Signatures of Earth-Shadowing in the Direct Detection of Dark Matter

Bradley J. Kavanagh LPTHE - Paris VI with Riccardo Catena and Chris Kouvaris

University of Zurich - 7th November 2016

bkavanagh@lpthe.jussieu.fr

🔰 @BradleyKavanagh

Earth-Shadowing

Earth-Shadowing

Unscattered (free) DM: $f_0(\mathbf{v})$

Earth-Shadowing - Attenuation

Attenuation of DM flux: $f(\mathbf{v}) \rightarrow f_0(\mathbf{v}) - f_A(\mathbf{v})$

Earth-Shadowing - Deflection

Earth-Shadowing - Deflection

We'll use the 'single scatter' approximation...

Considered in early Monte Carlo simulations

> Collar & Avignone [PLB 275, 1992 and others]

Earth-Shadowing

Outline

Dark Matter (DM) and Direct Detection

Calculating the Earth-Shadowing effect

Non-relativistic Effective Field Theory of DM

Impact on the DM velocity distribution and modulation signatures

Future work

Dark Matter

Dark Matter at the Sun's Radius

$$\frac{\mathrm{d}R}{\mathrm{d}E_R} = \frac{\rho_{\chi}}{m_{\chi}m_A} \int_{v_{\min}}^{\infty} vf(\mathbf{v}) \frac{\mathrm{d}\sigma}{\mathrm{d}E_R} \,\mathrm{d}^3\mathbf{v}$$

Include all particles with enough speed to excite recoil of energy E_R : $\sqrt{m_N E_R}$

$$v_{\min} = \sqrt{\frac{m_N E_R}{2\mu_{\chi N}^2}}$$

Include all particles with enough speed to excite recoil of energy E_R : $v_{\min} = \sqrt{\frac{m_N E_R}{2}}$

$$_{\rm in} = \sqrt{\frac{m_N L_R}{2\mu_{\chi N}^2}}$$

Include all particles with enough speed to excite recoil of energy E_R :

$$v_{\min} = \sqrt{\frac{m_N E_R}{2\mu_{\chi N}^2}}$$

But plenty of alternative ideas: DM-electron recoils [1108.5383] Superconducting detectors [1504.07237] Axion DM searches [1404.1455]

Bradley J Kavanagh (LPTHE, Paris)

Earth-shadowing of DM • Univer

University of Zurich - 7th Nov. 2016

Particle Physics of DM (the simple picture)

Typically assume contact interactions (heavy mediators). In the non-relativistic limit, obtain two main contributions. Write in terms of DM-proton cross section σ^p :

Enhancement factor different for:

spin-independent (SI) interactions - $\mathcal{C}_A^{\mathrm{SI}} \sim A^2$

spin-dependent (SD) interactions - $C_A^{\rm SD} \sim (J+1)/J$

Interactions which are higher order in v are possible - see later...

Astrophysics of DM (the simple picture)

Standard Halo Model (SHM) is typically assumed: isotropic, spherically symmetric distribution of particles with $\rho(r) \propto r^{-2}$.

Leads to a Maxwell-Boltzmann (MB) distribution,

Bradley J Kavanagh (LPTHE, Paris)

$$f_{\rm Lab}(\mathbf{v}) = (2\pi\sigma_v^2)^{-3/2} \exp\left[-\frac{(\mathbf{v} - \mathbf{v}_{\rm e})^2}{2\sigma_v^2}\right] \,\Theta(|\mathbf{v} - \mathbf{v}_{\rm e}| - v_{\rm esc})$$

which is well matched in some hydro simulations. [1601.04707, 1601.04725, 1601.05402] 5<u>1e-</u>3 \mathbf{v}_e - Earth's Velocity $f(v) = v^2 \oint f(\mathbf{v}) \,\mathrm{d}\Omega_v$ 4 $v_e \sim 220 - 250 \,\mathrm{km \, s^{-1}}$ S f(v) / km⁻¹ s $\sigma_v \sim 155 - 175 \,\mathrm{km \, s^{-1}}$ SHM Feast et al. [astro-ph/9706293], + uncertainties Bovy et al. [1209.0759] 1 $v_{\rm esc} = 533^{+54}_{-41} \,\mathrm{km \, s^{-1}}$ Piffl et al. (RAVE) [1309.4293] 0, 200 400 600 800 v / km s⁻¹

Earth-shadowing of DM

University of Zurich - 7th Nov. 2016

The final event rate

Bradley J Kavanagh (LPTHE, Paris)

The current landscape

How big is the probability of scattering in the Earth?

