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Abstract
Binary  Neutron  Star  systems  are  a  potential  source  of  gravitational 
wave signals (that would be likely be detected in the coming months  
by  the  LIGO/VIRGO  detectors)  and  the  associate  signal  will  carry 
important information about the equation of state (EOS) of matter at 
high density.

In this talks I will discuss the various steps that one need to perform, 
starting  from  the  EOS  of  matter  at  high  density,  to  obtained  the 
properties of the Gravitational Wave signal emitted during the merger. 

I would like to remark that it is now possible to investigate the physics 
of Binary Neutron Star System merger using only publicly available 
open source software, the Einstein Toolkit for the dynamical evolution 
and the LORENE code for the generation of the initial models. 
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Abstract …….
I  will  also  present  three-dimensional  simulations  of  the  dynamics  of 
binary neutron star (BNS) mergers from the late inspiral stage up to ∼20 
ms after the system has merged, either to form a hyper-massive neutron 
star (HMNS) or a rotating black hole (BH). In particular we show the fate 
of  the  six  galactic  systems  (J0453+1559,  J1756-2251,  J0737-3039A, 
B1913+16, J1906+0746*, B1534+12) when they will finally merge and the 
gravitational wave signal that will be emitted.  

I  also  report  results  for  equal  and  un-equal-mass  models  and  on  the 
strength of the Gravitational Signal and its dependence on the EOS, the 
mass ratio of the two stars, the radiated energy and angular momentum.  
We use a semi-realistic description of the equation of state (EOS) where 
the EOS is  described by a  seven-segment  piece-wise  polytropic  with a 
thermal component given by  !th=1.8    
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GR NS-NS simulations: State of the Art
❖ One of the main and hottest research topic in Numerical Astrophysics.

❖ A comprensive discussion of the subject can be found in (www.livingreviews.org):  J.A. 
Faber & F.A. Rasio, “Binary neutron star mergers”, Living Reviews in Relativity (2012). 
This review contains 338 references. 

❖ New review by Rezzolla and Baiotti (arXiv:1607.03540), “Binary neutron-star mergers: a 
review of Einstein's richest laboratory”

❖ Impossible to give a comprensive list of all the individual contributor and their roles. 

❖ Among them is worth citing:

❖ The people that start it back in ‘99: Shibata&Uryu: Phys. Rev. D 61 064001 (gr-qc/
9911058) 

❖ and (in alphabetic order): Alic, Anderson, Baiotti , Bauswein, Bernuzzi , 
Bruegmann , Ciolfi, Dietrich , Duez , Etienne , Foucart, Giacomazzo , Gold, Haas , 
Hotokezaka, Janka, Kastaun , Kawaguchi, Kidder , Kiuchi, Kokotas, Kyutoku, 
Lehner , Liebling , Liu, Nielsen , Ott , O’Connor , Pachalidis, Palenzuela , Pfeiffer, 
Rezzolla, Scheel , Sekiguchi , Shapiro , Shibata, Stergioulas, Taniguchi, Uryu, … 
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Mostly based on:
❖ A. Feo, R. De Pietri, F. Maione and F. Loeffler, arXiv:1608.02810.  

Classical and Quantum, to appear.  
Modeling Mergers of Known Galactic Systems of Binary Neutron Stars.  

❖ F. Maione, R. De Pietri, A. Feo and F. Loeffler,  arXiv:1605.03424.  
Classical and Quantum Gravity, 33, no. 17, 175009 (2016).  
Binary neutron star merger simulations with different initial orbital frequency and 
equation of state.  

❖ R. De Pietri, A. Feo, F. Maione and F. Loeffler, arXiv:1509.08804.  
Phys. Rev. D 93, 064047 (2016). 
Modeling Equal and Unequal Mass Binary Neutron Star Mergers Using Public Codes
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Gravitational Wave detected!
❖ The gravitational waves were detected 

on September 14, 2015 at 5:51 a.m. 
Eastern Daylight Time (09:51 UTC) by 
both of the twin Laser Interferometer 
Gravitational-wave Observatory (LIGO) 
detectors, located in Livingston, 
Louisiana, and Hanford, Washington, 
USA.

