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Neutron Stars

• Strongest gravitational field among all objects in the 
Universe that still have surface,

• Extreme Densities,
• Strongest magnetic fields.

Observations of neutron stars offer unique insight to the 
behaviour of matter and radiation in these extraordinary 

conditions.
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Equation of State to Mass and Radius
Rep. Prog. Phys. 76 (2013) 016901 F Özel

1992). In principle, the P –ρ relation can be obtained from
astrophysical measurements of neutron star masses and radii
by inverting this mapping. In practice, however, this requires a
measurement of radii for neutron stars that span the entire range
of masses between, e.g. 0.2–2 M⊙. Neutron stars with masses
much smaller than the Chandrasekhar mass of the progenitor
cores cannot be formed astrophysically (see the discussion in
Özel et al 2012b), severely limiting the applicability of this
direct inversion.

Even though the full functional form of the P –ρ relation
cannot be mapped out from astrophysical observations, it
has been shown that, for most model equations of state,
neutron star masses and radii allow us to infer the pressure
of ultradense matter at a few appropriately chosen densities
above ρs. In particular, the radii at 1.4 M⊙ lead primarily to
the determination of the pressure at 2ρs (Lattimer and Prakash
2001), the slope of the mass–radius relation is most strongly
affected by the pressure at 4ρs, and the maximum mass of
neutron stars is dictated by the pressure at ∼8ρs (Read et al
2009a, 2009b, Özel and Psaltis 2009). Therefore, measuring
the masses and radii of even a small number of neutron stars
can provide significant input to the microphysics calculations
(Özel et al 2010a, Steiner et al 2010).

Figure 10 shows the mass–radius relations for a number
of equations of state representing the different approaches
discussed above. For each equation of state, the shaded
region represents the range of uncertainty in the mass–radius
relations that are obtained for different input parameters within
those calculations. The curves labeled APR correspond to a
nucleonic equations of state with the expansion in terms of
2- and 3-body interactions and are characterized by radii that
are nearly independent of the stellar mass (Akmal et al 1998).
The MS region is an example of a field-theoretical calculation
with meson exchange interactions; as in the case of APR
relations, the radii are very weakly dependent on mass (Müller
& Serot 1996). BBB is a representative Brueckner–Hartree–
Fock model based on similar potentials as those incorporated in
the APR equation of state and predict comparable dependence
of mass on radius. The equations of state by Glendenning
and Schaffner-Bielich (1999), which are the field-theoretical
calculations that incorporate a condensate of kaons, possess an
inflection point at a characteristic density in the P –ρ relation.
This manifests itself as a characteristic kink in the mass–radius
relations of GS as shown in figure 10 and reduces the predicted
maximum mass neutron stars can support. Moreover, for the
mass range of astrophysical interest, the radii become smaller
with increasing stellar mass. Hybrid neutron stars with quark
matter cores are represented by the region labeled ABPR,
which is based on the APR equation of state but incorporates
a transition to quark matter at densities larger than ∼2–3ρs

(Alford et al 2005). Finally, the equations of state that include
strange quark matter are shown as the shaded region SQM,
characterized by a positive slope in the mass–radius relation
(Prakash et al 1995).

Measurements of neutron star radii and compactness
have been achieved through observations and modeling
of several different classes of sources. The number of
independent observables, the uncertainties associated with

Figure 10. Mass–radius relations for a selection of neutron star
equations of state. Each color-shaded region corresponds to a
different calculation and represents a range of model parameters
investigated in the corresponding study. APR is the nucleonic
equations of state of Akmal et al (1998) with the expansion in terms
of 2- and 3-body interactions. MS is a field-theoretical calculation
with meson exchange interactions (Müller and Serot 1996). GS
represents field-theoretical calculations that incorporate a
condensate of kaons (Glendenning and Schaffner-Bielich 1999).
ABPR is a hybrid model based on the APR equation of state but
incorporates a transition to quark matter at densities larger than
∼2–3ρs (Alford et al 2005). BBB represents a
Brueckner–Hartree–Fock model. The equations of state that include
strange quark matter are shown as the shaded region labeled SQM
(Prakash et al 1995).

each observable, and those in the theoretical models all
play a role in determining the overall accuracy of the radii
determinations. Below, I discuss the neutron star radius and
compactness determinations by different techniques in various
groups of sources. The first technique utilizes spectral data
and includes radii measurements in accreting neutron stars
during quiescence and during thermonuclear bursts. The
second technique is based on modeling pulse profiles obtained
from timing data and leads primarily to constraints on the
neutron star compactness (mass-to-radius ratio) in accreting
millisecond pulsars, millisecond radio pulsars, and stars that
show flux oscillations during thermonuclear bursts.

4.2. Spectral measurements

Numerous observations of accreting neutron stars during
quiescence led, so far, to constraining determinations of
apparent radii in a handful of sources. In particular, sources in
globular clusters, to which distances can be measured through
independent means, have primarily been selected for these
studies. In addition, sources that show modest or negligible
non-thermal components in their quiescent spectra and exhibit
little variability between different quiescent episodes serve as
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Spectroscopic Measurements

Cooling Neutron Stars in Quiescent Low Mass X-ray Binaries

Time Resolved X-ray Spectroscopic Measurements of Thermonuclear X-ray Bursts 
from Low Mass X-ray Binaries



Time Resolved X-ray Spectroscopy of X-ray Bursts

2 Galloway et al.

Fig. 1.— Example lightcurves of bursts observed by RXTE. The
top panel shows a long burst from GS 1826−24 on 1998 June 8
04:11:45 UT. The lower left panel shows a burst observed from
4U 1728−34 on 1999 June 30 19:50:14 UT, while the burst at
lower right was observed from 4U 2129+12 in the globular cluster
M15 on 2000 September 22 13:47:41 UT. The persistent (pre-burst)
level has been subtracted (dotted line). Note the diversity of burst
profiles, which arises in part from variations in the fuel composi-
tion; bursts with a slow rise and decay are characteristic of mixed
H/He fuel, while bursts with much faster rises likely burn primar-
ily He. Both bursts in the lower panels exhibited photospheric
radius-expansion.

et al. 1981; Ayasli & Joss 1982; Fushiki & Lamb 1987;
Fujimoto et al. 1987; Bildsten 1998; Cumming & Bild-
sten 2000; Narayan & Heyl 2003; Woosley et al. 2004).
The frequency, strength, and time scales of thermonu-
clear bursts depend on the composition of the burning
material, as well as the metallicity (here referring to the
CNO mass fraction, ZCNO) of the matter accreted onto
the neutron star, the amount of hydrogen burned be-
tween bursts, and the amount of fuel left-over from the
previous burst. Variations from source to source are also
expected because of differences in the core temperatures
of the neutron stars and the average accretion rate onto
the surface (Ayasli & Joss 1982; Fushiki & Lamb 1987;
Narayan & Heyl 2003). Theoretical ignition models such
as that described by Fujimoto et al. (1981) predict how
burst properties in an individual system change as the
accretion rate onto the neutron star varies. They iden-
tify three principal regimes of bursting, depending on
the accretion rate (Ṁ) usually expressed as a fraction
of the Eddington rate ṀEdd ( ≡ 1.3 × 10−8 M⊙ yr−1 or
8.8× 104 g cm−2 s−1 locally, averaged over the surface of
a 10 km NS). At the lowest accretion rates (< 0.01ṀEdd,
referred to as Case 3 by Fujimoto et al. 1981), the tem-
perature in the burning layer is too low for stable hy-
drogen burning; the hydrogen ignites unstably, in turn
triggering helium burning, which produces a type I X-
ray burst in a hydrogen-rich environment. At higher
accretion rates (0.01 <ṀEdd < 0.1, Case 2), hydrogen
instead burns stably into helium, leading to a growing
pure helium layer at the base of the accreted material.
The fuel layer heats steadily until ignition of the helium
occurs via the triple-α process. At these temperatures

and pressures, helium burning is also extremely unsta-
ble, and a rapid and intense helium burst follows. At the
highest accretion rates (0.1 <ṀEdd< 1, Case 1), material
is accreted faster than it can be consumed by steady hy-
drogen burning (which is limited by the rate of β-decays
in the CNO cycle), so that the helium ignites unstably
in a H-rich environment (see Bildsten 1998 for depen-
dences of these critical accretion rates on the metallici-
ties). Above this range (>ṀEdd), stable helium burning
becomes viable on the surface of the neutron star, which
depletes the primary fuel reserves and causes bursts to
occur less frequently, or not at all.