The current landscape

What effect can DM scattering in the Earth have?

Earth-Shadowing

Earth-Scattering Calculation

Attenuation

Attenuation

Attenuation

Sum over 8 most abundant elements in the Earth: O, Si, Mg, Fe, Ca, Na, S, Al

Effective Earth-crossing distance

Most scattering comes from Oxygen (in the mantle) and Iron (in the core)

NB: little Earth-scattering for spin-dependent interactions

Rate of particles entering the region:

 $n_{\chi} f_0(\mathbf{v}') v' \cos \alpha \, \mathrm{d}S \, \mathrm{d}^3 \mathbf{v}'$

Probability of scattering in the region: $\frac{\mathrm{d}l}{\lambda_i(\mathbf{r}, v') \cos \alpha} P(\mathbf{v}' \to \mathbf{v}) \,\mathrm{d}^3 \mathbf{v}$

Rate of particles leaving the region:

 $n_{\chi} f_D(\mathbf{v}) v \, \mathrm{d}S \, \mathrm{d}^3 \mathbf{v}$

Deflected velocity distribution:

$$f_D(\mathbf{v}) = \frac{\mathrm{d}l}{\lambda_i(\mathbf{r}, v')} \frac{v'}{v} f_0(\mathbf{v}') P(\mathbf{v}' \to \mathbf{v}) \,\mathrm{d}^3 \mathbf{v}'$$

Bradley J Kavanagh (LPTHE, Paris) • Ear

Deflected velocity distribution (from a single point):

$$f_D(\mathbf{v}) = \frac{\mathrm{d}l}{\lambda_i(\mathbf{r}, v')} \frac{v'}{v} f_0(\mathbf{v}') P(\mathbf{v}' \to \mathbf{v}) \,\mathrm{d}^3 \mathbf{v}'$$

Probability of scattering from one velocity to another can be written:

$$P(\mathbf{v}' \to \mathbf{v}) = \frac{1}{2\pi} \frac{1}{v^2} \delta(v - v'/\kappa_i) P(\cos \alpha) \qquad \qquad v'/v \equiv \kappa_i$$

= $\frac{1}{2\pi} \frac{v'}{v^3} \delta(v' - \kappa_i v) P(\cos \alpha) \qquad \qquad \text{fixed by kinematics}$
(for a given α)

Need to integrate over all incoming velocities and over all points C:

$$f_D(\mathbf{v}) = \frac{1}{2\pi} \int_{AB} \frac{\mathrm{d}l}{\lambda_i(\mathbf{r}, v')} \int \mathrm{d}^3 \mathbf{v}' \; \frac{v'^2}{v^4} \delta(v' - \kappa_i v) f_0(v', \hat{\mathbf{v}}') P_i(\cos \alpha)$$

Collect everything together, and sum over Earth species...

Non-standard DM operators

Non-relativistic Effective Field Theory (NREFT)

Write down all possible non-relativistic (NR) WIMP-*nucleon* operators which can mediate the *elastic* scattering.

