

Quench protection studies updated

Tiina Salmi (TUT)

With Antti Stenvall and Janne Ruuskanen (TUT) + the magnet designers in WP5 team!

> EuroCirCol Annual Meeting 8.11.2016 at ALBA, Barcelona

> > irCol

Outline

- 1. 40 ms protection delay at 105% of I_{nom}
- 2. Parametric analyses
- 3. Protection with heaters ($\cos\theta$)
 - Is the high current the most critical?
- 4. Failure scenarios and impact of uncertainties
- 5. Summary

Simulation methods

- Current decay and temperatures with Coodi
 - Adiabatic
 - Field map and inductance from ROXIE
 - Quench delays and propagation velocities are input
- Heater delays with CoHDA
 - 2-D simulation of heat conduction from heater to coil
 - Quench onset when cable temperature reaches T_{cs}
 - T_{cs} for cable maximum field, no degradation

1.40 ms uniform protection delay: Temperatures

Protection delay includes the detection, etc.

120.0

		<i>Т_{тах}</i> (К)	Δ <i>T</i> (incl. HS) (K)	Δ <i>T</i> (excl. HS) (K)	
	Cosθ	345	~140	~60	
	Block	356	~250	~80	
	CC*	353	~250	~120	
<u>16T_2:</u> 11790	<u>2b-37-optd6f</u> A, 20 mH/m/	<u>6</u> <u>V20a</u> ap ™ ∎ ¹⁹²⁰ 12040	<u>r</u>) A, 18 mH/m/ap	<u>V1h2</u> 15940 A, 32 mH/m/2-a	ıp
		160.0	T (K) 188.8 180.0 160.0	andu	winding and ict. tbc
Ы Ь		140.0	140.0	120.0	

1. 40 ms uniform protection delay: Voltages

0.0

-158.2

-800.0

-1011.5

5

-800.0

-1174.3

2. Parametric analysis with uniform delay <u>Time margin vs. current</u>

3. $\cos\theta$ protection with heaters

- Realistic heater design, but not optimized
- Similar to LHC, LARP and HL-LHC technology:
 - 25 μ m SS strips with Cu-plating
 - 75 µm polyimide insulation
- Strip width: 10-14 mm
 - Strips cover 70 turns out of 101
- HS length: 3-6 cm, period: 15-35 cm
 - HS cover 17-20% of turn length
- <u>P(t=0): 70 -100 W/cm², τ_{RC}: 30 ms</u>

Approximate heater strip locations

	HFU	450 V / 14 mF
	Strips / coil	24
	HFU circ. coil	8
	Stored E / 2 ap.	45.4 kJ *
	900 V units / 2 ap.	16
T. Sa	almi	11/8/2016 7

3. Hotspot temperature simulation assumptions

- 20 ms for quench detection (10+10ms)
- 20 m/s longit. NZPV, 10 ms turn-to-turn
 - QLASA: Average longit. 18 m/s, turn to turn: ~4-10 ms
 - Remember pre-heating from heaters!
- At lower current scaled proportionally to I_{mag}²

3. Results with heater based protection Hotspot temperature and voltages vs. Imag

- \Rightarrow High current the most critical
- \Rightarrow Protection at all currents
- \Rightarrow Very small margin at high current

4. Failure scenarios at 105%Inom

	Failing strip in all			V _{max} gnd	V _{max}	V _{max}
	coil halves	Strips failed	T_{max} (K)	(V)	turns (V)	layers (V)
	Nominal	0	341	1150	90	1120
Fail1	QH1B	4	349	1070	100	1250
Fail2	All IL QH's	8	355	1000	100	1380
Fail3	QH2C	4	346	1100	100	1200
Fail4	QH2C and QH3A	8	366	1160	110	1110
Fail5	QH4B	4	355	1800	100	1100

If 4 strips / magnet fail: T_{max} < 360 K

4. Uncertainties...

- Heater delays:
 - Assign heater delay to cable average field:
- Nominal: $\underbrace{\mathbf{T}_{max} = 341 \text{ K}}_{V_{max}}$ $\underbrace{V_{max} \text{ to gnd} = 1150 \text{ V}}_{V_{max}}$ $\underbrace{V_{max} \text{ btw turns} = 90 \text{ V}}_{V_{max}}$ $\underbrace{V_{max} \text{ btw layers} = 1120 \text{ V}}_{V_{max}}$
- <u>*T_{max}* = 364 K</u>, V gnd = 1290 V, turns = 100 V, layers = 1360 V
- Material properties:
 - Use MATPRO properties for current decay (NIST for heater delays):
 - <u>T_{max} = 356 K</u>, V gnd = 1480 V, turns = 110 V, layers = 1410 V
- Heater insulation:
 - Increase heater insulation to 100 μ m:

4. ... Uncertainties

- Quench propagation velocity:
 - NZPV longit. to 15 m/s:

Nominal: $T_{max} = 341 \text{ K},$ V_{max} to gnd = 1150 V, V_{max} btw turns = 90 V, V_{max} btw layers = 1120 V

- <u>*T_{max}* = 346 K</u>, V gnd = 1160 V, turns = 90 V, layers = 1100 V
- NZPV longit. to 15 m/s AND turn-to-turn speed to 15 ms:

<u>*T_{max}* = 353 K</u>, V gnd = 1110 V, turns = 90 V, layers = 1090 V

Not enough margin...

Not easy to find significant improvements with small changes, but Increasing NZPV longit to 40 m/s: T_{max} = 334 K... (Corrisponds to halving the periods)

- Tmax vs. protection delay quite similar in all magnet options
 - Time margin 40+/-2 ms in all options to 350 K at 105% Inom
 - Time margin increases exponentially at low current (340-400 ms at 50% I_{nom})
- In cosθ heater-based protection shows potential, but a large number of HFU's may be needed for the redundancy and margin
- To explore next: Heaters + CLIQ
 - Heaters to complement CLIQ, analysis needed at all current levels
 - Waiting to use STEAM for this analysis

Appendix: Heater design

	Peak power, RC time constant	HS length /	/ Strip wid [.]
QH3, QH2C	70 W/cm ² , 30 ms	6/30 cm	10 mm
QH4	100 W/cm ² , 30 ms	6/35 cm	14 mm
QH1 and QH2A-B	70 W/cm ² , 30 ms	3/15 cm	10 mm

4 HFU circuits:

- 1B || 1A || 2A || 2B
- 2A || 3A || 3B || 3C
- 4A || 4B
- 4C ||4D

