, U_{\text{CLIQ}} = 2 \text{ kV}$

• Temperature [K]

Voltage to ground [V]

Conclusions and future work

- A new tool for circuit and quench protection simulations
- First fully consistent CLIQ simulations
- Flexibility enables study of complex circuits/magnets without additional effort
- Next steps
 - Analyse a magnet quench in the full FCC circuit
 - Test new ideas for magnet powering: e.g. separate circuits for inner and outer layers, or subdivision diodes
 - Build two apertures model for all magnet designs
 - Optimize CLIQ configuration considering different current levels
 - Include heaters model
 - Share the tool with TAMPERE colleagues