[Fan et al - 1008.1591, Fitzpatrick et al. - 1203.3542]

The building blocks of these operators are:

$$ec{S}_{\chi}$$
, $ec{S}_N$, $rac{ec{q}}{m_N}$, $ec{v}_{\perp} = ec{v} + rac{ec{q}}{2\mu_{\chi N}}$

The WIMP velocity operator is not Hermitian, so it can appear only through the Hermitian *transverse velocity*:

 \bar{q}

$$\vec{v}_{\perp} = \vec{v} + \frac{\vec{q}}{2\mu_{\chi N}} \qquad \Rightarrow \vec{v}_{\perp} \cdot \vec{q} = 0 \qquad \qquad \vec{v}_{\parallel} \quad \vec{v}_{\parallel} \quad$$

NREFT operator basis

Write down all operators which are Hermitian, Galilean invariant and time-translation invariant:

[1008.1591, 1203.3542, 1308.6288, 1505.03117]

NREFT operator basis

Write down all operators which are Hermitian, Galilean invariant and time-translation invariant:

SI

$$\begin{array}{l}
\mathcal{O}_{1} = 1\\
\mathcal{O}_{3} = i\vec{S}_{N} \cdot (\vec{q} \times \vec{v}^{\perp})/m_{N}\\
\mathcal{O}_{4} = \vec{S}_{\chi} \cdot \vec{S}_{N}\\
\text{SD}
\mathcal{O}_{5} = i\vec{S}_{\chi} \cdot (\vec{q} \times \vec{v}^{\perp})/m_{N}\\
\mathcal{O}_{6} = (\vec{S}_{\chi} \cdot \vec{q})(\vec{S}_{N} \cdot \vec{q})/m_{N}^{2}\\
\mathcal{O}_{7} = \vec{S}_{N} \cdot \vec{v}^{\perp}\\
\mathcal{O}_{8} = \vec{S}_{\chi} \cdot \vec{v}^{\perp}\\
\mathcal{O}_{9} = i\vec{S}_{\chi} \cdot (\vec{S}_{N} \times \vec{q})/m_{N}\\
\mathcal{O}_{10} = i\vec{S}_{N} \cdot \vec{q}/m_{N}\\
\mathcal{O}_{11} = i\vec{S}_{\chi} \cdot \vec{q}/m_{N}
\end{array}$$

$$\begin{aligned} \mathcal{O}_{12} &= \vec{S}_{\chi} \cdot (\vec{S}_N \times \vec{v}^{\perp}) \\ \mathcal{O}_{13} &= i(\vec{S}_{\chi} \cdot \vec{v}^{\perp})(\vec{S}_N \cdot \vec{q})/m_N \\ \mathcal{O}_{14} &= i(\vec{S}_{\chi} \cdot \vec{q})(\vec{S}_N \cdot \vec{v}^{\perp})/m_N \\ \mathcal{O}_{15} &= -(\vec{S}_{\chi} \cdot \vec{q})((\vec{S}_N \times \vec{v}^{\perp}) \cdot \vec{q}/m_N^2 \\ &\vdots \end{aligned}$$

NB: two sets of operators, one for protons and one for neutrons...

[1008.1591, 1203.3542, 1308.6288, 1505.03117]

Example: Anapole DM

[1211.0503, 1401.4508, 1506.04454]

Lowest order interaction of Majorana DM with EM fields:

 $\mathcal{O}_A = \bar{\chi} \gamma^\mu \gamma^5 \chi \, \partial^\nu F_{\mu\nu}$

Induces an interaction with nucleons:

$$\mathcal{O}_A^{(N)} = eQ_N \bar{\chi} \gamma^\mu \gamma^5 \chi \, \bar{N} \gamma_\mu N$$

Leading to a NR matrix element:

$$\mathcal{M}_A^{(N)} = -eQ_N m_\chi m_N \vec{S}_\chi \cdot (\vec{v}^\perp + i\vec{S}_N \times \vec{q})$$
$$= -eQ_N m_\chi m_N (\mathcal{O}_8 + \mathcal{O}_9)$$

Energy spectra

$m_{\chi} = 100 \text{ GeV}$

Energy spectra

$m_{\chi} = 100 \text{ GeV}$

DM deflection distribution

Bradley J Kavanagh (LPTHE, Paris)

Earth-shadowing of DM

DM deflection distribution

DM deflection

EARTHSHADOW Code

EARTHSHADOW code (will be) available online at: <u>github.com/bradkav/EarthShadow</u>

Including routines, numerical results, plots and animations...

