The anomalous magnetic moment of the muon: theoretical determination of hadronic contributions

Giancarlo D'Ambrosio

INFN Sezione di Napoli

Work in collaboration with Luigi Cappiello Oscar Catà and David Greynat

The hadronic light by light contribution to the (g-2)_(muon} with holographic models of QCD.P.R.D83:093006,2011. : arXiv:1009.1161C69 (2010) 315

and work in progress

Outline

• g-2

- summary of experimental results
- status of hadronic contributions
- Ight by light contributions, theoretical models
- Three-point functions $\pi^0 \rightarrow \gamma^* \gamma^*$, hadronic contribution (light by light)
- Melnikov-Vainshtein model leading log approx
- Our work in progress

Precision physics=>solid theory

 Accurate theoretical calculation required by 0.5% measurement in 1946=> QED and Shwinger calculation

Linear response of a charged lepton to an external electromagnetic field

$$egin{aligned} &\langle \ell;p\,'|J_{
ho}(0)|\ell;p
angle &\equiv &ar{\mathsf{u}}(p\,')\Gamma_{
ho}(p\,',p)\mathsf{u}(p)\ &=ar{\mathsf{u}}(p\,')iggl[m{F_1}(k^2)\gamma_{
ho}+rac{i}{2m_\ell}m{F_2}(k^2)\sigma_{
ho
u}k^
u-m{F_3}(k^2)\gamma_5\sigma_{
ho
u}k^
u+m{F_4}(k^2)(k^2\gamma_{
ho}-2m_\ell k_{
ho})\gamma_5iggr]\mathsf{u}(p) \end{aligned}$$

(Lorentz invariance + conservation of the electromagnetic current J_{ρ})

$$\begin{array}{lll} F_1(k^2) & \to & \text{Dirac form factor}, \ F_1(0) = 1 \\ F_2(k^2) & \to & \text{Pauli form factor} \ \to \ F_2(0) = a_\ell \\ F_3(k^2) & \to & \ P, \ T, \ \text{electric dipole moment} \ \to \ F_3(0) = d_\ell/e_\ell \\ F_4(k^2) & \to & \ P, \ \text{anapole moment} \end{array}$$

$$egin{aligned} G_E(k^2) &= F_1(k^2) + rac{k^2}{4m_\ell^2}F_2(k^2), \ G_M(k^2) &= F_1(k^2) + F_2(k^2) \ \ oldsymbol{\mu}_{oldsymbol{\ell}} &= g_\ell \left(rac{e_\ell}{2m_\ell c}
ight) \, {f S} \,, \ {f S} &= \hbar \, rac{oldsymbol{\sigma}}{2} \, g_\ell = g_\ell^{
m Dirac} imes G_M(0) \end{aligned}$$

At tree level, $F_1=1,~F_2=F_3=F_4=0$, $g_\ell=g_\ell^{
m Dirac}\equiv 2$

The anomalous magnetic moment a_{ℓ} is induced at loop level $\left(a_{\ell} \equiv \frac{g_{\ell} - g_{\ell}^{\text{Dirac}}}{g_{\ell}^{\text{Dirac}}}\right)$

 a_ℓ probes the contributions of quantum loops from SM and BSM degrees of freedom

Response of a charged lepton to an external (and static) electromagnetic field

For a relativistic, point-like spin 1/2 particle, described by the Dirac equation with the minimal coupling prescription, one has

$$i\hbar \, rac{\partial \psi}{\partial t} \, = \, \left[c oldsymbol{lpha} \cdot \left(-i\hbar oldsymbol{
abla} - rac{e_\ell}{c} oldsymbol{\mathcal{A}}
ight) + eta m_\ell c^2 + e_\ell oldsymbol{\mathcal{A}}_0
ight] \psi$$

In the non relativistic limit, this reduces to the Pauli equation for the two-component spinor φ describing the large components of the Dirac spinor ψ ,

$$i\hbar \frac{\partial \varphi}{\partial t} = \left[\frac{(-i\hbar \nabla - (e_{\ell}/c)\mathcal{A})^2}{2m_{\ell}} - \underbrace{\frac{e_{\ell}\hbar}{2m_{\ell}c}\boldsymbol{\sigma} \cdot \mathbf{B}}_{\boldsymbol{\mu}_{\ell} \cdot \mathbf{B}} + e_{\ell}\mathcal{A}_0 \right] \varphi$$

with

$$\boldsymbol{\mu_{\ell}} = g_{\ell} \left(\frac{e_{\ell}}{2m_{\ell}c} \right) \, \mathbf{S} \,, \, \mathbf{S} = \hbar \, \frac{\boldsymbol{\sigma}}{2} \,, \, \boldsymbol{g_{\ell}^{\text{Dirac}}} = 2$$

$(g-2)_{\mu}$: theory vs experiment

-> Improve theory !

Magic vs "New Magic"

Complimentary!

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu} \vec{B} - \left(a_{\mu} - \frac{1}{\gamma^{2} - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right) \right]$$
BNL/Fermilab Approach
$$a_{\mu} - \frac{1}{\gamma^{2} - 1} = 0 \qquad \eta \approx 0$$

$$f_{magic} = 29.3$$

$$p_{magic} = 3.09 \text{ GeV/c}$$

$$\vec{\omega}_{a} = -\frac{e}{m} a_{\mu} \vec{B}$$

hadronic vacuum polarization (HVP)

Teubner et al. (2011)

strong contributions to $(g-2)_{\mu}$

hadronic light-by-light scattering (HLbL)

New FNAL and J-Parc (g-2)_µ expt. : $\delta a_{\mu}^{exp} = 1.6 \times 10^{-10}$

HVP determined by cross section measurements of e⁺e⁻ -> hadrons measurements of meson transition form factors required as input to reduce uncertainty

HVP corrections to $(g-2)_{\mu}$

Initial State Radiation:

- BABAR at PEP-II in Stanford
- BESIII at BEPCII in Beijing

- Needs no systematic variation of beam energy
- High statistics thanks to hig integrated luminosities

