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Prelude

Although the crust of a neutron
star represents about ∼ 1% of the
mass and ∼ 10% of the radius, it is
related to various phenomena:

pulsar sudden spin-ups,
X-ray (super)bursts,
thermal relaxation in
transiently accreting stars,
quasiperiodic oscillations in
soft gamma-ray repeaters
r-process nucleosynthesis in
neutron-star mergers
mountains and gravitational
wave emission



Plumbing neutron-star crusts

Chamel&Haensel, Living Reviews in Relativity 11 (2008), 10
http://relativity.livingreviews.org/Articles/lrr-2008-10/

The nuclear energy density functional theory provides a consistent
and numerically tractable treatment of all these different phases.



Outline

1 Nuclear energy density functionals for astrophysics
. nuclear energy-density functional theory
. Brussels-Montreal functionals

2 Applications to neutron-star crusts
. composition and equation of state
. role of a high magnetic field
. neutron conduction (entrainment)
. glitch puzzle
. low-energy collective excitations and cooling



Nuclear energy density functional theory in a nut shell
The energy E [nq(rrr), ñq(rrr)] of a nuclear system (q = n,p for neutrons,
protons) can be expressed as a (universal) functional of

“normal” nucleon number densities nq(rrr),
“abnormal” densities ñq(rrr) (roughly the density of paired
nucleons of charge q).

In turn these densities are written in terms of independent
quasiparticle wave functions ϕ(q)

1k (rrr) and ϕ(q)
2k (rrr) as

nq(rrr) =
∑
k(q)

ϕ
(q)
2k (rrr)ϕ

(q)
2k (rrr)∗ , ñq(rrr) = −

∑
k(q)

ϕ
(q)
2k (rrr)ϕ

(q)
1k (rrr)∗

The exact ground-state energy can be obtained by minimizing the
energy functional E [nq(rrr), ñq(rrr)] under the constraint of fixed nucleon
numbers (and completeness relations on ϕ(q)

1k (rrr) and ϕ(q)
2k (rrr)).

Duguet, Lecture Notes in Physics 879 (Springer-Verlag, 2014), p. 293
Dobaczewski & Nazarewicz, in ”50 years of Nuclear BCS” (World Scientific Publishing,
2013), pp.40-60



Skyrme effective nucleon-nucleon interactions
Functionals can be constructed from generalized Skyrme effective
interactions

vij = t0(1 + x0Pσ)δ(rrr ij ) +
1
2

t1(1 + x1Pσ)
1
~2

[
p2

ij δ(rrr ij ) + δ(rrr ij ) p2
ij
]

+t2(1 + x2Pσ)
1
~2 pppij .δ(rrr ij )pppij +

1
6

t3(1 + x3Pσ)n(rrr)α δ(rrr ij )

+
1
2

t4(1 + x4Pσ)
1
~2

{
p2

ij n(rrr)β δ(rrr ij ) + δ(rrr ij ) n(rrr)β p2
ij
}

+t5(1 + x5Pσ)
1
~2 pppij · n(rrr)γ δ(rrr ij )pppij

+
i
~2 W0(σi + σj ) · pppij × δ(rrr ij )pppij +

i
~2 W1(σσσi + σσσj ) · pppij × (nqi + nqj )

νδ(rrr ij )pppij

pairing vπij =
1
2

(1 + Pσ)vπ[nn(rrr),np(rrr),∇∇∇nn(rrr),∇∇∇np(rrr)]δ(rrr ij )

rrr ij = rrr i − rrr j , rrr = (rrr i + rrr j )/2, pppij = −i~(∇∇∇i −∇∇∇j )/2 is the relative
momentum, and Pσ is the two-body spin-exchange operator.

The parameters ti , xi , α, β, γ, ν, Wi must be fitted to experimental
and/or microscopic nuclear data.



Brussels-Montreal Skyrme functionals (BSk)

Experimental data:
all atomic masses with Z ,N ≥ 8 from the Atomic Mass
Evaluation (root-mean square deviation: 0.5-0.6 MeV)
nuclear charge radii
symmetry energy 29 ≤ J ≤ 32 MeV
incompressibility Kv = 240± 10 MeV (ISGMR)
Colò et al., Phys.Rev.C70, 024307 (2004).