10000	Update README.md	just no			
.git_ignore	Create .git_ignore	a day ag			
	Initial commit	2 months ag			
README.md	Update README.md	a day a			
E README.md					
EarthShadow					
EarthShad	low				
EarthShad	low				
EarthShad	low				
EarthShad	you will find a number of tabulated results. Each file is named as Spee	ddist_op=			
EarthShad Tables of results In the 'results' folder, [operator]_mx=0.50	you will find a number of tabulated results. Each file is named as Spee 	ddist_op= 2 . The results are for a DM			
EarthShad Tables of results In the 'results' folder, [operator]_mx=0.50 mass of 0.5 GeV and	you will find a number of tabulated results. Each file is named as Spee 	ddist_op= 2 . The results are for a DM 1 in units of pi (so 1.00 is			
EarthShad Tables of results In the 'results' folder, [operator]_mx=0.50 mass of 0.5 GeV and gamma = pi).	you will find a number of tabulated results. Each file is named as Spee gam=[X.YZ]_ps=0.10.dat, where [operator] is either 1, 8 or 12 a scattering probability of 10%. The value [X.YZ] is the angle gamma	ddist_op= 2 . The results are for a DM 1 in units of pi (so 1.00 is			
EarthShad Tables of results In the 'results' folder, [operator]_mx=0.50 mass of 0.5 GeV and gamma = pi). Each data file contain	you will find a number of tabulated results. Each file is named as Spee gam=[X.YZ]_ps=0.10.dat , where [operator] is either 1 , 8 or 12 a scattering probability of 10%. The value [X.YZ] is the angle gamma	ddist_op= 2 . The results are for a DM in units of pi (so 1.00 is			
EarthShad Tables of results In the 'results' folder, [operator]_mx=0.50 mass of 0.5 GeV and gamma = pi). Each data file contain	you will find a number of tabulated results. Each file is named as Spee gam=[X.YZ]_ps=0.10.dat , where [operator] is either 1, 8 or 12 a scattering probability of 10%. The value [X.YZ] is the angle gamma	ddist_op= 2 . The results are for a DM in units of pi (so 1.00 is			

Results

Constraints on NREFT operators

Focus on SI operator (O_1), as well as O_8 and O_{12} :

Focus on low mass DM: $m_{\chi} = 0.5 \text{ GeV}$

Fix couplings to give 10% probability of scattering

Speed Distribution - Operator 1

Calculate DM speed distribution after Earth scattering: $f_{pert}(v)$

Speed Distribution - Operator 1

Calculate DM speed distribution after Earth scattering: $f_{pert}(v)$

Percentage change in speed dist.

Speed Distribution - O₁ vs O₈

Bradley J Kavanagh (LPTHE, Paris)

Speed Distribution - O1 vs O12

Bradley J Kavanagh (LPTHE, Paris)

Low mass vs High mass

Bradley J Kavanagh (LPTHE, Paris)

University of Zurich - 7th Nov. 2016

Sanity check

Compare rate of DM particles entering the Earth...

 $\Gamma_{\rm in} = \pi R_{\oplus} \langle v \rangle$

...and rate of DM particle leaving the Earth...

$$\Gamma_{\text{out}} = \int_{\mathbf{v} \cdot \mathbf{r} > 0} d^2 \mathbf{r} \int d^3 \mathbf{v} \, f_{\text{pert}}(\mathbf{v}, \mathbf{r}) \, (\mathbf{v} \cdot \mathbf{r})$$

DM mass [GeV]	Operator	$\Delta\Gamma_{ m out}^{ m Atten.}/\Gamma_{ m in}$	$\Delta\Gamma_{ m out}^{ m Defl.}/\Gamma_{ m in}$	$\Gamma_{\rm out}/\Gamma_{\rm in}$
0.5	$\hat{\mathcal{O}}_1$	-7.8%	+7.0%	99.2%
0.5	$\hat{\mathcal{O}}_8$	-8.0%	+7.3%	99.2%
0.5	$\hat{\mathcal{O}}_{12}$	-7.8%	+7.2%	99.4%
50	$\hat{\mathcal{O}}_1$	-7.5%	+7.3%	99.9%
50	$\hat{\mathcal{O}}_8$	-8.0%	+8.4%	100.4%
50	$\hat{\mathcal{O}}_{12}$	-7.3%	+6.6%	99.3%

Event Rate

Calculate number of signal events in a CRESST-II like experiment, with and without the effects of Earth-Shadowing, $N_{\rm pert}$ and $N_{\rm free}$.