Bess III data

Pion Form Factor F_{π}

- Gounaris and Sakurai parameterization
- 0.9 % accuracy (dominated by theory)
- Normalization to luminosity × radiator function

Impact on a_{μ}^{HVP}

Deviation on $(g-2)_{\mu}$ between experimental and SM: 3-4 sigma

Holographic QCD and Hadronic Light-by-Light Scattering Contribution to Muon g-2

HLbL scattering: Summary of selected results

Some results for the various contributions to $a_{\mu}^{\rm HLbL} \times 10^{11}$:

Contribution	BPP	HKS, HK	KN	MV	BP, MdRR	PdRV	N, JN
π^0, η, η'	85±13	82.7±6.4	83±12	114±10	_	114±13	99 ± 16
axial vectors	2.5±1.0	$1.7{\pm}1.7$	**************************************	22±5	_	15±10	22 ± 5
scalars	$-6.8 {\pm} 2.0$	_	_	_	_	-7±7	-7 ± 2
π, K loops	$-19{\pm}13$	-4.5 ± 8.1	-	-	—	-19 ± 19	$-19{\pm}13$
π, K loops +subl. N _C	_	_	_	0±10	_	_	_
quark loops	21±3	9.7±11.1	—	-	_	2.3 (c-quark)	21±3
Total	83±32	89.6±15.4	80±40	$136{\pm}25$	110±40	105 ± 26	116 ± 39

BPP = Bijnens, Pallante, Prades '95, '96, '02; HKS = Hayakawa, Kinoshita, Sanda '95, '96; HK = Hayakawa, Kinoshita '98, '02; KN = Knecht, AN '02; MV = Melnikov, Vainshtein '04; BP = Bijnens, Prades '07; MdRR = Miller, de Rafael, Roberts '07; PdRV = Prades, de Rafael, Vainshtein '09; N = AN '09, JN = Jegerlehner, AN '09

Hadronic light-by-light: the really complicated thing

• Need some organizing principle: ChPT, large- N_c (turns out to be most relevant in practice) $[{\rm E.~de~Rafael,~Phys.~Lett.~B~322,~239~(1994)}]$

$$a_{\mu}^{
m HLxL} = N_c \left(rac{lpha}{\pi}
ight)^3 rac{N_c}{F_{\pi}^2} rac{m_{\mu}^2}{48\pi^2} \left[\ln^2 rac{M_{
ho}}{M_{\pi}} + c_{\chi} \ln rac{M_{
ho}}{M_{\pi}} + \kappa
ight] + \mathcal{O}(N_c^0)$$

[M. Knecht, A. Nyffeler, Phys. Rev. D 65, 073034 (2002)]
 [M. Knecht, A. Nyffeler, M. Perrottet, E. de Rafael, Phys. Rev. Lett. 88, 071802 (2002)]
 M. J. Ramsey-Musolf, M. B. Wise, Phys. Rev. Lett. 89, 041601 (2002)]
 [J. Prades, E. de Rafael, A. Vainshtein, Glasgow White Paper (2008)]

• Impose QCD short-distance properties [K. Melnikov, A. Vainshtein, Phys. Rev. D, 113006 (2004)]

Only two (so far) attemps at a "complete", but model-dependent calculation...

 $a_{\mu}^{\text{HLxL}} = +(8.3 \pm 3.2) \cdot 10^{-10}$

[J. Bijnens, E. Pallante, J. Prades, Phys. Rev. Lett. 75, 1447 (1995) [Err.-ibid. 75, 3781 (1995)]; Nucl. Phys. B 474, 379 (1995); Nucl. Phys. B 626, 410 (2002)]

$$a_{\mu}^{\text{HLxL}} = +(89.6 \pm 15.4) \cdot 10^{-11}$$

[M. Hayakawa, T. Kinoshita, A. I. Sanda, Phys. Rev. Lett. 75, 790 (1995); Phys. Rev. D 54, 3137 (1996)]
 [M. Hayakawa, T. Kinoshita, Phys. Rev. D 57, 365 (1998) [Err.-ibid. 66, 019902(E) (2002)]

...after the sign change [M.K. and A. Nyffeler, Phys. Rev. D 65, 073034 (2002)]

Hadronic light-by-light: the really complicated thing

Recent (partial) reevaluations

 $a_{\mu}^{\text{HLxL}} = (10.5 \pm 2.6) \cdot 10^{-10}$ [J. Prades, E. de Rafael, A. Vainshtein, arXiv:0901.0306] "best estimate"

 $a_{\mu}^{\text{HLxL}} = (11.5 \pm 4.0) \cdot 10^{-10}$ [A. Nyffeler, Phys. Rev. D 79, 073012 (2009)] more conservative estimate

 $a_e^{\text{HLxL}} = (0.035 \pm 0.010) \cdot 10^{-12}$ [J. Prades, E. de Rafael, A. Vainshtein, in *Lepton Dipole Moments*]

Hadronic light-by-light: the really complicated thing

- More recently: dispersive approaches
- for $\Pi_{\mu
 u
 ho \sigma}$

 $\Pi = \Pi^{\pi^0,\eta,\eta' \text{ poles}} + \Pi^{\pi^{\pm},K^{\pm} \text{ loops}} + \Pi^{\pi\pi} + \Pi^{\text{residual}}$

[G. Colangelo, M. Hoferichter, M. Procura, P. Stoffer, JHEP09, 091 (2014); arXiv:1506.01386 [hep-ph]]
Needs input from data (transition form factors,...)
[G. Colangelo, M. Hoferichter, B. Kubis, M. Procura, P. Stoffer, Phys. Lett. B 738, 6 (2014)]
[A. Nyffeler, arXiv:1602.03398 [hep-ph]]

Main unanswered issues:

- how will short-distance constraints be imposed?
- how will Π^{residual} be estimated? Cf. axial vectors (leading in large- N_c) $\rightarrow 3\pi$ channel