N-body calculations using realistic forces:
equation of state of pure neutron matter
1S0 pairing gaps in nuclear matter
effective masses in nuclear matter
stability against spin and spin-isospin fluctuations

Chamel et al., Acta Phys. Pol. B46, 349(2015)



Brussels-Montreal Skyrme functionals
Main features of the latest functionals:

. fit to realistic 1S0 pairing gaps (no self-energy) (BSk16-17)
Chamel, Goriely, Pearson, Nucl.Phys.A812,72 (2008)
Goriely, Chamel, Pearson, PRL102,152503 (2009).

. removal of spurious spin-isospin instabilities (BSk18)
Chamel, Goriely, Pearson, Phys.Rev.C80,065804(2009)

. fit to realistic neutron-matter equations of state (BSk19-21)
Goriely, Chamel, Pearson, Phys.Rev.C82,035804(2010)

. fit to different symmetry energies (BSk22-26)
Goriely, Chamel, Pearson, Phys.Rev.C88,024308(2013)

. optimal fit of the 2012 AME - rms 0.512 MeV (BSk27*)
Goriely, Chamel, Pearson, Phys.Rev.C88,061302(R)(2013)

. generalized spin-orbit coupling (BSk28-29)
Goriely, Nucl.Phys.A933,68(2015).

. fit to realistic 1S0 pairing gaps with self-energy (BSk30-32)
Goriely, Chamel, Pearson, Phys.Rev. C93,034337(2016).



Neutron-matter equation of state

The neutron-matter equation of state obtained with our functionals are
consistent with microscopic calculations using realistic interactions:



Symmetry energy
The values for the symmetry energy J and its slope L obtained with
our functionals are consistent with various experimental constraints.
The dashed line delimits the values from 30 different HFB atomic
mass models with rms < 0.84 MeV.
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Figure adapted from Lattimer& Steiner, EPJA50,40(2014)



Symmetric nuclear-matter equation of state
Our functionals are also compatible with empirical constraints inferred
from heavy-ion collisions:

Danielewicz et al., Science 298, 1592 (2002)
Lynch et al., Prog. Part. Nuc. Phys.62, 427 (2009)



Nucleon effective masses
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Effective masses obtained with our
functionals are consistent with
giant resonances in finite nuclei
and many-body calculations in
infinite nuclear matter.

This was achieved using
generalized Skyrme interactions
with density dependent t1 and t2
terms, initially introduced to
remove spurious instabilities.
Chamel, Goriely, Pearson,
Phys.Rev.C80,065804(2009)

EBHF calculations from Cao et al.,Phys.Rev.C73,014313(2006).



Description of the outer crust of a neutron star

Main assumptions:
atoms are fully pressure ionized ρ� 10AZ g cm−3

the crust consists of a perfect body-centered cubic crystal

T < Tm ≈ 1.3× 105Z 2
(ρ6

A

)1/3
K ρ6 ≡ ρ/106 g cm−3

electrons are uniformly distributed and are highly degenerate
matter is fully “catalyzed”

The only microscopic inputs are nuclear masses. We have made
use of the experimental data from the Atomic Mass Evaluation
complemented with our HFB mass tables available at
http://www.astro.ulb.ac.be/bruslib/

Pearson,Goriely,Chamel,Phys.Rev.C83,065810(2011)

Electron polarization effects are included using the expressions given
in Chamel & Fantina,Phys.Rev.D93, 063001 (2016)

http://www.astro.ulb.ac.be/bruslib/


Composition of the outer crust of a neutron star

The composition of the crust is completely determined by
experimental nuclear masses down to about 200m for a 1.4M�
neutron star with a 10 km radius

Pearson,Goriely,Chamel,Phys.Rev.C83,065810(2011)
Kreim, Hempel, Lunney, Schaffner-Bielich, Int.J.M.Spec.349-350,63(2013)
Wolf et al.,PRL 110,041101(2013)



Composition of the outer crust of a neutron star

Role of the symmetry energy
HFB-22-25 were fitted to different values of the symmetry energy
coefficient at saturation, from J = 29 MeV (HFB-25) to J = 32 MeV
(HFB-22).
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Composition of the outer crust of a neutron star
Role of the spin-orbit coupling

HFB-24: v so
ij =

i
~2 W0(σσσi + σσσj ) · pppij × δ(rrr ij )pppij

HFB-28: v so
ij → v so

ij +
i
~2 W1(σσσi + σσσj ) · pppij × (nqi + nqj )