Hanawa & Fujimoto (1982) pointed out that the lumi-
nosities of neutron star LMXBs that have been observed
to burst imply accretion rates from ∼ 0.01 − 0.1 ṀEdd,
so that an individual source that varies in luminosity
should exhibit changes in its bursting behavior between
Case 2 and Case 1. This has proved difficult to test. The
accretion rate varies on time scales of weeks to months
(e.g. Muno et al. 2002c), much longer than the average
observation. The majority of sources either exhibit few
bursts, or several bursts are seen in a single luminos-
ity state (Lewin et al. 1993). Only a few sources have
been observed to burst over a range of luminosities, and
these have produced some perplexing results. As the ac-
cretion rate increases, the column of material above the
burning layer builds more quickly, and thus the time re-
quired to reach the critical temperature for ignition is
expected to decrease. This is best seen in the burst rate
increase observed in GS 1826−24 as the persistent flux
increased by a factor of ≈ 2 (Galloway et al. 2004b).
On the other hand, increases in persistent flux over a
wider range often result in a decrease in burst rate, as
in 4U 1820−30 (Clark et al. 1977). This contrary result
may be attributed to steady helium burning at the high-
est accretion rates, which reduces the amount of fuel for
X-ray bursts. This causes bursts to occur less often, as
also seen in EXO 0748−676 (Gottwald et al. 1986) and
4U 1705−44 (Langmeier et al. 1987), or to cease alto-
gether, as observed in GX 3+1 (Makishima et al. 1983).
However, no correlation was found between persistent
flux and burst recurrence times in Ser X-1 (Sztajno et al.
1983), 4U 1735−44 (Lewin et al. 1980; van Paradijs et al.
1988b), and 4U 1636−536 (Lewin et al. 1987). This sug-
gests either that an additional mechanism contributes to
the frequency of bursts, or that the persistent flux is not
a good measure of the accretion rate in these sources.

The change in the composition of the burning layer
as Ṁ increases also affects the properties of the bursts.
Helium burning occurs via the triple-α process, which is
moderated by the strong nuclear force and proceeds very
quickly at the temperatures and densities of the burning
layer. Hydrogen burning proceeds more slowly, because
it is limited by a β-decay that is moderated by the weak
force. Therefore, faster, more intense bursts character-
istic of a helium-rich burning layer should occur at rela-
tively low accretion rates (Case 2), while hydrogen-rich
bursts with slower rise and decay times should occur at
higher rates (Case 1). Surprisingly, most sources behave
in the opposite manner. The decay time scales of bursts
from 4U 1608−52 (Murakami et al. 1980b), 4U 1636−536
(Lewin et al. 1987), and 4U 1705−44 (Langmeier et al.
1987) have all been reported to decrease as the appar-

Galloway et al. 2008

Sudden flashes observed in the 
X-rays that are thought to be 
caused by thermonuclear 
b u r n i n g o f t h e a c c r e t e d 
material.





Thermonuclear X-ray Bursts as tools for mass-radius measurements

  The Evolution of a Burst 

     Eddington Flux = Touchdown Flux 

An �H-R� diagram for a burst 
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3. Determination of the Neutron Star Mass and Radius

In an approach similar to Özel (2006), we use the spectroscopic measurements of the
touchdown flux FTD and the ratio A during the cooling tails of the bursts, together with the

measurement of the distance D to the source in order to determine the neutron star mass
M and radius R. The observed spectroscopic quantities depend on the stellar parameters

according to the relations

FTD =
GMc

kesD2

(

1 −
2GM

Rc2

)1/2

(1)

and

A =
R2

D2f 4
c

(

1 −
2GM

Rc2

)−1

, (2)

where G is the gravitational constant, c is the speed of light, kes is the opacity to electron
scattering, and fc is the color correction factor.

In the absence of errors in the determination of the observable quantities, the last two
equations can be solved for the mass and radius of the neutron star. However, because of the

particular dependences of FTD and A on the neutron star mass and radius (see also Fig. 1
in Özel 2006), the loci of mass-radius points that correspond to each observable intersect, in

general, at two distinct positions. Moreover, the diverse nature of uncertainties associated
to each of the observables requires a formal assessment of the propagation of errors, which
we present here.

We assign a probability distribution function to each of the observable quantities and

denote them by P (D)dD, P (FTD)dFTD, and P (A)dA. Because the various measurements
that lead to the determination of the three observables are independent of each other, the
total probability density is simply given by the product

P (D, FTD, A)dDdFTDdA =

P (D)P (FTD)P (A)dDdFTDdA . (3)

Our goal is to convert this probability density into one over the neutron-star mass, M ,

and radius, R. We will achieve this by making a change of variables from the pair (FTD, A)
to (M, R) and then by marginalizing over distance. Formally, this implies that

P (D, M, R)dDdMdR =
1

2
P (D)P [FTD(M, R, D)]

P [A(M, R, D)]J

(

FTD, A

M, R

)

dDdMdR , (4)
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ABSTRACT

Data selection and the determination of systematic uncertainties in the spectroscopic measurements
of neutron star radii from thermonuclear X-ray bursts have been the subject of numerous recent
studies. In one approach, the uncertainties and outliers were determined by a data-driven Bayesian
mixture model, whereas in a second approach, data selection was performed by requiring that the
observations follow theoretical expectations. We show here that, due to inherent limitations in the
data, the theoretically expected trends are not discernible in the majority of X-ray bursts even if they
are present. Therefore, the proposed theoretical selection criteria are not practical with the current
data for distinguishing clean data sets from outliers. Furthermore, when the data limitations are
not taken into account, the theoretically motivated approach selects a small subset of bursts with
properties that are in fact inconsistent with the underlying assumptions of the method. We conclude
that the data-driven selection methods do not suffer from the limitations of this theoretically motivated
one.
Subject headings: dense matter — equation of state — stars:neutron — X-rays:stars — X-rays:bursts

— X-rays:binaries

1. INTRODUCTION

Thermonuclear flashes on neutron stars have been
used in the past decade to perform spectroscopic
measurements of neutron star radii and masses (e.g.,
Majczyna et al. 2005; Özel 2006; Özel et al. 2009,
2010; Poutanen et al. 2014). The rich burst dataset
(Galloway et al. 2008) from the Rossi X-ray Timing Ex-
plorer (RXTE) has not only allowed the measurement
of the macroscopic properties of half a dozen of neutron
stars but also initiated detailed studies of systematic un-
certainties in these measurements. Even though the ma-
jority of sources showed bursting behavior that is highly
reproducible (Güver et al. 2012a,b), a subset shows burst
properties and evolution that are more complex.
A number of studies explored different approaches

to identifying outliers in the burst samples of differ-
ent sources that contaminate the statistical inferences
in the measurements. In Güver et al. (2012a,b), we used
a data-driven approach that employs a Gaussian mix-
ture Bayesian inference to reject outliers. In particular,
we looked at the cooling tails of X-ray bursts in the flux-
temperature diagram, which would have yielded identical
tracks among bursts of the same source in the absence
of any astrophysical complexities. The degree of scatter
we observed in the cooling tracks allowed us to measure
the level of systematic uncertainty in the measurements,
e.g., due to obscuration, reflection off the accretion disk,
or uneven burning on the stellar surface, as well as to
remove a small percentage of cooling tracks that clearly
did not behave like the majority.
In an alternate approach, Poutanen et al. (2014; see

also Kajava et al. 2014) developed a theoretically mo-
tivated method to select bursts. They used the burst-
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2 Istanbul University, Science Faculty, Department of Astronomy

and Space Sciences, Beyazit, 34119, Istanbul, Turkey

ing neutron star atmosphere models of Suleimanov et al.
(2012) to calculate the evolution of the blackbody nor-
malization and chose only those bursts that followed
their predicted trends. When applied to the source
4U 1608−52, they found that this approach selects a very
small fraction of bursts as acceptable ones and leads to
substantially larger inferred neutron star radii.
In this paper, we show that the bursts selected by

the data-driven approach of Güver et al. (2012a,b) are
not in conflict with the theoretical expectations of the
Suleimanov et al. (2012) atmosphere models. The theo-
retical models predict that the blackbody normalization
evolves rapidly in a narrow range of fluxes close to the
Eddington limit. However, in most bursts, the instru-
ment limitations of RXTE do not allow resolving this
fast predicted evolution. When this limitation is not
taken into account in burst selection, as was the case
in Poutanen et al. (2014), this procedure biases the se-
lection toward a peculiar set of bursts. We further show
that this subset of bursts are not photospheric radius ex-
pansion bursts, which is a requirement in the theoretical
motivated selection criteria of Poutanen et al. (2014) and
Kajava et al. (2014). Because of both its practical lim-
itations and its biased results, we argue that this data
selection method does not lead to reliable radius mea-
surements.

2. APPLYING THE THEORETICAL SELECTION CRITERIA
TO RXTE BURSTS

In theoretical models of bursting neutron star atmo-
spheres, the deviation of the spectrum from a blackbody
is typically quantified in terms of the color correction
factor

fc ≡ Tc/Teff , (1)

where Tc is the color temperature obtained from the spec-
tral fits and Teff is the effective temperature of the atmo-
sphere. The color correction factor depends on the effec-
tive temperature of the atmosphere, its composition, and



Effects of Rotation and Temperature Correction to 
Eddington Limit

3

Fig. 1.— Contours of constant apparent angular size (blue) and touchdown flux (green) for a M = 1.4 M⊙ and R = 10 km neutron star
spinning at 600 Hz and a spectral temperature during the touchdown moment of Eddington limited bursts calculated using equation (8) for
this mass and radius. These curves include the corrections to the apparent area due to neutron star spin and the temperature correction
to the Eddington limit, respectively. The red curves are the corresponding contours when these corrections are not taken into account and
would have led to no solutions for the neutron star mass and radius.