- for $F_2^{
m HLxL}(k^2)$

only pion pole with VMD form factor (two-loop graph) reconstructed this way so far [V. Pauk and M. Vanderhaeghen, Phys. Rev. D 90, 113012 (2014) [arXiv:1409.0819 [hep-ph]]]

Leading Log and large NC M. J. Ramsey-Musolf and Mark B. Wise

$$\mathcal{O}(N_c \ \alpha^3 \ \frac{p^2}{\Lambda^2})$$

$$a_{\mu}^{\text{LbyL}} = \left(\frac{\alpha}{\pi}\right)^3 \left(\frac{N_c}{4\pi}\right)^2 \frac{1}{3} \left(\frac{m}{F_{\pi}}\right)^2 \left[\ln^2\left(\frac{M}{m}\right) + c_{\chi}\ln\left(\frac{M}{m}\right) + K\right] + \mathcal{O}(N_c^0)$$

Subleading terms from CHPT CT's: $\pi^0 \to e^+ e^-$

M. J. Ramsey-Musolf and Mark B. Wise PRL 2002

$$a_{\mu}^{\text{LbyL}} = \left(\frac{\alpha}{\pi}\right)^{3} \left(\frac{N_{c}}{4\pi}\right)^{2} \frac{1}{3} \left(\frac{m}{F_{\pi}}\right)^{2} \left[\ln^{2}\left(\frac{M}{m}\right) + c_{\chi}\ln\left(\frac{M}{m}\right) + K\right] + \mathcal{O}(N_{c}^{0})$$

$$a_{\mu} = \left(57^{+50} - 60 + 31\tilde{C}\right) \times 10^{-11}$$

$$a_{\mu} = \left(57^{+50} - 60 + 31\tilde{C}\right) \times 10^{-11}$$

$$a_{\mu} = \left(57^{+50} - 60 + 31\tilde{C}\right) \times 10^{-11}$$

$$a_{\mu} = \left(57^{+50} - 60 + 31\tilde{C}\right) \times 10^{-11}$$

$$a_{\mu} = \left(57^{+50} - 60 + 31\tilde{C}\right) \times 10^{-11}$$

$$a_{\mu} = \left(57^{+50} - 60 + 31\tilde{C}\right) \times 10^{-11}$$

$$a_{\mu} = \left(57^{+50} - 60 + 31\tilde{C}\right) \times 10^{-11}$$

$$a_{\mu} = \left(57^{+50} - 60 + 31\tilde{C}\right) \times 10^{-11}$$

$$a_{\mu} = \left(57^{+50} - 60 + 31\tilde{C}\right) \times 10^{-11}$$

$$a_{\mu} = \left(57^{+50} - 60 + 31\tilde{C}\right) \times 10^{-11}$$

$$a_{\mu} = \left(57^{+50} - 60 + 31\tilde{C}\right) \times 10^{-11}$$

$$a_{\mu} = \left(57^{+50} - 60 + 31\tilde{C}\right) \times 10^{-11}$$

$$a_{\mu} = \left(57^{+50} - 60 + 31\tilde{C}\right) \times 10^{-11}$$

$$a_{\mu} = \left(57^{+50} - 60 + 31\tilde{C}\right) \times 10^{-11}$$

$$a_{\mu} = \left(57^{+50} - 60 + 31\tilde{C}\right) \times 10^{-11}$$

$$a_{\mu} = \left(57^{+50} - 60 + 31\tilde{C}\right) \times 10^{-11}$$

$$a_{\mu} = \left(57^{+50} - 60 + 31\tilde{C}\right) \times 10^{-11}$$

$$a_{\mu} = \left(57^{+50} - 60 + 31\tilde{C}\right) \times 10^{-11}$$

$$a_{\mu} = \left(57^{+50} - 60 + 31\tilde{C}\right) \times 10^{-11}$$

$$a_{\mu} = \left(57^{+50} - 60 + 31\tilde{C}\right) \times 10^{-11}$$

$$a_{\mu} = \left(57^{+50} - 60 + 31\tilde{C}\right) \times 10^{-11}$$

$$a_{\mu} = \left(57^{+50} - 60 + 31\tilde{C}\right) \times 10^{-11}$$

$$a_{\mu} = \left(57^{+50} - 60 + 31\tilde{C}\right) \times 10^{-11}$$

$$a_{\mu} = \left(57^{+50} - 60 + 31\tilde{C}\right) \times 10^{-11}$$

$$a_{\mu} = \left(57^{+50} - 60 + 31\tilde{C}\right) \times 10^{-11}$$

$$a_{\mu} = \left(57^{+50} - 60 + 31\tilde{C}\right) \times 10^{-11}$$

$$a_{\mu} = \left(57^{+50} - 60 + 31\tilde{C}\right) \times 10^{-11}$$

$$a_{\mu} = \left(57^{+50} - 60 + 31\tilde{C}\right) \times 10^{-11}$$

$$a_{\mu} = \left(57^{+50} - 60 + 31\tilde{C}\right) \times 10^{-11}$$

$$a_{\mu} = \left(57^{+50} - 60 + 31\tilde{C}\right) \times 10^{-11}$$

$$a_{\mu} = \left(57^{+50} - 60 + 31\tilde{C}\right) \times 10^{-11}$$

$$a_{\mu} = \left(57^{+50} - 60 + 31\tilde{C}\right) \times 10^{-11}$$

$$a_{\mu} = \left(57^{+50} - 60 + 31\tilde{C}\right) \times 10^{-11}$$

$$a_{\mu} = \left(57^{+50} - 60 + 31\tilde{C}\right) \times 10^{-11}$$

$$a_{\mu} = \left(57^{+50} - 60 + 31\tilde{C}\right) \times 10^{-11}$$

$$a_{\mu} = \left(57^{+50} - 60 + 31\tilde{C}\right) \times 10^{-11}$$

$$a_{\mu} = \left(57^{+50} - 60 + 31\tilde{C}\right) \times 10^{-11}$$

$$a_{\mu} = \left(57^{+50} - 60 + 31\tilde{C}\right) \times 10^{-11}$$

Melnikov–Vainshtein Limit $q_1^2 \approx q_2^2 \gg q_3^2$

$$a_{\mu}^{\text{LbyL}} = \left(\frac{\alpha}{\pi}\right)^3 \left(\frac{N_c}{4\pi}\right)^2 \frac{1}{3} \left(\frac{m}{F_{\pi}}\right)^2 \left[\ln^2\left(\frac{M}{m}\right) + \dots\right]$$