νδ(rrr ij )pppij

HFB-29: Eso =
1
2

[
JJJ · ∇∇∇n + (1 + yw )

∑
q

JqJqJq · ∇∇∇nq

]
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Composition of the outer crust of a neutron star

Role of nuclear pairing
HFB-27∗ is based on an empirical pairing functional.
HFB-29 (HFB-30) was fitted to EBHF 1S0 pairing gaps including
medium polarization effects without (with) self-energy effects.
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Stratification and equation of state
So far, we have assumed pure layers made of only one kind of nuclei

n

P

n
max

1
n
min

2

P1 2

1

2

1+2

+

n̄min
2 − n̄max

1

n̄max
1

≈ A2

Z2

Z1

A2

[
1 +

Cbccα

(3π2)1/3

(
Z 2/3

1 − Z 2/3
2

)]
− 1

with Cbcc = −1.444231 and α = e2/~c



Stratification and equation of state

So far, we have assumed pure layers made of only one kind of nuclei

n

P
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1
n
min

2

P1 2

1

2

1+2

+

n̄min
2 − n̄max

1

n̄max
1

> 0⇒ Z2
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<
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A1
: the denser, the more neutron rich



Binary compounds in neutron-star crusts?

We have investigated the formation of various ordered binary
compounds in the outer crust of a nonaccreting neutron star:

sc2sc1fcc1 fcc2

p1 p2 p3 hcp



Ternary compounds in neutron-star crusts?

We have also considered ternary compounds with cubic perovskite
structure such as BaTiO3 :



Insterstitial compounds in neutron-star crusts
Compounds with CsCl structure are present at interfaces if Z1 6= Z2.

n
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n
max
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ĀZ2

) � 1

Chamel & Fantina, to appear in Phys. Rev. C



Catalyzed vs accreted crusts
Composition of accreted crust using the HFB-27∗ nuclear mass
model and considering X-ray bursts ashes made of 56Fe:

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

n [10
-4

 fm
-3

]

10

20

30

40

50

60

70

80

90

100

110

120

130

Z

N

A

Chamel,Fantina,Zdunik,Haensel, Nuclear Theory 34, pp.126-131 (Heron
Press, Sofia, 2015)



Neutron-drip transition: general considerations

Nuclei are actually stable against neutron emission but are
unstable against electron captures accompanied by neutron emission

A
Z X + ∆Ze− →A−∆N

Z−∆Z Y + ∆N n + ∆Z νe

nonaccreting neutron stars
All kinds of reactions are allowed: the ground state is reached for
∆Z = Z and ∆N = A

outer crust drip line ρdrip (g cm−3) Pdrip (dyn cm−2)

HFB-19 126Sr (0.73) 121Sr (-0.62) 4.40 × 1011 7.91 × 1029

HFB-20 126Sr (0.48) 121Sr (-0.71) 4.39 × 1011 7.89 × 1029

HFB-21 124Sr (0.83) 121Sr (-0.33) 4.30 × 1011 7.84 × 1029

accreting neutron stars
Multiple electron captures are very unlikely: ∆Z = 1 (∆N ≥ 1)

ρdrip (g cm−3) Pdrip (dyn cm−2)
HFB-21 2.83 − 5.84 × 1011 4.79 − 12.3 × 1029

ρdrip and Pdrip can be expressed by simple analytical formulas.
Chamel, Fantina, Zdunik, Haensel, Phys. Rev. C91,055803(2015).



Impact of a strong magnetic field on the crust?
In a strong magnetic field ~B (along let’s say the z-axis), the electron
motion perpendicular to the field is quantized:

Landau-Rabi levels
Rabi, Z.Phys.49, 507 (1928).

eν =
√

c2p2
z + m2

ec4(1 + 2νB?)

where ν = 0,1, ... and B? = B/Bc

with Bc =
m2

ec3

~e
' 4.4× 1013 G.

Maximum number of occupied Landau levels for HFB-21:
B? 1500 1000 500 100 50 10 1
νmax 1 2 3 14 28 137 1365

Only ν = 0 is filled for ρ < 2.07× 106
(

A
Z

)
B3/2
? g cm−3.

Landau quantization can change the properties of the crust.



Equation of state of the outer crust of magnetars

Matter in a magnetar is much more incompressible and less
neutron-rich than in a neutron star.
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Chamel et al.,Phys.Rev.C86, 055804(2012).