In Figure 1, we show in blue the contour of constant apparent angular size on the mass-radius plane for a M = 1.4 M⊙

and R = 10 km neutron star spinning at 600 Hz. To highlight the effect of the rotational corrections, we also plot
in red the corresponding contour obtained under the Schwarzschild approximation used in the previous studies. As
discussed in Bauböck et al. (2015), the rotational effects lead to larger angular sizes for the same neutron star mass
and radius.

2.2. Temperature Corrections to the Eddington Limit

The atmospheres of neutron stars during thermonuclear bursts are dominated by electron scattering. During strong
bursts, the radiation forces lift the photosphere above the neutron star surface and allow for a measurement of the
Eddington critical luminosity. When this luminosity is measured at the touchdown point, i.e., when the photosphere
has returned to the neutron star surface, it is related to the neutron star mass and radius via

Ftd =
GMC

kesD2

(

1−
2GM

Rc2

)1/2

, (3)

where
kes ≡ 0.2(1 +X) cm2 g−1 (4)

is the electron scattering opacity and X is the hydrogen mass fraction of the atmosphere.
Because of the energy dependence in the Klein-Nishina cross section and the fact that the photons exchange energy

with the electrons at each scattering, the Eddington flux depends on the temperature of the atmosphere. Paczynski
(1983) derived an approximation for this temperature correction, which was further refined by Suleimanov et al. (2012)
by taking into account the angular dependence of the scattering processes. With the approximate formula given in
the latter study, the Eddington flux becomes

Ftd =
GMC

kesD2

(

1−
2GM

Rc2

)1/2
[

1 +

(

kTc

38.8 keV

)ag
(

1−
2GM

Rc2

)−ag/2
]

, (5)

where
ag = 1.01 + 0.067

( geff
1014 cm s−2

)

(6)

and

geff =
GM

R2

(

1−
2GM

Rc2

)−1/2

. (7)

In equation (5), the correction to the Eddington flux depends on the color temperature when the atmosphere reaches
that limit, and this color temperature, in turn, depends on the mass and radius of the neutron star and the composition
of the atmosphere via

TEdd,c = fcTEdd,eff = fc

(

geffc

σBkes

)1/4

= fc

(

GMc

σBkesR2

)1/4 (

1−
2GM

Rc2

)−1/8

, (8)

Özel et al. 2016
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3. Determination of the Neutron Star Mass and Radius

In an approach similar to Özel (2006), we use the spectroscopic measurements of the
touchdown flux FTD and the ratio A during the cooling tails of the bursts, together with the

measurement of the distance D to the source in order to determine the neutron star mass
M and radius R. The observed spectroscopic quantities depend on the stellar parameters

according to the relations

FTD =
GMc

kesD2

(

1 −
2GM

Rc2

)1/2

(1)

and

A =
R2

D2f 4
c

(

1 −
2GM

Rc2

)−1

, (2)

where G is the gravitational constant, c is the speed of light, kes is the opacity to electron
scattering, and fc is the color correction factor.

In the absence of errors in the determination of the observable quantities, the last two
equations can be solved for the mass and radius of the neutron star. However, because of the

particular dependences of FTD and A on the neutron star mass and radius (see also Fig. 1
in Özel 2006), the loci of mass-radius points that correspond to each observable intersect, in

general, at two distinct positions. Moreover, the diverse nature of uncertainties associated
to each of the observables requires a formal assessment of the propagation of errors, which
we present here.

We assign a probability distribution function to each of the observable quantities and

denote them by P (D)dD, P (FTD)dFTD, and P (A)dA. Because the various measurements
that lead to the determination of the three observables are independent of each other, the
total probability density is simply given by the product

P (D, FTD, A)dDdFTDdA =

P (D)P (FTD)P (A)dDdFTDdA . (3)

Our goal is to convert this probability density into one over the neutron-star mass, M ,

and radius, R. We will achieve this by making a change of variables from the pair (FTD, A)
to (M, R) and then by marginalizing over distance. Formally, this implies that

P (D, M, R)dDdMdR =
1

2
P (D)P [FTD(M, R, D)]

P [A(M, R, D)]J

(

FTD, A

M, R

)

dDdMdR , (4)
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Fig. 4.— Same as in Figure 3 but for SAX J1748.9−2021.

3.1.2. SAX J1748.9−2021

The transient neutron star X-ray binary SAX J1748.92021 is located in the globular cluster NGC 6440, which is a
massive and old cluster in the Galactic bulge. Two optical and one near-IR studies give consistent and well-constrained
distances to NGC 6440: Kuulkers et al. (2003) reported 8.4+1.5

−1.3 kpc, Harris et al. (2010) found 8.5 kpc, while Valenti
et al. (2007) found 8.2± 0.6 kpc using near-IR data. In this last study, the distance uncertainty is improved and takes
into account the systematic errors introduced by the method of comparing the properties of NGC 6440, including its
metallicity and age, to the reference cluster. We adopt here the latter distance and its uncertainty.
SAX J1748.9−2021 has a spin frequency of 420 Hz, detected during intermittent pulsations observed in the persistent

emission (Altamirano et al. 2008). The same study also found a binary orbital period of 8.7 hr. Because there is no
specific information about the evolutionary state of the donor, we take a flat prior in the hydrogen mass fraction
between 0 and 0.7.
The top left panel of Figure 4 shows the evolution of the flux and temperature during the cooling tails of four

bursts observed from SAX J1748.9−2021, while the top right panel shows the 68% and 95% confidence contours in
the measurement of the blackbody normalization vs. temperature during the touchdown phases in its two Eddington-
limited bursts.
The lower panels of Figure 4 show the 68% confidence contour in mass and radius as well as the posterior likelihood

marginalized over mass using the Bayesian framework and priors discussed above.

3.1.3. EXO 1745−248

EXO 1745−248 is located in Terzan 5, one of the most metal-rich globular clusters in the Galaxy. The distance to
Terzan 5 was obtained using HST/NICMOS data (Ortolani et al. 2007). The sources of uncertainty in the distance
measurement were discussed in detail in Özel et al. (2009). We adopt here the same flat likelihood over distance
centered at 6.3 kpc with a width of 0.63 kpc.
No burst oscillations or persistent pulsations have ever been observed from EXO 1745−248. As before, we adopt a

flat prior over its spin frequency between 250 and 650 Hz when calculating the spin corrections to the apparent angular
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ABSTRACT

Data selection and the determination of systematic uncertainties in the spectroscopic measurements
of neutron star radii from thermonuclear X-ray bursts have been the subject of numerous recent
studies. In one approach, the uncertainties and outliers were determined by a data-driven Bayesian
mixture model, whereas in a second approach, data selection was performed by requiring that the
observations follow theoretical expectations. We show here that, due to inherent limitations in the
data, the theoretically expected trends are not discernible in the majority of X-ray bursts even if they
are present. Therefore, the proposed theoretical selection criteria are not practical with the current
data for distinguishing clean data sets from outliers. Furthermore, when the data limitations are
not taken into account, the theoretically motivated approach selects a small subset of bursts with
properties that are in fact inconsistent with the underlying assumptions of the method. We conclude
that the data-driven selection methods do not suffer from the limitations of this theoretically motivated
one.
Subject headings: dense matter — equation of state — stars:neutron — X-rays:stars — X-rays:bursts

— X-rays:binaries

1. INTRODUCTION

Thermonuclear flashes on neutron stars have been
used in the past decade to perform spectroscopic
measurements of neutron star radii and masses (e.g.,
Majczyna et al. 2005; Özel 2006; Özel et al. 2009,
2010; Poutanen et al. 2014). The rich burst dataset
(Galloway et al. 2008) from the Rossi X-ray Timing Ex-
plorer (RXTE) has not only allowed the measurement
of the macroscopic properties of half a dozen of neutron
stars but also initiated detailed studies of systematic un-
certainties in these measurements. Even though the ma-
jority of sources showed bursting behavior that is highly
reproducible (Güver et al. 2012a,b), a subset shows burst
properties and evolution that are more complex.
A number of studies explored different approaches

to identifying outliers in the burst samples of differ-
ent sources that contaminate the statistical inferences
in the measurements. In Güver et al. (2012a,b), we used
a data-driven approach that employs a Gaussian mix-
ture Bayesian inference to reject outliers. In particular,
we looked at the cooling tails of X-ray bursts in the flux-
temperature diagram, which would have yielded identical
tracks among bursts of the same source in the absence
of any astrophysical complexities. The degree of scatter
we observed in the cooling tracks allowed us to measure
the level of systematic uncertainty in the measurements,
e.g., due to obscuration, reflection off the accretion disk,
or uneven burning on the stellar surface, as well as to
remove a small percentage of cooling tracks that clearly
did not behave like the majority.
In an alternate approach, Poutanen et al. (2014; see

also Kajava et al. 2014) developed a theoretically mo-
tivated method to select bursts. They used the burst-

Electronic address: E-mail: fozel@email.arizona.edu
1 Department of Astronomy, University of Arizona, 933 N.