- Other Large N contributions
- Large N Short distance limit directly in the 4-point function
- In this limit it is possible to write an OPE relation linked to the anomaly term

Melnikov-Vainshtein Limit

- Contribution to two helicity amplitudes: π^0 and a_1 exchange
- Model to correctly reproduce this s.d. limit, numerically important

Contribution	BPP	HKS	KN	MV	BP	PdRV	N/JN
π^0 , η , η'	85 ± 13	82.7 ± 6.4	83 ± 12	114 ± 10	_	114 ± 13	99 ± 16
π , K loops	-19 ± 13	-4.5 ± 8.1	_	_	_	-19 ± 19	-19 ± 13
π , K l. + subl. in Nc	_	-	_	0 ± 10	_	_	_
axial vectors	2.5 ± 1.0	1.7 ± 1.7	_	22 ± 5	_	15 ± 10	22 ± 5

Minimal Hadronic Ansatz vs holographic models

De Rafael

Anomalous AdS/CFT three point function Cappiello Cata G.D.

• From CS

$$K(Q_{1}^{2},Q_{2}^{2}) = -\int_{0}^{z_{0}} \mathcal{J}(Q_{1},z)\mathcal{J}(Q_{2},z) \partial_{z}\Psi(z) dz$$

$$\mathcal{J}(Q,z) = Qz \left[K_{1}(Qz) + I_{1}(Qz)\frac{K_{0}(Qz_{0})}{I_{0}(Qz_{0})}\right].$$
Grigoryan and A.V. Radyushkir
• short distance naturally implemented

 low energy, various models discriminated: acceptable phenom. linear slope measured

$$F_{\pi^{0}\gamma^{*}\gamma^{*}}(Q_{1}^{2},Q_{2}^{2}) \simeq -\frac{N_{C}}{12\pi^{2}f_{\pi}} \left[1 + \hat{\alpha} \left(Q_{1}^{2} + Q_{2}^{2} \right) + \hat{\beta} Q_{1}^{2}Q_{2}^{2} + \hat{\gamma} \left(Q_{1}^{4} + Q_{2}^{4} \right) \right]$$

Good models=>phenon. slopes fixed !

Pseudosca	lar exc	hanges
-----------	---------	--------

Our result

[Model for $\mathcal{F}_{P^{(*)}\gamma^*\gamma^*}$	$a_\mu(\pi^0) imes 10^{11}$	$a_\mu(\pi^0,\eta,\eta') imes 10^{11}$
ſ	modified ENJL (off-shell) [BPP]	59(9)	85(13)
	VMD / HLS (off-shell) [HKS,HK]	57(4)	83(6)
	LMD+V (on-shell, $h_2 = 0$) [KN]	58(10)	83(12)
	LMD+V (on-shell, $h_2 = -10 \text{ GeV}^2$) [KN]	63(10)	88(12)
	LMD+V (on-shell, constant FF at ext. vertex) [MV]	77(7)	114(10)
	nonlocal χ QM (off-shell) [DB]	65(2)	-
	LMD+V (off-shell) [N]	72(12)	99(16)
	AdS/QCD (off-shell ?) [HoK]	69	107
ł	AdS/QCD/DIP (off-shell) [CCD]	65.4(2.5)	-
	DSE (off-shell) [FGW]	58(7)	84(13)
ſ	[PdRV]	—	114(13)
	[JN]	72(12)	99(16)

There are many competing models: ENJL (Chiral quark model) Lowest Meson Dominance Hidden Symmetry Non-Local ChQM Bethe-Salpeter Holographic QCD Lattice QCD

A theoretical effort should be done to make them talk to each other

BPP = Bijnens, Pallante, Prades '95, '96, '02 (ENJL = Extended Nambu-Jona-Lasinio model); HK(S) = Hayakawa, Kinoshita, Sanda '95, '96; Hayakawa, Kinoshita '98, '02 (HLS = Hidden Local Symmetry model); KN = Knecht, Nyffeler '02; MV = Melnikov, Vainshtein '04; DB = Dorokhov, Broniowski '08 (χ QM = Chiral Quark Model); N = Nyffeler '09; HoK = Hong, Kim '09; CCD = Cappiello, Catà, D'Ambrosio '10 (used AdS/QCD to fix parameters in DIP (D'Ambrosio, Isidori, Portolés) ansatz); FGW = Fischer, Goecke, Williams '10, '11 (Dyson-Schwinger equation) A. Nyffeler Seattle 2011 Reviews on LbyL: PdRV = Prades, de Rafael, Vainshtein '09; JN = Jegerlehner, Nyffeler '09

Uncertainty can increase of 10-15 % due to poor knowledge of the parameter χ_0 which we used to encode the pion off-shellness by the high-Q² constraint

Notice that the low-Q² predictions for PFF of the holographic models could be tested at KLOE-2

$$\begin{split} \lim_{Q_1^2, Q_2^2 \to 0} F_{\pi^0 \gamma^* \gamma^*}(Q_1^2, Q_2^2) \simeq & -\frac{N_C}{12\pi^2 f_\pi} \times \\ & \left[1 + \hat{\alpha} \, \left(Q_1^2 + Q_2^2 \right) + \hat{\beta} \, Q_1^2 Q_2^2 + \hat{\gamma} \, \left(Q_1^4 + Q_2^4 \right) \right] \end{split}$$