Composition of the outer crust of a magnetar
The magnetic field changes the composition:

Equilibrium nuclides for HFB-24 and B? ≡ B/(4.4× 1013 G):

Nuclide B?
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For high enough fields, the crust is almost entirely made of 90Zr.



Neutron-drip transition in magnetars
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Chamel et al.,Phys.Rev.C91, 065801(2015).
Chamel et al.,J.Phys.:Conf.Ser.724, 012034 (2016).



Neutron-drip transition in magnetars
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Neutron-drip transition: role of the symmetry energy

The lack of knowledge of the symmetry energy translates into
uncertainties in the neutron-drip density:
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In accreted crusts, the neutron-drip transition may be more sensitive
to nuclear-structure effects than the symmetry energy.

Fantina et al.,Phys.Rev.C93,015801(2016).



Description of neutron star crust beyond neutron drip
We use the Extended Thomas-Fermi+Strutinsky Integral (ETFSI)
approach with the same functional as in the outer crust:

semiclassical expansion in powers of ~2: the energy becomes
a functional of nq(rrr) and their gradients only.
proton shell effects are added perturbatively (neutron shell
effects are much smaller and therefore neglected).

In order to further speed-up the calculations, clusters are supposed to
be spherical (no pastas) and nq(rrr) are parametrized.

Pearson,Chamel,Pastore,Goriely,Phys.Rev.C91, 018801 (2015).
Pearson,Chamel,Goriely,Ducoin,Phys.Rev.C85,065803(2012).
Onsi,Dutta,Chatri,Goriely,Chamel,Pearson, Phys.Rev.C77,065805 (2008).

Advantages of the ETFSI method:
very fast approximation to the full HF+BCS equations
avoids the difficulties related to boundary conditions
Chamel et al.,Phys.Rev.C75(2007),055806.



Structure of nonaccreting neutron star crusts
With increasing density, the clusters keep essentially the same size
but become more and more dilute.

The crust-core transition predicted
by the ETFSI method agrees very
well with the instability analysis of
homogeneous nuclear matter.

n̄cc (fm−3) Pcc (MeV fm−3)
BSk27* 0.0919 0.439
BSk25 0.0856 0.211
BSk24 0.0808 0.268
BSk22 0.0716 0.291
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Chamel et al., Acta Phys. Pol.46,349(2015).
Pearson,Chamel,Goriely,Ducoin,Phys.Rev.C85,065803(2012).

The crust-core transition is found to be very smooth.



Role of proton shell effects on the composition of the
inner crust of a neutron star

The ordinary nuclear shell structure seems to be preserved apart
from Z = 40 (quenched spin-orbit?).
The energy differences between different configurations become
very small as the density increases!
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Role of proton pairing on the composition of the inner
crust of a neutron star

Proton shell effects are washed out due to pairing.

-1.9

-1.8

-1.7

-1.6

-1.5

-1.4

with pairing

without pairing

20 30 40 50 60
Z

7.296

7.298

7.3

7.302

7.304

7.306

7.308

n=0.055 fm
-3

n=0.00026 fm
-3

Example with BSk21.

At low densities, Z = 42 is
energetically favored over
Z = 40, but by less than
5× 10−4 MeV per nucleon.

A large range of values of
Z could thus be present in
a real neutron-star crust.

Pearson,Chamel,Pastore,Goriely,Phys.Rev.C91, 018801 (2015).

Due to proton pairing, the inner crust of a neutron star is expected to
contain many impurities.



Unified equations of state of neutron stars

The same functionals used in the crust can be also used in the core
(n, p, e−, µ−) thus providing a unified and thermodynamically
consistent description of neutron stars.

Tables of the full equations of state for HFB-19, HFB-20, and
HFB-21:
http://vizier.cfa.harvard.edu/viz-bin/VizieR?-source=J/A+A/559/A128

Fantina, Chamel, Pearson, Goriely, A&A 559, A128 (2013)

Analytical representations of the full equations of state (fortran
subroutines):
http://www.ioffe.ru/astro/NSG/BSk/

Potekhin, Fantina, Chamel, Pearson, Goriely, A&A 560, A48 (2013)

Equations of state for our latest functionals will appear soon.

http://vizier.cfa.harvard.edu/viz-bin/VizieR?-source=J/A+A/559/A128
http://www.ioffe.ru/astro/NSG/BSk/


Bragg scattering and entrainment

For decades, neutron diffraction experiments
have been routinely performed to explore the
structure of materials.