Cherry Ave., Tucson, AZ 85721, USA
2 Istanbul University, Science Faculty, Department of Astronomy

and Space Sciences, Beyazit, 34119, Istanbul, Turkey

ing neutron star atmosphere models of Suleimanov et al.
(2012) to calculate the evolution of the blackbody nor-
malization and chose only those bursts that followed
their predicted trends. When applied to the source
4U 1608−52, they found that this approach selects a very
small fraction of bursts as acceptable ones and leads to
substantially larger inferred neutron star radii.
In this paper, we show that the bursts selected by

the data-driven approach of Güver et al. (2012a,b) are
not in conflict with the theoretical expectations of the
Suleimanov et al. (2012) atmosphere models. The theo-
retical models predict that the blackbody normalization
evolves rapidly in a narrow range of fluxes close to the
Eddington limit. However, in most bursts, the instru-
ment limitations of RXTE do not allow resolving this
fast predicted evolution. When this limitation is not
taken into account in burst selection, as was the case
in Poutanen et al. (2014), this procedure biases the se-
lection toward a peculiar set of bursts. We further show
that this subset of bursts are not photospheric radius ex-
pansion bursts, which is a requirement in the theoretical
motivated selection criteria of Poutanen et al. (2014) and
Kajava et al. (2014). Because of both its practical lim-
itations and its biased results, we argue that this data
selection method does not lead to reliable radius mea-
surements.

2. APPLYING THE THEORETICAL SELECTION CRITERIA
TO RXTE BURSTS

In theoretical models of bursting neutron star atmo-
spheres, the deviation of the spectrum from a blackbody
is typically quantified in terms of the color correction
factor

fc ≡ Tc/Teff , (1)

where Tc is the color temperature obtained from the spec-
tral fits and Teff is the effective temperature of the atmo-
sphere. The color correction factor depends on the effec-
tive temperature of the atmosphere, its composition, and



Possible Sources of Uncertainties

Is it really statistically appropriate to fit the X-ray spectra during burst 
decay with Planckian functions ? (Güver et al. 2012a)

Do we observe the whole neutron-star surface during the decay of an X-
ray burst? (Güver et al. 2012a)

How are the maximum fluxes of X-ray bursts related to the Eddington 
Limit ? (Güver et al. 2012b)

Are the flux measurements absolutely correct (Güver et al. 2016)



How good are the blackbody fits ?
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Figure 1. Histograms show the distributions of X2/dof values obtained from fitting 1309, 2519, and 4596 X-ray burst spectra observed from the sources KS 1731−260,
4U 1728−34, and 4U 1636−536, respectively. The solid lines show the expected χ2/dof distributions for the number of degrees of freedom used during the fits. The
vertical dashed lines correspond to the highest values of X2/dof that we considered as statistically acceptable for each source. The vast majority of spectra are well
described by blackbody functions.
(A color version of this figure is available in the online journal.)

1984; Bildsten 1995; Spitkovsky et al. 2002), and the excitation
of non-radial modes on the stellar surface (Heyl 2004; Piro &
Bildsten 2005; Narayan & Cooper 2007) are all expected to lead
to some variations in the effective temperature of emission at
different latitudes and longitudes on the stellar surface.

The characteristics of burst oscillations observed during
the cooling tails of X-ray bursts, however, imply that any
variations in the surface temperatures of neutron stars can
only be marginal. Indeed, any component of the variation in
the surface temperature that is not symmetric with respect
to the rotation axis leads to oscillations of the observed flux
at the spin frequency of the neutron star. Such oscillations have
been observed in the tails of bursts from many sources (Galloway
et al. 2008a). The rms amplitudes of burst oscillations in the tails
of bursts can be as large as 15%, although the typical amplitude
is ≃5% (Muno et al. 2002). The stringent upper limits on the
observed amplitudes at the harmonics of the spin frequencies
can be accounted for only if the temperature anisotropies are
dominated by the m = 1 mode in which exactly half the
neutron star is hotter than the other half (Muno et al. 2002).
Moreover, the rather weak dependence of the rms amplitudes on
photon energy (Muno et al. 2003) requires that any temperature
variation between the hotter and cooler regions of the neutron

star is !0.2 keV, even for the bursts that show the largest burst
oscillation amplitudes. All of the above strongly suggest that
the expected flux anisotropy during the cooling tail of an X-
ray burst is !5%–10% and, therefore, the expected systematic
uncertainties in the inferred apparent stellar radius will be half
of that value, since the latter scales as the square root of the flux.

A final inherent systematic uncertainty in the spectroscopic
measurement of the apparent surface area of a neutron star arises
from the dependence of the color correction factor on the ef-
fective temperature of the atmosphere. In Figure 2, we show
the predicted evolution of the color correction factor as a func-
tion of the color temperature of the spectrum as measured by
an observer at infinity, for calculations by different groups for
different neutron-star surface gravities and atmospheric compo-
sitions (Madej et al. 2004; Majczyna et al. 2005; Suleimanov
et al. 2011). To make the models comparable to the observed
evolution of the blackbody normalizations presented in the next
section, we plot the color correction factor against the most
directly observed quantity, i.e., the color temperature at infin-
ity. When the color temperature at infinity is less than 2.5 keV,
purely helium or low-metallicity models show 0%–8% evolution
of the color correction factor per keV of color temperature at in-
finity, while above 2.5 keV, they show an evolution of 12%–20%

5

The systematic uncertainty required to render the observed spectra as a 
blackbody is ~3-5% 

A similar amount (~3-5%) of X-ray spectra are just not consistent with a blackbody function.
Güver et al. 2012a



How reproducible are the cooling tails ?
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Figure 3. Left: the flux–temperature diagram for all the spectra in the cooling tails of bursts from (top) KS 1731−260, (Middle) 4U 1728−34, and (bottom)
4U 1636−536 that have statistically acceptable values of χ2/dof. The diagonal lines correspond to the best-fit blackbody normalization and its uncertainty, as reported
in the rightmost column of Table 3. Right: the distribution of measured normalization values of the blackbody spectra in three of the flux intervals we chose. The
normalization values for the vast majority of spectra fall within a narrowly peaked distribution, with only a number of outliers toward lower (for 4U 1728−34) or
higher values (for 4U 1636−536) of the normalization. This justifies the assumption that the entire neutron-star surface is emitting during the cooling tail of a burst
with marginal temperature variations in latitude or longitude.
(A color version of this figure is available in the online journal.)
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Figure 5. Dependence of the parameters of the intrinsic distribution of blackbody normalizations on X-ray flux during the cooling tails of thermonuclear X-ray bursts
in KS 1731−260, 4U 1728−34, and 4U 1636−536, when the outliers have been removed. Each dot represents the most likely centroid of the intrinsic distribution,
while each error bar represents its most likely width, as calculated using the procedure outlined in Section 4.2 and depicted in Figure 4. In each panel, the solid and
dashed horizontal lines show the best-fit normalization and its systematic uncertainty inferred using the flux bins that do not correspond to near-Eddington fluxes and
are denoted by filled circles on the error bars.
(A color version of this figure is available in the online journal.)