Exp. $\hat{\alpha} = -1.76(22) \text{ GeV}^{-2}$

$$\lim_{2 \to \infty} F_{\pi^{0*}\gamma^*\gamma^*}(Q^2, Q^2, 0) = -\frac{f_{\pi}}{3}\chi_0 + \cdots$$

$$\hat{\beta} = 3.33(32) \,\mathrm{GeV}^{-4},$$

 $\hat{\gamma} = 2.84(21) \,\mathrm{GeV}^{-4}.$

The Hadronic Light-by-Light contribution

Cappiello GD Greynat Π $= -ie^{6} \int \frac{d^{4}q_{1}}{(2\pi)^{4}} \int \frac{d^{4}q_{2}}{(2\pi)^{4}} \frac{1}{q_{1}^{2} q_{2}^{2} (q_{1} + q_{2} - k)^{2}}$ $\times \frac{\bar{u}(p')\gamma^{\mu}(p'-q_1+m)\gamma^{\nu}(p'-q_1-q_2+m)\gamma^{\lambda}u(p)}{[(p'-q_1)^2-m^2][(p'-q_1-q_2)^2-m^2]}$ $\times \frac{\partial}{\partial k^{\rho}} \Pi_{\mu\nu\lambda\sigma}(q_1,q_2,k-q_1-q_2)$

where

$$\Pi_{\mu\nu\lambda\rho}(q_1,q_2,q_3) = \int d^4x_1 \int d^4x_2 \int d^4x_3 \, e^{i|\mathbf{q}\cdot\mathbf{x}|} \langle \,\Omega \, | \,\mathsf{T}\left\{j_{\mu}(x_1)j_{\nu}(x_2)j_{\lambda}(x_3)j_{\rho}(0)\right\} | \,\Omega \, \rangle$$

and

$$j_{\rho}(x) = \frac{2}{3} : (\bar{u}\gamma_{\rho}u)(x): -\frac{1}{3} : (\bar{d}\gamma_{\rho}d)(x): -\frac{1}{3} : (\bar{s}\gamma_{\rho}s)(x): = : (\bar{q}Q_{\bar{q}q}\gamma_{\rho}q)(x):$$

Mellin transform

Cappiello GD Greynat

$$a_{\mu}^{\text{LbyL}} = \left(\frac{\alpha}{\pi}\right)^3 \left(\frac{N_c}{4\pi}\right)^2 \frac{1}{3} \left(\frac{m}{F_{\pi}}\right)^2 \left[\ln^2\left(\frac{M}{m}\right) + c_{\chi}\ln\left(\frac{M}{m}\right) + K\right] + \mathcal{O}(N_c^0)$$

$$a_{\mu}^{\text{LbyL}} = \left(\frac{\alpha}{\pi}\right)^3 \left(\frac{N_c}{4\pi}\right)^2 \frac{1}{3} \left(\frac{m}{F_{\pi}}\right)^2 \int \frac{\$}{2i\pi} \left(\frac{M}{m}\right)^{-s} \widehat{\mathcal{A}}(s)$$

 $\widehat{\mathcal{A}}(s) \asymp -\frac{1}{2} \frac{1}{s^3} + c_{\chi} \frac{1}{s^2} - K \frac{1}{s} + \mathcal{O}(N_c^0)$

DIP form factor to warm up

D. Isidori Portoles

Cappiello GD Greynat ~ 0 $a^{0}a^{0}$

$$F_{\pi\gamma^*\gamma^*}(Q_1^2, Q_2^2) = 1 + \lambda \left[\frac{Q_1^2}{Q_1^2 + M^2} + \frac{Q_2^2}{Q_2^2 + M^2} \right] + \eta \frac{Q_1^2 Q_2^2}{(Q_1^2 + M^2)(Q_2^2 + M^2)}$$

$$F_{\pi\gamma^*\gamma^*}(\lambda Q_1^2, \lambda Q_2^2) \sim = 1 + \hat{\alpha}(Q_1^2 + Q_2^2) + \hat{\beta}Q_1^2 Q_2^2$$

-

$$a_{\mu}^{\text{LbyL}} = \left(\frac{\alpha}{\pi}\right)^3 \left(\frac{N_c}{4\pi}\right)^2 \frac{1}{3} \left(\frac{m}{F_{\pi}}\right)^2 \left[\ln^2\left(\frac{M}{m}\right) + c_{\chi}\ln\left(\frac{M}{m}\right) + K\right] + \mathcal{O}(N_c^0)$$

$$c_{\chi} = 9.5 \quad \text{Cappiello GD Greynat}$$

$$c_{\chi} = 19$$
M. J. Ramsey-Musolf and Mark B. Wise PRL 200

Work in progress Cappiello GD Greynat

- MV limit in holographic model (form factor)
- duality low energy slopes and MV limit (the subheading coefficient)
- Compute the constant term

Outlook

Beautiful and precise experiment require theoretical work

a_e and a_μ are experimentally measured to very high precision:

 $a_e^{\mathsf{exp}} = 1\,159\,652\,180.73(0.28)\cdot 10^{-12}$

 $\Delta a_e^{\mathrm{exp}} = 2.8 \cdot 10^{-13}$ [0.24ppb] D. Hanneke et al, Phys. Rev. Lett. 100, 120801 (2008)

 $au_{\mu}~=~(2.19703\pm 0.00004) imes 10^{-6}~{
m s}$

 $\gamma\sim29.3,\,p\sim3.094$ GeV/c

 $a_{\mu}^{\mathsf{exp}} = 116\,592\,089(63)\cdot 10^{-11}$

 $\Delta a_{\mu}^{\mathrm{exp}} = 6.3 \cdot 10^{-10}$ [0.54ppm] G. W. Bennett et al, Phys Rev D 73, 072003 (2006)

Note: $\tau_{\tau} = (290.6 \pm 1.1) \times 10^{-15} \,\mathrm{s}$

 $-0.052 < a_{\tau}^{exp} < +0.013 (95\% \text{ CL}) \quad [e^+e^- \rightarrow e^+e^-\tau^+\tau^-]$ DELPHI, Eur. Phys. J. C 35, 159 (2004) theory: $a_{\tau} = 117721(5) \cdot 10^{-8}$