The main difference in neutron-star crusts is
that neutrons are highly degenerate

A neutron with wavevector kkk can be
coherently scattered if d sin θ = Nπ/k ,
where N = 0,1,2, ... (Bragg’s law).

In this case, it does not propagate in the
crystal: it is therefore entrained!

Bragg scattering occurs if k > π/d . In neutron stars, neutrons have
momenta up to kF . Typically kF > π/d in all regions of the inner crust
but the shallowest.



Neutron Fermi surface
Neutron “conduction” depends on the shape of the Fermi surface

Example at n̄ = 0.0003 fm−3 (reduced zone scheme)



How “free” are neutrons in neutron-star crusts?

Imparting a momentum pnpnpn to “free” neutrons (density nf
n) induces a

neutron current jnjnjn = nc
n pnpnpn with nc

n 6= nf
n.

Equivalently pnpnpn = m?
nvnvnvn with m?

n = mnnf
n/nc

n.

m?
n (or nc

n) can be obtained from band-structure calculations:

n̄ (fm−3) m?
n/mn

0.01 6.3
0.02 13.7
0.03 12.7
0.04 9
0.05 2.8
0.06 1.8
0.07 1.2

The density of conduction neutrons is completely
determined by the Fermi surface:

nc
n =

mn

24π3~2

∑
α

∫
F
|∇∇∇kkkεαkkk |dS(α) ≤ nf

n

Note that nc
n is a response function.

Chamel,Phys.Rev.C85,035801(2012)



How “free” are neutrons in neutron-star crusts?

Imparting a momentum pnpnpn to “free” neutrons (density nf
n) induces a

neutron current jnjnjn = nc
n pnpnpn with nc

n 6= nf
n.

Equivalently pnpnpn = m?
nvnvnvn with m?

n = mnnf
n/nc

n.

m?
n (or nc

n) can be obtained from band-structure calculations:

n̄ (fm−3) m?
n/mn

0.01 8.1
0.02 13.7
0.03 12.3
0.04 8.1
0.05 2.2
0.06 1.5
0.07 1.1

role of quantum zero point motion of ions about
their equilibrium position?
Kobyakov&Pethick, Phys. Rev. C 87, 055803 (2013)

Including Debye-Waller factor with bare ion mass
(overestimate!)
Chamel, in prep.

m?
n increased or decreased by . 30%



How “free” are neutrons in neutron-star crusts?

Imparting a momentum pnpnpn to “free” neutrons (density nf
n) induces a

neutron current jnjnjn = nc
n pnpnpn with nc

n 6= nf
n.

Equivalently pnpnpn = m?
nvnvnvn with m?

n = mnnf
n/nc

n.

m?
n (or nc

n) can be obtained from band-structure calculations:

n̄ (fm−3) m?
n/mn

0.01 on-going
0.02 15.8
0.03 13.5
0.04 8.2
0.05 2.3
0.06 1.5
0.07 1.1

role of neutron pairing?
Martin&Urban, arXiv:1606.01126 recently found much
weaker entrainment using an hydrodynamical
approach but only valid if ξ � nuclear cluster size.

Including BCS pairing + Debye-Waller factor
preliminary results - weak dependence on the gaps

m?
n increased by . 15%

Entrainment can impact various phenomena (e.g. glitches,
QPOs, crust cooling).



Giant pulsar glitches and the inertia of neutron-star
superfluids

Giant glitches are usually interpreted as sudden tranfers of angular
momentum between the crustal superfluid and the rest of star.

Because of entrainment, the superfluid angular momentum reads

Js = IssΩs + (Is − Iss)Ωc

(Ωs and Ωc being the angular velocities of the superfluid and of the
“crust”, Is is the moment of inertia of the superfluid), leading to the
following constraint:

Is
I
≥ G m̄?

n

mn
, G = 2τcAg

where
m̄?

n

mn
=

Iss

Is
, τc =

Ω

2|Ω̇|
and Ag =

1
t

∑
i

∆Ωi

Ω
.

Chamel&Carter,MNRAS368,796(2006)



Vela pulsar glitch constraint

Since 1969, 19 glitches have been
regularly detected. The latest one
occurred in September 2014.