Table 3
Blackbody Normalizationsa

Source Flux Interval (10−8 erg s−1 cm−2) Averageb

0.5–1 1–2 2–3 3–4 4–5 5–6 6–7 7–8 8–9 9–10

4U 1636−536 112.6 124.6 126.9 142.7 144.2 145.7 145.7 149.5 . . . . . . 130.7
±18.7 ±16.1 ±12.4 ±22.4 ±18.4 ±15.1 ±14.1 ±4.6 ±20.9

4U 1702−429 151.0 167.6 180.4 184.2 185.7 171.4 151.0 119.3 98.2 . . . 176.6
±13.9 ±10.1 ±9.9 ±4.1 ±3.9 ±8.1 ±8.1 ±17.2 ±12.4 ±11.6

4U 1705−44 80.2 86.9 86.9 82.4 . . . . . . . . . . . . . . . . . . 83.9
±9.9 ±7.1 ±10.9 ±7.4 ±9.1

4U 1724−307 98.7 108.3 120.4 127.4 125.4 102.8 . . . . . . . . . . . . 113.8
±7.1 ±4.6 ±12.6 ±3.7 ±19.4 ±15.4 ±15.4

4U 1728−34 114.1 126.1 137.4 145.0 135.2 137.4 133.7 126.1 117.8 93.7 134.4
±15.6 ±13.4 ±10.9 ±8.9 ±18.2 ±18.4 ±16.4 ±13.1 ±15.4 ±13.1 ±14.9

KS 1731−260 72.6 89.9 93.0 95.2 95.2 . . . . . . . . . . . . . . . 96.0
±6.1 ±5.4 ±4.1 ±9.6 ±1.9 ±7.9

4U 1735−44 71.6 71.6c 72.6c . . . . . . . . . . . . . . . . . . . . . 72.1c

±4.6 +2.0
−1.5

+2.4
−1.9

+1.3
−1.0

4U 1746−37d 12.9 16.3 17.3 15.6 15.2 15.2 19.9 . . . . . . . . . 15.7
±1.9 ±0.5 ±0.4 ±2.4 ±2.4 ±1.6 ±6.4 ±2.4

SAX J1748.9−2021 92.7 87.7 91.7 87.7 . . . . . . . . . . . . . . . . . . 89.7
±11.9 ±6.6 ±7.6 ±15.4 ±9.6

SAX J1750.8−2900 126.9 110.8 106.8 97.2 86.2 . . . . . . . . . . . . . . . 93.2c

±40.5 ±19.9 ±10.1 ±8.1 ±8.6 ±9.4

Notes.
a The parameters of the intrinsic distribution of blackbody normalizations in different flux intervals for all the sources we considered in this manuscript. All
normalizations are in units of (km/10 kpc)2.
b Taking into account all flux intervals for which the color temperature of the spectrum is !2.5 keV; see the text for details.
c The range of normalizations in this flux interval is consistent with no systematic uncertainties; the quoted uncertainties are purely statistical.
d For 4U 1746−37, all flux intervals are in units of 10−9 erg s−1 cm−2.

we obtained from the data at different flux intervals as a
systematic uncertainty in the measurement. In order to achieve
this, we applied the Bayesian Gaussian mixture algorithm to
the combined data set for each source for all flux intervals
that correspond to a color temperature !2.5 keV. This way,
we computed the most probable value for the blackbody
normalization for each source in a wide flux range, as well as the

systematic uncertainties in that measurement, which account for
the potential decline of the normalization with decreasing flux.

In Figure 5, we identify the flux intervals we used for each
source with a filled circle in the middle of each error bar.
We also depict with a solid line the most probable value of
the normalization in this wide flux range and with dashed
lines the range of systematic uncertainties. Our results are
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Evolution During the Cooling Tails
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ü
ve
r
et

al
.
(2
01

2b
),

th
e
sp
ec
tr
a
fr
om

th
at

lo
n
g
b
u
rs
t
u
se
d
in

th
e
S
u
le
im

an
ov

et
al
.
(2
01

1)
st
u
d
y
ar
e
si
gn

ifi
ca
nt
ly

d
iff
er
en
t
fr
om

b
la
ck
b
od

ie
s
an

d
fr
om

m
od

el
at
m
os
p
h
er
e
sp
ec
tr
a,

re
su
lt
in
g
in

χ
2
/d

.o
.f
.
in

th
e
ra
n
ge

1-
8
in

th
e
sp
ec
tr
al

fi
ts

(s
ee

al
so

in
’t

Z
an

d
&

W
ei
nb

er
g
20

10
).

T
h
is

in
d
ic
at
es

si
gn

ifi
ca
nt

co
nt
am

in
at
io
n
of

th
e
su
rf
ac
e
em

is
si
on

,
ei
th
er

by
th
e
ac
cr
et
io
n
fl
ow

or
by

at
om

ic
li
n
es

fr
om

th
e
as
h
es

of
th
e
b
u
rs
t
th
at

h
av
e
b
ee
n
b
ro
u
gh

t
u
p
to

th
e
p
h
ot
os
p
h
er
e,

w
h
ic
h
m
ak

es
th
e
re
su
lt
s
u
n
re
li
ab

le
.
In
st
ea
d
,
w
e
m
ak

e
u
se

of
th
e
co
ol
in
g
ta
il
s
of

th
e
tw

o
n
or
m
al

b
u
rs
ts

ob
se
rv
ed

fr
om

4U
17

24
−
20

7
to

d
et
er
m
in
e
th
e
ap

p
ar
en
t
an

gu
la
r
si
ze

(s
ee

G
ü
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Figure 6. Left: the distribution of the X2/dof values obtained from fitting the spectra during the tails of thermonuclear X-ray bursts observed from the sources
4U 1702−429, 4U 1705−44, and 4U 1724−307 together with the theoretically expected distribution; the vertical dashed line marks the maximum value of X2/dof
beyond which we consider the blackbody model to be inconsistent with the data. Middle: the flux–temperature diagrams of the cooling tails of bursts from the same
sources; the solid and dashed lines correspond to the most probable values of the blackbody normalizations throughout the bursts and their systematic uncertainties.
Right: the dependence of the parameters of the intrinsic blackbody normalization on X-ray flux; the solid and dashed lines correspond to the most probable values
of the normalizations and their systematic uncertainties for the flux bins that are marked by a filled circle. Error bars without filled circles appear at near-Eddington
fluxes where the color correction factor increases, causing the apparent decline in the normalization.
(A color version of this figure is available in the online journal.)

summarized in Table 3. The blackbody normalizations for KS
1731−260, 4U 1728−34, and 4U 1636−536 are 96.0 ± 7.9
(km/10 kpc)2, 134.4 ± 14.9 (km/10 kpc)2, and 130.7 ± 20.9
(km/10 kpc)2, respectively, with the uncertainties dominated
entirely by systematics.

5. THE APPARENT RADII OF X-RAY BURSTERS

Figures 6–8 and Tables 2 and 3 show the results obtained
after applying the procedure outlined in Section 4 to seven more

sources from Table 1. The last two sources, 4U 0513−40 and Aql
X-1, show large variations in the cooling tails of individual bursts
and are discussed in detail in Appendixes C and D, respectively.
Moreover, in Appendixes A and B we also discuss a number of
bursts from 4U 1702−429 and a long burst from 4U 1724−307,
which we did not include in the analysis.

As in the case of the three sources discussed in the previous
section, the vast majority of the spectra observed during the
cooling tails of X-ray bursts are very well described by black-
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3. Determination of the Neutron Star Mass and Radius

In an approach similar to Özel (2006), we use the spectroscopic measurements of the
touchdown flux FTD and the ratio A during the cooling tails of the bursts, together with the

measurement of the distance D to the source in order to determine the neutron star mass
M and radius R. The observed spectroscopic quantities depend on the stellar parameters

according to the relations

FTD =
GMc

kesD2

(

1 −
2GM

Rc2

)1/2

(1)

and

A =
R2

D2f 4
c

(

1 −
2GM

Rc2

)−1

, (2)

where G is the gravitational constant, c is the speed of light, kes is the opacity to electron
scattering, and fc is the color correction factor.

In the absence of errors in the determination of the observable quantities, the last two
equations can be solved for the mass and radius of the neutron star. However, because of the

particular dependences of FTD and A on the neutron star mass and radius (see also Fig. 1
in Özel 2006), the loci of mass-radius points that correspond to each observable intersect, in

general, at two distinct positions. Moreover, the diverse nature of uncertainties associated
to each of the observables requires a formal assessment of the propagation of errors, which
we present here.

We assign a probability distribution function to each of the observable quantities and

denote them by P (D)dD, P (FTD)dFTD, and P (A)dA. Because the various measurements
that lead to the determination of the three observables are independent of each other, the
total probability density is simply given by the product

P (D, FTD, A)dDdFTDdA =

P (D)P (FTD)P (A)dDdFTDdA . (3)

Our goal is to convert this probability density into one over the neutron-star mass, M ,

and radius, R. We will achieve this by making a change of variables from the pair (FTD, A)
to (M, R) and then by marginalizing over distance. Formally, this implies that

P (D, M, R)dDdMdR =
1

2
P (D)P [FTD(M, R, D)]

P [A(M, R, D)]J

(

FTD, A

M, R

)

dDdMdR , (4)
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Photospheric Radius Expansion Events
5

Fig. 6.— The evolution of the spectral parameters of two bursts from 4U 1608−52. The left panel shows one selected by Poutanen et al.
(2014) as a PRE burst, whereas the right panel shows a bona fide PRE burst according to Güver et al. (2012a). The blackbody normalization
in the first case never exceeds the asymptotic value at the cooling tail and its touchdown flux is substantially below the touchdown flux of
the second burst. This strongly argues against the classification of the bursts selected by Poutanen et al. (2014) as PRE bursts.