S. Eidelman, M. Passera, Mod. Phys. Lett. A 22, 159 (2007) S. Narison, Phys Lett B 513 (2001); err. B 526, 414 (2002) $a_e^{\text{QED}} = 1\,159\,652\,180.07(6)_{\alpha^4}(4)_{\alpha^5}(77)_{\alpha(Rb11)} \cdot 10^{-12} \qquad a_e^{\text{exp}} - a_e^{\text{QED}} = 0.67(82) \cdot 10^{-12}$

 $\alpha[a_e(HV\,08)] = 137.035\,999\,172\,2(68)_{\alpha^4}(46)_{\alpha^5}(19)_{\text{had}}(331)_{\text{exp}} \qquad [0.25\text{ppb}]$

Aoyama et al., Phys. Rev. Lett. 109, 111807 (2012)

Graphically: Present situation and Goals

What is nature trying to tell us?

*range of typical SM evaluations

Decomposing the fields as

$$\int \! \mathrm{d}^4 x \ \mathrm{e}^{-iqx} \ \mathbb{V}^a_\mu(x,z) = f_V(q,z) \ \mathcal{L}_{\mu
u} \ \mathrm{v}^{a
u}(q) \ \int \! \mathrm{d}^4 x \ \mathrm{e}^{-iqx} \ \mathbb{A}^a_\mu(x,z) = f_{A}(q,z) \ \mathcal{L}_{\mu
u} \ \mathrm{a}^{a
u}(q) + \phi(q,z) \ \mathfrak{T}_{\mu
u} \ \mathrm{p}^{a
u}(q) \ ,$$

for the longitudinal $\mathcal{L}_{\mu\nu} = \eta_{\mu\nu} - \frac{q_{\mu}q_{\nu}}{q^2}$ and transverse $\mathfrak{T}_{\mu\nu} = \frac{q_{\mu}q_{\nu}}{q^2}$ parts. The first contribution is given by

$$\Pi^{\mathbf{a}}_{\mu\nu\lambda\rho}(q_1,q_2,q_3,z) = \frac{\delta^4 S_{CS}^2}{\delta \mathsf{v}^{a_1\,\mu}(q_1)\,\delta \mathsf{v}^{a_2\,\nu}(q_2)\delta \mathsf{v}^{a_3\,\lambda}(q_3)\delta \mathsf{v}^{a_4\,\rho}(q_4)}$$

$$= W^{\mathbf{a}} \left((q_1 + q_2)^2 \right) \varepsilon_{\mu\nu\alpha\beta} \varepsilon_{\lambda\rho\sigma\tau} q_1^{\alpha} q_2^{\beta} q_3^{\sigma} (q_1 + q_2)^{\tau} \\ + W^{\mathbf{a}} \left((q_2 + q_3)^2 \right) \varepsilon_{\mu\rho\alpha\beta} \varepsilon_{\nu\lambda\sigma\tau} q_2^{\sigma} q_3^{\tau} q_1^{\alpha} (q_2 + q_3)^{\beta} \\ + W^{\mathbf{a}} \left((q_1 + q_3)^2 \right) \varepsilon_{\mu\lambda\alpha\beta} \varepsilon_{\nu\rho\sigma\tau} q_1^{\alpha} q_3^{\beta} q_2^{\sigma} (q_1 + q_3)^{\tau} ,$$

One obtains (a general formula for Holographic QCD models)

$$W^{\mathbf{a}}(k^{2}) = i \frac{4}{k^{2}} \left(\frac{N_{c}}{4\pi^{2}}\right)^{2} \operatorname{Tr} \left[T^{a_{1}}T^{a_{2}}T^{a_{3}}T^{a_{4}}\right]$$

$$\times \int dz \, dz' \left[f_{V}(q_{1}, z)f_{V}'(q_{2}, z) - f_{V}'(q_{1}, z)f_{V}(q_{2}, z)\right]$$

$$\times \left[f_{V}(q_{3}, z')f_{V}'(q_{4}, z') - f_{V}'(q_{3}, z')f_{V}(q_{4}, z')\right]$$

$$\times \left[G_{A,L}(k^{2}; z, z') + G_{A,T}(k^{2}; z, z')\right]$$

where we have in our peculiar model,

$$f_{V}(Q^{2},z) = \frac{Q^{2}}{4\kappa^{2}} \int_{0}^{1} \mathrm{d}u \; u^{\frac{Q^{2}}{4\kappa^{2}}-1} \exp\left[-\frac{u}{1-u}\kappa^{2}z^{2}\right]$$

$$G_{A,T}(Q^{2};x,y) = \frac{F_{\pi}^{2}}{2}xy\delta(x-y) + \Gamma\left(1+\frac{Q^{2}}{4\kappa^{2}}\right) U\left(1,\frac{Q^{2}}{4\kappa^{2}};\kappa^{2}(x-y)^{2}\right)$$

$$G_{A,L}(Q^{2};x,y) = -\frac{xy}{2} \int_{0}^{1} \mathrm{d}t \; \frac{t^{\frac{Q^{2}}{4\kappa^{2}}+\frac{1}{2}}}{1-t} \exp\left[-\frac{t}{1-t}\kappa^{2}(x^{2}+y^{2})\right] I_{1}\left(2\kappa^{2}xy\frac{\sqrt{t}}{1-t}\right)$$