Cumulated glitch amplitude
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Glitch puzzle

m̄?
n/mn = Iss/Is depends mainly on the physics of neutron-star crusts.

Using the thin-crust approximation, we found Iss ≈ 4.6Icrust and
Is ≈ 0.89Icrust leading to m̄?

n/mn ≈ 5.1.

The Vela glitch constraint thus becomes
Is
I
≥ 8.3%, or

Icrust

I
≥ 9.3%

The superfluid in the crust of a neutron star with a mass M > M�
does not carry enough angular momentum!
Andersson et al., PRL 109, 241103; Chamel, PRL 110, 011101 (2013).

This conclusion has been confirmed by more recent works, e.g.
Newton et al, MNRAS 454, 4400 (2015)
Ang Li et al, ApJS 223, 16 (2016).

Could nuclear uncertainties allow for thick enough crusts?
Piekarewicz et al.PRC 90, 015803 (2014)
Steiner et al.PRC 91, 015804 (2015).



Nuclear uncertainties in the mass-radius

Mass-radius relation of nonrotating neutron stars for various unified
equations of state based on accurately calibrated nuclear models:
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Delsate et al., Phys. Rev. D 94, 023008 (2016)



Refined estimate of the mean effective neutron mass
We have calculated Is and Iss in the slow-rotation approximation:
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m̄?
n/mn = Iss/Is is almost independent of the global stellar structure,

as expected from the thin-crust approximation. However, the ratio is
increased by ∼ 30%. We use the same value for all models.

Delsate et al., Phys. Rev. D 94, 023008 (2016)



Nuclear uncertainties and glitch puzzle
We have recalculated Icrust/I considering various unified equations of
state based on accurately calibrated nuclear models:

PSR B0833-45 PSR B0833-45

The inferred mass of Vela is at most 0.66M�, corresponding to
central baryon densities n̄ ≈ 0.23− 0.33 fm−3. At such densities, the
equation of state is fairly well constrained by laboratory experiments.

Delsate et al., Phys. Rev. D 94, 023008 (2016)



Entrainment and collective excitations

Entrainment impacts low-energy collective excitations:

clusters are effectively heavier,
lattice and superfluid longitudinal excitations are mixed.

Chamel,Page,Reddy,Phys.Rev.C87,035803(2013)
Chamel,Page,Reddy,J.Phys. Conf.Ser.665, 012065 (2016).
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Entrainment and collective excitations

Entrainment impacts low-energy collective excitations:

clusters are effectively heavier,
lattice and superfluid longitudinal excitations are mixed.

Chamel,Page,Reddy,Phys.Rev.C87,035803(2013)
Chamel,Page,Reddy,J.Phys. Conf.Ser.665, 012065 (2016).
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Entrainment and thermal properties

The contribution of collective excitations to the specific heat at low T
varies like (kBT/~v)3. Since entrainment reduces v , the specific heat
is enhanced.

Contributions to the crustal specific heat at T = 107 K :
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Entrainment and thermal properties

The contribution of collective excitations to the specific heat at low T
varies like (kBT/~v)3. Since entrainment reduces v , the specific heat
is enhanced.

Contributions to the crustal specific heat at T = 108 K :
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Entrainment and thermal properties

The contribution of collective excitations to the specific heat at low T
varies like (kBT/~v)3. Since entrainment reduces v , the specific heat
is enhanced.

Contributions to the crustal specific heat at T = 109 K :
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Entrainment and thermal properties
Changes in phonon velocities alter the electron-phonon scattering
hence also the (electron) thermal conductivity.

All in all, entrainment leads to an increase of the thermal relaxation
time of the crust.
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Conclusions
We have developed accurately calibrated nuclear energy
density functionals fitted to essentially all nuclear mass data as
well as to microscopic calculations.
These functionals provide a unified and consistent description
of neutron-star crusts.
The equation of state of the outer crust is fairly well known,
but its composition depends on the nuclear structure of very
exotic nuclei (e.g. spin-orbit coupling, pairing).
The constitution of the inner crust is much more uncertain
due to the tiny energy differences between different
configurations (nuclear pastas?)
Magnetars may have different crusts.
The neutron superfluid is strongly entrained by the crust;
this affects various phenomena (glitches, QPOs, cooling).

Systematic studies of crustal properties for both nonaccreted and
accreted neutron stars are under way.