(2014) that required selected bursts to follow trends ex-
pected from the bursting neutron star atmosphere mod-
els of Suleimanov et al. (2012). The two approaches
led to non-overlapping data selections. Furthermore,
Poutanen et al. (2014) and Kajava et al. (2014) have
used the theoretically motivated model to argue that the
data-driven selection is not reliable because it is in con-
flict with the theoretical expectations.
We showed that the theoretically expected trends be-

tween different spectroscopic quantities, such as the
blackbody normalization, the color temperature, and the
blackbody flux, get substantially smeared in the data be-
cause of three effects. First, the inherent limitations of
the RXTE data do not allow resolving the rapid spec-
tral evolution that occurs at the end of the photospheric
radius expansion episodes. Second, even a mild scat-
ter in the emitting area, e.g., due to uneven burning,
an evolving photosphere, partial obscuration of the sur-
face, and/or reflection off of the accretion disk, lead to a
much larger scatter in the measured spectroscopic quan-
tities that mask the theoretically expected trends. Fi-
nally, counting statistics lead to correlated measurement
uncertainties between the spectroscopic quantities, fur-
ther smearing any trends. We quantitatively showed that
these effects are at a level to prevent the detection of
theoretical trends in the majority of the burst data and
preclude using these criteria to argue against the data-
driven selection methods.
Finally, we studied the sub-sample of bursts selected

by Poutanen et al. (2014) for 4U 1608−52 using the the-
oretically motivated criteria without taking into account
the data limitations discussed above. We showed that,
contrary to the implicit assumption in the method, the
bursts selected are not PRE bursts. Indeed, at no point
during any of these bursts does the radius of the pho-
tosphere exceed the asymptotic radius measured during
the cooling tails of the same bursts. Furthermore, the in-
ferred touchdown fluxes of these bursts is 30% below the
touchdown fluxes of the securely identified PRE bursts
that reach the Eddington limit.
The quantitative analyses presented in this paper leads

us to the conclusion that this theoretically motivated
selection procedure is neither practical, given the limi-
tations of the data, nor unbiased, given that it selects
bursts that are inconsistent with its own assumptions.
However, in the future, with the use of an X-ray detec-
tor with a larger collecting area and significantly fewer
limitations when observing sources with high count rates,
this could lead to useful radius measurements.
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Radius” conference in Montreal for helpful discussions
and Gordon Baym, Sebastien Guillot, and Craig Heinke
for comments on the manuscript. FÖ acknowledges sup-
port from NSF grant AST 1108753. TG acknowledges
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Figure 6. Left panels: 68% and 95% confidence contours of the blackbody normalization and temperature obtained from fitting the X-ray spectra at the touchdown
moments of each PRE burst observed from 4U 1636−536 and 4U 1728−34. The dotted red lines show contours of constant bolometric flux. Right panels: 68% and
95% confidence contour of the parameter of an assumed underlying Gaussian distribution of touchdown fluxes. The width of the underlying distribution reflects the
systematic uncertainty in the measurements. The dashed red lines show the width when the systematic uncertainty is 5% and 10% of the mean touchdown flux.
(A color version of this figure is available in the online journal.)

For each burst, the bolometric flux at touchdown is obtained
from the combination of the blackbody temperature and normal-
ization. Figure 6 shows the 68% and 95% confidence contours
of the blackbody normalization and temperature inferred from
fitting the X-ray spectra obtained during the touchdown moment
for 4U 1728−34 and 4U 1636−536. We also plot in these fig-
ures contours of constant bolometric flux, shown as dotted (red)
lines. Even though the uncertainties in the normalization and
temperature are correlated, the bolometric flux in each burst is
well constrained. Furthermore, as Figure 6 shows, the individual
confidence contours from each burst appear to be in very good
statistical agreement with each other for both sources.

The distribution of inferred bolometric fluxes at touchdown
is expected to have a finite width both because of measure-
ment uncertainties and because of the possible variations in the
physical conditions that determine the emerging flux during a
PRE burst. The measurement uncertainties include formal un-
certainties from counting statistics, the uncertainties in the bolo-
metric correction, the subtraction of the background emission,
and the determination of the touchdown moment. Anisotropies
in the bursts, variations in the composition and the reflection
off the accretion flow (e.g., Galloway et al. 2004, 2006), and

variations in the Compton upscattering in the converging inflow
prior to touchdown are some of the physical mechanisms that
can contribute to the intrinsic spread.

For the high temperatures observed during the touchdown
phases of the bursts, most of the burst spectrum falls within the
RXTE energy range, resulting in bolometric corrections that are
at most 7% (Galloway et al. 2008a). Therefore, any uncertainties
in the bolometric correction can only introduce minimal spread
to the width of the observed touchdown fluxes. Uncertainties in
the determination of the touchdown moment are also expected
to be of the same magnitude since the fluxes in the nearby
time bins differ typically by less than 10% (see, e.g., Figures 2
and 4). Our 10% limit on the pre-burst persistent flux bounds the
uncertainties introduced by our subtraction of the background.
We can also estimate the expected variations due to the Compton
upscattering in the converging flow: this effect scales as v/c and
can, therefore, introduce an uncertainty at most of the order
of 10% (van Paradijs & Stollman 1984). On the other hand,
variations in the isotropy or the composition of the bursts can,
in principle, generate larger spread in the touchdown fluxes.

Our goal is to quantify the widths of the underlying dis-
tributions of touchdown fluxes, which we will call systematic
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Figure 6. Left panels: 68% and 95% confidence contours of the blackbody normalization and temperature obtained from fitting the X-ray spectra at the touchdown
moments of each PRE burst observed from 4U 1636−536 and 4U 1728−34. The dotted red lines show contours of constant bolometric flux. Right panels: 68% and
95% confidence contour of the parameter of an assumed underlying Gaussian distribution of touchdown fluxes. The width of the underlying distribution reflects the
systematic uncertainty in the measurements. The dashed red lines show the width when the systematic uncertainty is 5% and 10% of the mean touchdown flux.
(A color version of this figure is available in the online journal.)

For each burst, the bolometric flux at touchdown is obtained
from the combination of the blackbody temperature and normal-
ization. Figure 6 shows the 68% and 95% confidence contours
of the blackbody normalization and temperature inferred from
fitting the X-ray spectra obtained during the touchdown moment
for 4U 1728−34 and 4U 1636−536. We also plot in these fig-
ures contours of constant bolometric flux, shown as dotted (red)
lines. Even though the uncertainties in the normalization and
temperature are correlated, the bolometric flux in each burst is
well constrained. Furthermore, as Figure 6 shows, the individual
confidence contours from each burst appear to be in very good
statistical agreement with each other for both sources.

The distribution of inferred bolometric fluxes at touchdown
is expected to have a finite width both because of measure-
ment uncertainties and because of the possible variations in the
physical conditions that determine the emerging flux during a
PRE burst. The measurement uncertainties include formal un-
certainties from counting statistics, the uncertainties in the bolo-
metric correction, the subtraction of the background emission,
and the determination of the touchdown moment. Anisotropies
in the bursts, variations in the composition and the reflection
off the accretion flow (e.g., Galloway et al. 2004, 2006), and

variations in the Compton upscattering in the converging inflow
prior to touchdown are some of the physical mechanisms that
can contribute to the intrinsic spread.

For the high temperatures observed during the touchdown
phases of the bursts, most of the burst spectrum falls within the
RXTE energy range, resulting in bolometric corrections that are
at most 7% (Galloway et al. 2008a). Therefore, any uncertainties
in the bolometric correction can only introduce minimal spread
to the width of the observed touchdown fluxes. Uncertainties in
the determination of the touchdown moment are also expected
to be of the same magnitude since the fluxes in the nearby
time bins differ typically by less than 10% (see, e.g., Figures 2
and 4). Our 10% limit on the pre-burst persistent flux bounds the
uncertainties introduced by our subtraction of the background.
We can also estimate the expected variations due to the Compton
upscattering in the converging flow: this effect scales as v/c and
can, therefore, introduce an uncertainty at most of the order
of 10% (van Paradijs & Stollman 1984). On the other hand,
variations in the isotropy or the composition of the bursts can,
in principle, generate larger spread in the touchdown fluxes.

Our goal is to quantify the widths of the underlying dis-
tributions of touchdown fluxes, which we will call systematic
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Uncertainties in the touchdown flux measurements
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Systematics of Cooling Neutron Star Mass-Radius 
Measurements

Atmospheric Composition

Non-thermal Component

Interstellar Extinction

X7 and X5 in 47 Tuc (Heinke et al. 2003, 2006),  
U24 in NGC 6397 (Guillot et al. 2011; Heinke et al. 2014),  
source 26 in M28 (Becker et al. 2003; Servillat et al. 2012),  
NGC 2808 (Webb & Barret 2007; Servillat et al. 2008),  
M13 (Gendre et al. 2003a; Webb & Barret 2007; Catuneanu et al. 2013),  
ω Centauri (Rutledge et al. 2002; Gendre et al. 2003b; Heinke et al. 2014), and  
M30 (Lugger et al. 2007; Guillot & Rutledge 2014).

Possible Sources of Systematic Uncertainties
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14

Fig. 10.— The 68% confidence contours in mass and radius for the quiescent neutron star in ! Cen, inferred by Heinke et al. (2014; H14)
and by Guillot & Rutledge (2014; G14) using di↵erent assumptions regarding the interstellar extinction (wabs: Morrison & McCammon
1983; tbabs: Wilms et al. 2000), the presence of a power-law spectral component, and for di↵erent distances to the globular cluster (4.8 kpc
vs. 5.3 kpc) .