Introduction HLbL Part I: SW HQCD Part II: QCD Controls Conclusions

Therefore the contribution to the anomaly is given by

$$a_{\mu}^{\text{LbyL}} = -e^{6} \int \frac{d^{4}q_{1}}{(2\pi)^{4}} \int \frac{d^{4}q_{2}}{(2\pi)^{4}} \frac{[W_{1} T_{1}(q_{1}, q_{2}; p) + W_{2} T_{2}(q_{1}, q_{2}; p)]}{q_{1}^{2}q_{2}^{2}(q_{1} + q_{2})^{2}[(p + q_{1})^{2} - m^{2}][(p - q_{2})^{2} - m^{2}]}$$

where

$$T_{1}(q_{1}, q_{2}; p) = \frac{16}{3} (p \cdot q_{1}) (p \cdot q_{2}) (q_{1} \cdot q_{2}) - \frac{16}{3} (p \cdot q_{2})^{2} q_{1}^{2} - \frac{8}{3} (p \cdot q_{1}) (q_{1} \cdot q_{2}) q_{2}^{2} + 8(p \cdot q_{2}) q_{1}^{2} q_{2}^{2} - \frac{16}{3} (p \cdot q_{2}) (q_{1} \cdot q_{2})^{2} + \frac{16}{3} m^{2} q_{1}^{2} q_{2}^{2} - \frac{16}{3} m^{2} (q_{1} \cdot q_{2})^{2} ,$$
$$T_{2}(q_{1}, q_{2}; p) = \frac{16}{3} (p \cdot q_{1}) (p \cdot q_{2}) (q_{1} \cdot q_{2}) - \frac{16}{3} (p \cdot q_{1})^{2} q_{2}^{2} + \frac{8}{3} (p \cdot q_{1}) (q_{1} \cdot q_{2}) q_{2}^{2} + \frac{8}{3} (p \cdot q_{1}) q_{1}^{2} q_{2}^{2} + \frac{8}{3} m^{2} q_{1}^{2} q_{2}^{2} - \frac{8}{3} m^{2} (q_{1} \cdot q_{2})^{2} .$$
For $q_{4} = 0$ and $q_{3} = q_{1} + q_{2}$

$$W_{1} = \frac{1}{16} \sum_{\mathbf{a}=0}^{N_{f}^{2}-1} \operatorname{Tr}\left[QT^{\mathbf{a}}\right] W^{\mathbf{a}}(q_{2}^{2}) \quad W_{2} = \frac{1}{16} \sum_{\mathbf{a}=0}^{N_{f}^{2}-1} \operatorname{Tr}\left[QT^{\mathbf{a}}\right] W^{\mathbf{a}}((q_{1}+q_{2})^{2})$$

The contribution to the anomaly can be expended as

$$a_{\mu}^{\text{LbyL}} = \left(\frac{\alpha}{\pi}\right)^3 \left(\frac{N_c}{4\pi}\right)^2 \frac{1}{3} \left(\frac{m}{F_{\pi}}\right)^2 \left[\ln^2\left(\frac{M}{m}\right) + c_{\chi}\ln\left(\frac{M}{m}\right) + K\right] + \mathcal{O}(N_c^0)$$

The constants c_{χ} and K are model and schema dependent.

Actually, the regularized WZW contribution to the form factor of $P \to \ell^* \ell^-$ to c_{χ} as

$$c_{\chi} = \frac{1}{2} - f(r) + \frac{1}{6}\chi(M^2)$$

where for $r = \frac{m_{\pi}}{m_{\mu}}$,

$$f(r) = \ln\left(\frac{m_{\mu}^2}{\mu^2}\right) + \frac{1}{6}r^2\ln r - \frac{1}{6}(2r+13) + \frac{1}{3}(2+r)\sqrt{r(4-r)}\cos^{-1}\left(\frac{\sqrt{r}}{2}\right)$$

Using the approximation that the pion is massless and then the lower scale is the muon mass, one deduces that

$$c_{\chi}\simeq rac{5}{3}+rac{1}{6}\chi(M^2)\;.$$

ntroduction HLbL Part I: SW HQCD Part II: QCD Controls Conclusions

Moreover, in our limits and conventions,

$$rac{1}{6}\chi(M^2)\simeq rac{\hatlpha}{3}-rac{5}{3}\;,$$

where $\hat{\alpha}$ is the *slope* at the origin of the normalized form factor

$$F_{\pi\gamma^*\gamma^*}(q_1^2, q_2^2, q_3^2) \underset{q_1^2, q_2^2 o 0}{\sim} 1 + \hat{\alpha}(Q_1^2 + Q_2^2)$$

Therefore

 $c_{\chi}\simeq {\hat{lpha}\over 3}$

D. Greynat HLbL - g-2

oduction HLbL Part I: SW HQCD Part II: QCD Controls Conclusions

Using the parametrization "LMD+V"

$$\begin{split} F_{\pi\gamma^*\gamma^*}(q_1^2,q_2^2,q_3^2) = \\ & \frac{4\pi^2F_\pi^2}{N_c} \; \frac{q_1^2q_2^2(q_1^2+q_2^2)-h_2q_1^2q_2^2+h_5(q_1^2+q_2^2)+(N_cM_1^4M_2^4/4\pi^2F_\pi^2)}{(q_1^2+M_1^2)(q_1^2+M_2^2)(q_2^2+M_1^2)(q_2^2+M_2^2)} \; , \end{split}$$

then

 $F_{\pi\gamma^*\gamma^*}(\lambda^2 q_1^2, \lambda^2 q_2^2, q_3^2) \underset{\lambda \to 0}{\sim} 1 + \left[-\frac{1}{M_1^2} - \frac{1}{M_2^2} + \frac{4\pi^2}{N_c} \frac{F_{\pi}^2}{M_1^4 M_2^4} h_5 \right] (Q_1^2 + Q_2^2) \lambda^2$