Scattering predominantly with Oxygen and Calcium.

Bradley J Kavanagh (LPTHE, Paris)

CRESST-II Rate (attenuation-only)

Operator 1 - isotropic deflection

Operator 8 - forward deflection

Operator 12 - backward deflection

Bradley J Kavanagh (LPTHE, Paris)

CRESST-II Rate (attenuation + deflection)

Operator 1 - isotropic deflection

Operator 8 - forward deflection

Operator 12 - backward deflection

Bradley J Kavanagh (LPTHE, Paris)

Relative rate enhancement due to Earth-scattering (attenuation + deflection)

LNGS - Operator 1

LNGS - Gran Sasso Lab, Italy

Relative rate enhancement due to Earth-scattering (attenuation + deflection)

LNGS - Operator 8

LNGS - Gran Sasso Lab, Italy

Relative rate enhancement due to Earth-scattering (attenuation + deflection)

LNGS - Operator 12

LNGS - Gran Sasso Lab, Italy

Relative rate enhancement due to Earth-scattering (attenuation + deflection)

SUPL - Operator 1

SUPL - Stawell Underground Physics Lab, Australia

Relative rate enhancement due to Earth-scattering (attenuation + deflection)

Around the world

Implications of Earth-Shadowing

Smoking gun signature: daily modulation + location dependence

Possibility to distinguish different interactions with distinctive modulation signals

Possibility to measure the local DM density (by breaking degeneracy with cross section)

Bradley J Kavanagh (LPTHE, Paris) • Earth-s

Here, we have considered only the DM *speed* distribution. Need to look at the full 3-D *velocity* distribution to explore directional signatures of Earth-Shadowing.

The Single-scatter approximation is important to capture the effects of deflection. But it will break down rapidly as we increase the DM cross section. Next steps:

- Calculations in the many-scatter/'diffusion' regime
- Dedicated simulations to test the single-scatter regime and connect to very high cross sections (work in progress by Chris Kouvaris)

Mapping out the parameter space

Continue mapping out parameter space (m_{χ}, σ_p) and explore impact on upper limits for a range of interactions...

...and encourage experimental collaborations to explore full NREFT parameter space.

Conclusions

- Significant Earth-Shadowing is still allowed and detectable by current experiments
- Need to include both attenuation and deflection of DM
- Careful calculation including multiple elements, correct density profiles and different interactions

Conclusions

- Significant Earth-Shadowing is still allowed and detectable by current experiments
- Need to include both attenuation and deflection of DM
- Careful calculation including multiple elements, correct density profiles and different interactions
- The average incoming DM direction varies with time - distinctive daily modulation signals
- Different interactions may lead to modulations with different size and phases - and may therefore be distinguishable
- EARTHSHADOW code available online to include these effects: <u>github.com/bradkav/EarthShadow</u>

Bradley J Kavanagh (LPTHE, Paris) 🔹

Conclusions

Earth-shadowing of DM

- Significant Earth-Shadowing is still allowed and detectable by current experiments
- Need to include both attenuation and deflection of DM
- Careful calculation including multiple elements, correct density profiles and different interactions
- The average incoming DM direction varies with time - distinctive daily modulation signals
- Different interactions may lead to modulations with different size and phases - and may therefore be distinguishable
- EARTHSHADOW code available online to include these effects: github.com/bradkav/EarthShadow

Bradley J Kavanagh (LPTHE, Paris)

Backup Slides

INO - Operator 8

Relative rate enhancement due to Earth-scattering (attenuation + deflection)

Relative rate enhancement due to Earth-scattering (attenuation only)

Relative rate enhancement due to Earth-scattering (attenuation + deflection)

Relative rate enhancement due to Earth-scattering (attenuation + deflection)