ω

Fig. 11.— The combined constraints at the 68% confidence level over the neutron star mass and radius obtained from (Left) all neutron
stars with thermonuclear bursts (Right) all neutron stars in low-mass X-ray binaries during quiescence.

Heinke et al. (2014) also explored the e↵ect of assuming di↵erent spectral indices in modeling the power-law com-
ponent. Even though the low counts preclude an accurate measurement of this parameter, the specific value has a
small e↵ect on the radius measurement, which can be folded in as a sytematic uncertainty. Finally, because of the
low temperature of the surface emission from qLMXBs, the spectral modeling is a↵ected significantly by the assumed
model of the interstellar medium to account for the low-energy extinction. Heinke et al. (2014) explored di↵erent
models for the interstellar extinction in their analysis of the qLMXBs in ! Cen and NGC 6397 and found statistically
consistent results, with small di↵erences in the central values but larger di↵erences in the uncertainties. In the left
panel of Figure 10, we show the e↵ect of di↵erent assumptions on the power-law index, the distance, and the interstellar
extinction model on the inference of the mass and radius of the neutron star in !Cen. In particular, one of the larger
e↵ects arises from the use of the two common interstellar extinction models they consider (the earlier Morrison &
McCammon 1983 model with solar abundances, referred to as wabs in the spectral fitting software XSPEC, and the
more recent Wilms et al. 2000 model, with ISM abundances from the same paper, referred to as tbabs with wilms in
XSPEC). The wabs model (employed by Guillot et al. 2013) leads to somewhat larger radii for the same distance.
In the present study, we repeat the analysis of Guillot et al. (2013) individually for all the sources in M13, M28,

NGC 6304, NGC 6397, M30, and !Cen. (Note that for the last two sources, the observations were reported in Guillot
& Rutledge 2014). In all of the spectral fits, we allow for a power-law component with a fixed photon index � = 1 but
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et al. 2012b). Specifically, we write

P R C P R M P M dMdata , data 11
i

N

i p
1

( ∣ ) ( ∣ ) ( ) ( )ò�=
=

where C is an appropriate normalization constant, P R M, datai ( ∣ ) is the two-dimensional posterior likelihood over mass and radius
for each of the N sources (as given, e.g., in Equation (9) for the bursters), and Pp(M) is the Gaussian likelihood with a mean of
1.46M: and a dispersion of 0.21M: for the mass distribution inferred by Özel et al. (2012b) for the descendants of these systems.

The left panel of Figure 12 shows the individual terms of the product in the equation above; i.e., the posterior likelihoods over
radius for each of the 12 sources. They are all well approximated by Gaussian distributions that peak between 9 and 12 km and
typical uncertainties of ∼2 km. The right panel of Figure 12 shows the posterior likelihood over the single radius in this mono-
parametric equation of state, which is peaked at a radius of 10.3 km with an uncertainty of 0.5 km. As expected, given that all radii
are statistically consistent with each other, combining the data of the 12 sources led to a reduction in the uncertainty by a factor of

12 3.5.� The result is a level of uncertainty that is comparable to what is required to severely constrain the neutron star equation
of state, as we will show in detail in the next section.

5. THE NEUTRON STAR EQUATION OF STATE FROM RADII AND LOW-ENERGY EXPERIMENTS

We now make use of the one-to-one mapping between the neutron star mass–radius relation and the pressure-density relation of
cold dense matter to put direct constraints on the neutron-star equation of state. In this procedure, we take the most general approach

Table 2
Properties of Quiescent LMXBs

Source NH
a

kTeff P.L. Norm.b Distancec Radiusd

(10 cm22 2- ) (eV) (10 keV s cm7 1 1 2- - - - ) (kpc) (km)

M13 0.02 0.02p
0.04

-
+ 81 12

27
-
+ 4.2 3.1p

3.6
-
+ 7.1±0.4 (1) 10.9±2.3

M28 0.30 0.03
0.03

-
+ 128 13

35
-
+ 8.3 4.7p

4.9
-
+ 5.5±0.3 (2) 8.5±1.3

M30 0.02 0.02p
0.03

-
+ 96 13

30
-
+ 9.3 5.3p

5.4
-
+ 9.0±0.5 (3), (4) 11.6±2.1

ωCen 0.15 0.04
0.04

-
+ 80 10

24
-
+ 0.8 0.7p

1.3
-
+ 4.59±0.08 (5), (6) 9.4±1.8

NGC6304 0.49 0.13
0.15

-
+ 100 17

33
-
+ 2.4 1.9p

2.7
-
+ 6.22±0.26 (7) 10.7±3.1

NGC6397 0.14 0.02
0.02

-
+ 66 7

17
-
+ 3.3 1.8

1.8
-
+ 2.51±0.07 (8) 9.2±1.8

Notes.
a NGC6397 was fitted with a Helium atmosphere model (nsx in XSPEC).
b p indicates that the posterior distribution did not converge to zero probability within the hard limit of the model.
c References: (1)Harris (1996, 2010 revision), (2)Servillat et al. (2012), (3)Carretta et al. (2000), (4)Lugger et al. (2007), (5)Watkins et al. (2013), (6)see also the
discussion in Heinke et al. (2014), (7)Guillot et al. (2013) and references therein, (8)Heinke et al. (2014).
d The radius and its 68% uncertainty obtained by marginalizing the mass–radius likelihood of each source over the observed mass distribution, as in Figure 12.

Figure 11. The combined constraints at the 68% confidence level over the neutron star mass and radius obtained from (left) all neutron stars with thermonuclear bursts
(right) all neutron stars in low-mass X-ray binaries during quiescence.
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TABLE 2
Summary of mass-radius measurements for X7 and X5

NH
a Teff

b M Rb χ2/d.o.f.
Model (1020 cm−2) (106 K) (M⊙) (km)

X5
nsatmos <4.9 2.74+0.21

−1.48 0.5+1.27
−0 10.5+1.3

−10.5 95.1/88

<5.2 2.61+0.30
−1.23 (1.4) 9.7+1.7

−2.0 95.2/89

<5.0 1.40+1.56
−0.15 0.84+0.62

−0.35 (12) 96.6/89
X7

nsatmos <2.2 1.39+1.50
−0.19 1.46+0.28

−1.46 10.8+1.8
−10.8 88.2/70

<2.3 1.39+1.32
−0.09 (1.4) 11.0+0.8

−0.7 88.2/71

<2.3 1.28+0.06
−0.08 1.09+0.42

−1.09 (12) 88.7/71

nsx (He) <3.3 1.06+1.07
−0.06 0.50+1.89

−0.50 14.8+2.3
−0.6 82.9/70

<3.3 1.18+0.03
−0.07 (1.4) 14.5+1.7

−0.9 83.0/71

<3.3 1.20+0.94
−0.19 2.01+0.31

−0.16 (12) 83.2/71

a For NH, the lower bound in the fits was fixed to 1.3 × 1020 cm−2,
the value for 47 Tuc. All fits reached this lower limit so only the 90%
confidence upper bound is quoted.
b The values quoted are redshift-corrected, i.e., as measured at the neu-
tron star surface.
c All quoted uncertainties correspond to 90% confidence level. Values in
parentheses were held fixed during the fit.

Fig. 9.— The mass-radius constraints obtained for X7 from the Chandra ACIS-S subarray data assuming the nsatmos H atmosphere
(left) and nsx He atmosphere (right) models. 68% and 95% confidence contours are shown obtained from the posterior likelihood over M
and R (see text). A 3% systematic uncertainty in the calibration and a model for 1% pile-up are included in the analyses. See Table 2 for
the best fit parameters.

2013). The low temperature of SAX J1808.4−3658 sug-
gests it has a higher mass than that of other quies-
cent NSs, with the latter presumably near the typi-
cal mass of 1.4 M⊙ and current evidence pointing to
SAX J1808.4−3658 having MNS ! 1.6 M⊙ (at ∼2σ)
(Wang et al. 2013). In comparison, the relatively high
temperature of X7 suggests it has a comparable, if not
lower, mass, i.e., around 1.4 M⊙ or lighter. This is con-
trary to our He atmosphere fits which yield M "1.7 M⊙

(see the right panel of Figure 9) and would result in a
X7 temperature that is at least as low as that of SAX
J1808.4−3658, contrary to observations.
We find that a He atmosphere model would require ei-

ther a quite large radius or a high mass. A high mass
would be at odds with our current understanding of cool-

ing processes based on other qLMXBs, while a large ra-
dius (>14 km) would conflict both with the measure-
ments of the radius of X5 presented here, and with mea-
surements of other NSs (Guillot et al. 2011; Heinke et al.
2014; Özel et al. 2015), including the radius derived for
the NS in NGC 6397 for either H or He atmospheres.
Based on this line of reasoning, we argue that a hydrogen
composition for the atmosphere of X7 is more plausible.