In this context the relevant quantity leading to the anomaly is

$$\begin{split} &\frac{\partial}{\partial k^{\rho}} \Pi_{\mu\nu\lambda\sigma}(q_{1},q_{2},k-q_{1}-q_{2}) = \\ &i \frac{\mathcal{F}_{\pi\gamma^{*}\gamma^{*}}(q_{1}^{2},q_{2}^{2}) \mathcal{F}_{\pi\gamma^{*}\gamma^{*}}((q_{1}+q_{2})^{2},0)}{(q_{1}+q_{2})^{2} - M_{\pi}^{2}} \varepsilon_{\mu\nu\alpha\beta} q_{1}^{\alpha} q_{2}^{\beta} \varepsilon_{\lambda\sigma\rho\tau} (q_{1}+q_{2})^{\tau} \\ &+ i \frac{\mathcal{F}_{\pi\gamma^{*}\gamma^{*}}(q_{1}^{2},0) \mathcal{F}_{\pi\gamma^{*}\gamma^{*}}(q_{2}^{2},(q_{1}+q_{2})^{2})}{q_{1}^{2} - M_{\pi}^{2}} \varepsilon_{\mu\sigma\tau\rho} q_{1}^{\tau} \varepsilon_{\nu\lambda\alpha\beta} q_{1}^{\alpha} q_{2}^{\beta} \\ &+ i \frac{\mathcal{F}_{\pi\gamma^{*}\gamma^{*}}(q_{1}^{2},(q_{1}+q_{2})^{2}) \mathcal{F}_{\pi\gamma^{*}\gamma^{*}}(q_{2}^{2},0)}{q_{2}^{2} - M_{\pi}^{2}} \varepsilon_{\mu\lambda\alpha\beta} q_{1}^{\alpha} q_{2}^{\beta} \varepsilon_{\nu\sigma\rho\tau} q_{2}^{\tau} \\ &+ \mathcal{O}(k) \end{split}$$

D. Greynat HLbL – g-2

Introduction HLbL Part I: SW HQCD Part II: QCD Controls Conclusions

If one considers the Melnikov-Vainshtein Limit, we notice that

$$\begin{array}{l} \frac{\partial}{\partial k^{\rho}} \Pi_{\mu\nu\lambda\sigma} (\lambda q_1, q_2 - \lambda q_1, k - q_2) \\ \\ \sim \\ \lambda \rightarrow \infty} \left(\frac{N_c}{4\pi^2 F_{\pi}^2} \right)^2 \frac{1}{q_1^2} \frac{1}{q_2^2} \frac{1}{\lambda} \left[1 + \frac{2F_{\pi}^2 h_5}{M_1^2 M_2^2} \frac{1}{q_2^2} \frac{1}{\lambda} \right] \varepsilon_{\mu\nu\alpha\beta} \, q_1^{\alpha} q_2^{\beta} \, \varepsilon_{\lambda\sigma\rho\tau} \, q_2^{\tau} \, , \end{array}$$

clearly one has shown explicitly the relation with the subleading term in the MVL and the slope of the form factor.

$$\begin{aligned} \frac{\partial}{\partial k^{\rho}} \Pi_{\mu\nu\lambda\sigma} (\lambda q_{1}, q_{2} - \lambda q_{1}, k - q_{2}) \Big|_{\lambda^{-2}} &\sim \left(\frac{N_{c}}{4\pi^{2}}\right)^{2} \frac{1}{q_{1}^{2}} \frac{1}{q_{2}^{4}} \\ &\times F_{\pi}^{2} \int_{0}^{1} \mathrm{d}\tilde{u} \, \mathrm{d}\tilde{v} \, \tilde{u} \ln \tilde{u} \ln \tilde{v} \frac{\tilde{v}}{1 - \tilde{v}} \frac{1}{\left(\frac{\tilde{v}}{1 - \tilde{v}} + \frac{\tilde{v}}{1 - \tilde{v}}\right)^{2}} \\ F_{\pi\gamma^{*}\gamma^{*}} (\lambda^{2} q_{1}^{2}, \lambda^{2} q_{2}^{2}) \underset{\lambda \to 0}{\sim} 1 \\ &+ \lambda^{2} (Q_{1}^{2} + Q_{2}^{2}) \frac{2}{\kappa^{2}} \int_{0}^{1} \mathrm{d}u \, \mathrm{d}v \, u \ln u \ln v \frac{v}{1 - v} \frac{1}{\left(\frac{u}{1 - u} + \frac{v}{1 - v}\right)^{2}}. \end{aligned}$$

Introduction HLbL Part I: SW HQCD Part II: QCD Controls Conclusions How to extract the general behaviour?

The contribution to the anomaly expended

$$a_{\mu}^{\text{LbyL}} = \left(\frac{\alpha}{\pi}\right)^3 \left(\frac{N_c}{4\pi}\right)^2 \frac{1}{3} \left(\frac{m}{F_{\pi}}\right)^2 \left[\ln^2\left(\frac{M}{m}\right) + c_{\chi}\ln\left(\frac{M}{m}\right) + K\right] + \mathcal{O}(N_c^0)$$

corresponds in the Mellin plane

$$a_{\mu}^{\text{LbyL}} = \left(\frac{\alpha}{\pi}\right)^3 \left(\frac{N_c}{4\pi}\right)^2 \frac{1}{3} \left(\frac{m}{F_{\pi}}\right)^2 \int \frac{\mathrm{d}s}{2i\pi} \left(\frac{M}{m}\right)^{-s} \left[-\frac{1}{s^3} + c_{\chi}\frac{1}{s^2} - K\frac{1}{s}\right]$$

Once you perform the angular integrals one gets

$$a_{\mu}^{\text{LbyL}} = \left(rac{lpha}{\pi}
ight)^3 \int_0^\infty \mathrm{d}Q_1^2 \int_0^\infty \mathrm{d}Q_2^2 \ \mathcal{A}(Q_1^2, Q_2)$$

By the help of the change of variables $Q_j = 2\frac{M}{m} m x_j$,

$$a_{\mu}^{\text{LbyL}} = \left(\frac{\alpha}{\pi}\right)^3 \int \frac{\mathrm{d}s}{2i\pi} \left(\frac{M}{m}\right)^{-s} \widehat{\mathcal{A}}(s) \text{ and } \int_0^\infty \mathrm{d}x_1 \mathrm{d}x_2 x_1^{s-1} x_2^{s-1} \mathcal{A}(4m^2 x_1^2, 4m^2 x_2^2)$$

We can extract then singularities.