5. IMPLICATIONS FOR THE NEUTRON STAR
EQUATION OF STATE

Most existing mass-radius measurements of neutron
star have uncertainties that are too large to offer useful
constraints when considered individually. Nevertheless,

Mass-Radius Constraints for X7 and X5 in 47 Tuc 7

Fig. 6.— The total Chandra ACIS-S subarray spectrum of X5
fitted with an absorbed H atmosphere model (nsatmos) convolved
with a pile-up model (top) and the best-fit residuals (bottom).

Fig. 7.— The mass-radius constraints obtained for X5 by fitting
the Chandra ACIS-S 1/8 subarray data with a piled-up and ab-
sorbed hydrogen atmosphere model (nsatmos). The 68% and 95%
confidence levels are shown, obtained from the posterior likelihood
over M and R (see text). The blue and red lines correspond, re-
spectively, to the fits with and without a 3% systematic uncertainty
instrumental calibration uncertainties. The shaded gray area in the
upper left marks the region excluded by causality constraints. See
Table 2 for best fit parameters.

ACIS detectors is limited by a combination of the un-
certainties in the quantum efficiency near the read out,
the quantum efficiency non-uniformity across the detec-
tor resulting from charge transfer inefficiencies, and the
depth of the contaminant on the ACIS filter (important
primarily below ∼2 keV).
Following Guillot et al. (2013), we adopt a 3% system-

atic error to account for the instrument response uncer-
tainties. We note that an in-depth evaluation of Chan-
dra calibration uncertainties in the context of qLMXB
NS M − R measurements based on the prescriptions
by Drake et al. (2006), Lee et al. (2011), and Xu et al.
(2014) will be presented in a subsequent publication.

Fig. 8.— The total Chandra ACIS-S subarray spectrum of X7
fitted with an absorbed atmosphere model convolved with a pile-up
model. The bottom panel shows the best fit residuals expressed in
terms of σ.

3.7. Photon Pile-up

As noted previously, Chandra ACIS data of even mod-
erately bright sources is susceptible to severe event pile-
up owing to the combination of slow readout and high
count rate. While we mitigated most of this negative ef-
fect in the new subarray observations by using a faster
detector readout mode, it still affects the data at a low
level. The spectroscopic mass-radius measurement tech-
nique for qLMXBs is highly sensitive to the shape of the
thermal spectrum. As a consequence, even a small artif-
ical distortion in the spectral shape can bias the M −R
measurement. For pile-up specifically, a portion of the
photons piled at lower energies are either rejected en-
tirely (if their event grades are consistent with those of
cosmic rays) or recorded as a singe photon displaced to
higher energies. As reported in §2, this occurs for ∼1%
of the photons in the X7 and X5 spectra, which we would
naively expect to be negligible.
To assess the impact of this seemingly small effect

on our results, we repeated our spectroscopic fits with
and without a pile-up model component (i.e., pileup in
XSPEC). Figure 3 illustrates the results for X7, showing
the 68% confidence contours in the M − R plane with
and without pile-up. Despite the small degree of pile-
up, the impact on the results is substantial. In addition
to enlarging the confidence intervals, correcting for pile-
up displaces them towards somewhat larger M and R.
This arises because photon pile-up artificially hardens
the intrinsic source spectrum, which produces a higher
best-fit temperature and hence a smaller inferred stellar
radius. The enlargement of the confidence contours arises
principally from the statistical uncertainty in the pile-up
parameter α, which gives the probability of rejection of
piled events. Some of the displacement in the contours
may also be due to adding another parameter to the fit
when applying pile-up correction. In light of these find-
ings, to ensure robust constraints on the NS M and R,

Bogdanov et al. 2016

11.1+0.8-0.7 km @ 1.4 M⊙ 9.6+0.9-1.1 km @ 1.4 M⊙
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ω

Fig. 12.— (Left) The posterior likelihood over the radius obtained by marginalizing the two dimensional likelihoods over the neutron
star mass, with a prior equal to the observationally inferred distribution of recycled pulsar masses, for all twelve sources in our sample.
The peak probabilities are highly clustered in the 9-12 km range. (Right) The combined posterior likelihood assuming that all sources in
our sample have the same radius and masses drawn from the observationally inferred distribution of recycled pulsar masses. We use this
inferrence only as an illusration of the fact that using radius measurements for twelve sources leads to a highly accurate constraint on the
neutron-star equation of state.

In Özel et al. (2010), we used the framework devised in Özel & Psaltis (2009) to convert the mass-radius measurements
of three sources to posterior likelihoods over the pressures at these three fiducial densities. In order to incorporate
the mass-radius measurements of the twelve sources presented in Section 3, we will follow here the Bayesian approach
outlined below. (See Steiner et al. 2010 for a similar Bayesian inference approach.)
To calculate the posterior likelihood over the pressures P1(⇢1), P2(⇢2), and P3(⇢3) using the likelihoods Pi(M,R)

for twelve sources, we write

P (P1, P2, P3 |data) = CP (data | P1, P2, P3)Pp(P1)Pp(P2)Pp(P3), (12)

where Pp(P1), Pp(P2), and Pp(P3) are the priors over the three pressures and

P (data | P1, P2, P3) =
NY

i=1

Pi(Mi, Ri | P1, P2, P3) (13)

To obtain (Mi, Ri) from the pressures P1, P2, P3, we also need to specify, and marginalize over, the central density of
the star ⇢c, i.e.,

Pi(Mi, Ri | P1, P2, P3) = C1

Z 1

0
Pi(Mi, Ri | P1, P2, P3, ⇢c)Pp(⇢c)d⇢c. (14)

Because there is a one-to-one correspondence between the central density ⇢c and mass, we can write the integral over
the mass instead as

Pi(Mi, Ri | P1, P2, P3) = C2

Z M
max

M
min

Pi(M,R(M) | P1, P2, P3)Pp(M)dM, (15)

where we take Mmin to be 0.1M� and Mmax to be the maximum mass for the equation of state specified by that
P1, P2, P3 triplet. Here, Pp(M) is the prior likelihood over the mass of each neutron star, which we take to be
constant.
We use a variety of physical and observational constraints to define the priors on P1, P2, and P3.

(i) We require that the equation of state be microscopically stable, i.e., P3 � P2 � P1, and that P1 be greater than or
equal to the pressure of matter at ⇢0 = 1014 g cm�3 that is specified by the SLy equation of state (see Özel & Psaltis
2009).
(ii) We impose the physically plausible condition of causality that

c2s =
@P

@✏
 c2 (16)

when evaluated at all three fiducial densities; here, cs is the sound speed and ✏ is the energy density.
(iii) We require that the maximum stable mass for each equation of state corresponding to a P1, P2, P3 triplet exceeds
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Fig. 10.— The mass-radius relation (solid blue curve) corresponding to the most likely triplet of pressures that agrees with the current
neutron star data. These include the X5 and X7 radius measurements shown in this work, as well the neutron star radii measurements
for the twelve neutron stars included in Özel et al. (2015), the low energy nucleon-nucleon scattering data, and the requirement that the
EoS allow for a M > 1.97M⊙ neutron star. The ranges of mass-radius relations corresponding to the regions of the (P1, P2, P3) parameter
space in which the likelihood is within e−1/2 and e−1 of its highest value are shown in dark and light blue bands, respectively. The results
for both flat priors in P1, P2, and P3 (left panel) and for flat priors the logarithms of these pressures (right panel) are shown.

existing M−R measurements from other qLMXB as well
as bursting neutron stars, we obtain increasingly more
robust constraints on the neutron star equation of state.
Specifically, we find that the preferred equation of state
that is empirically derived from the measurements of all
fourteen sources predicts radii between 9.9 and 11.2 km
around M = 1.5M⊙ (corresponding to the range where
the likelihood falls to e−1 of its maximum value). This
also implies a relatively low pressure around twice nu-
clear saturation density, which most directly affects neu-
tron star radii. We find that such an equation of state
can easily produce ∼ 2M⊙ neutron stars that is observed
through radio pulsar timing. This preferred equation of
state is softer than some purely nucleonic equations of
state that are tuned to fit experiments at low densities,
such as AP4, and may point to new degrees of freedom
appearing around ∼ 2 ρsat in neutron-rich matter.
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Conclusions & Future

Better estimates on the distances from GAIA

More and deeper observations with Chandra are needed to obtain high signal to 
noise ratio data of LMXBs in quiescence. 

Further observations especially in the 0.5 - 25 keV range should be performed 
and an archive like the RXTE/PCA has should be established.

We have a better understanding on the systematic effects in the measurements of 
masses and radii of neutron stars but our measurements still rely on several 
assumptions. Independent measurements are necessary to confirm these results.  

NICER mission will allow us to both continue these measurements but also 
allow for  measurement using pulse profiles, providing an independent estimate.