❖ The signal was observed with a matched-
filter signal-to-noise ratio of 24 and a false 
alarm rate estimated to be less than 1 
event per 203 000 years, equivalent to a 
significance greater than 5.1σ. The source 
lies at a luminosity distance of 410(18)  
Mpc corresponding to a redshift 
z=0.09(4). In the source frame, the initial 
black hole masses are 36(5)M⊙ and 
29(4)M⊙, and the final black hole mass is 
62(4)M⊙, with 3.0(5) M⊙c2 radiated in 
gravitational waves. All uncertainties 
define 90% credible intervals. 
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Observation of Gravitational Waves from a Binary Black Hole Merger B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration)
Phys. Rev. Lett. 116, 061102 – Published 11 February 2016
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We already knew they (GW) exists!
❖ PSR B1913+16 (also known as J1915+1606) is a 

pulsar in a binary star system, in orbit with 
another star around a common center of 
mass. In 1974 it was discovered by Russell 
Alan Hulse and Joseph Hooton Taylor, Jr., of 
Princeton University, a discovery for which 
they were awarded the 1993 Nobel Prize in 
Physics

❖ Nature 277, 437 - 440 (08 February 1979), J. 
H. TAYLOR, L. A. FOWLER & P. 
M. McCULLOCH:  
Measurements of second- and third-order 
relativistic effects in the orbit of binary pulsar 
PSR1913 + 16 have yielded self-consistent 
estimates of the masses of the pulsar and its 
companion, quantitative confirmation of the 
existence of gravitational radiation at the 
level predicted by general relativity, and 
detection of geodetic precession of the pulsar 
spin axis.
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Why we do want to study BNS mergers?
❖ First: the LIGO/Virgo collaboration will see the signal from BNS system. They are among the most 

powerful sources of GWs
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Gravitational Waves sources: compact objects
❖ MAIN TARGET LIGO/Virgo coll.:  

NS-NS merger  
Expected to rate ≈ 0.2 − 200 events  
per year events between 2016 − 19  
[J. Abadie et al. (VIRGO, LIGO Scientific),   
Class. Quant. Grav. 27, 173001 (2010)]
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Table from: Martinez et al.: “Pulsar J0453+1559: A Double Neutron Star System with a Large Mass Asymmetry” arXiv:1509.08805v1 

❖ Core collapse in supernova

❖ BH-BH merger   —— (FOUND!)

❖ BH-NS merger

❖ “Mountains" (deformation) on the crust of Neutron Stars 

❖ Secular instability of Neutron stars

❖ Dynamical instability of Neutron star

sensitive frequency band 
approx. (40-2000) Hz



Artistic view of  the location of the six galactic system.
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A. Feo, R. De Pietri, F. Maione and F. Loeffler,  

Modeling Mergers of known Galactic Binary Neutron Stars, 
Class and Quantum Gravity (to appear) arXiv 1608.02810(2016) 

Analysed with 4-EOS



The evolution of the B1534+12 system.
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EOS in numerical relativity
❖ Usually just a pice-wise politropic approximant.

❖ More works using tabulated EOS, realistic thermal effect and 
Neutrinos dynamics.   

❖ The real challenge is to introduce more Nuclear-Physics in 
simulations.
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where ϵi and Ki are chosen to ensure the pressure and
specific energy density continuity. Figure 1 shows a plot of
the pressure (P) and of the adiabatic index (Γ) as a function
of the energy density e for the SLy EOS (gray line) [11] and
its piecewise polytropic approximation, used in the present
work (dashed red line, SLyPP) [12] supplemented by a
thermal component Γth ¼ 1.8. Also shown are two often-
used isentropic EOSs with P ¼ KρΓ;Γ ∈ f2.75; 3.00g.
These can be seen as a single-piece approximant of the
same SLy EOS (see Refs. [22,23]) and have been used for
test cases here. The exact parameters of the seven-segment
isentropic polytropic approximant are shown in Table I and,
as can be seen in the panels of Fig. 1 where the vertical
dotted lines show the transition of the approximant between
the various regions, they represent physically distinct parts
of the star.
Following the discussion of Ref. [24], we have chosen to

use the arbitrary choice of Γth ¼ 1.8. This choice has a few
drawbacks, the main one being that in the low-density
region it should approach 4=3, since there the pressure is
provided primarily by an ideal gas of ultrarelativistic
electrons and photons, so we overestimate the pressure
support. On the other hand (see Ref. [24]), a value of
Γth ¼ 2.0 seems to be too high, while a value of Γth ¼ 1.5
might yield a too low pressure support in the core.
All equations are solved as evolution equations with

respect to a coordinate time t, using the common 3þ 1
decomposition of space-time (see Ref. [21] and references
therein for details and notation).
The initial data of our simulations are calculated using

the LORENE code [25,26] that provides the possibility to
generate arbitrary initial data for irrotational BNSs.
The properties of the initial data we simulated are

summarized in Table II where, for each model, we report

the baryonic masses of the two stars (Mð1Þ
0 , Mð2Þ

0 ), their
gravitational masses (Mð1Þ, Mð2Þ) at infinite separation, the
initial rotational angular velocity (Ω), and the total mass
(MADM) and angular momentum (J). All these models were
generated to be at a relative physical distance of 40 km. We
generated five equal mass models of total gravitational
mass 2.207, 2.373, 2.537, 2.697, and 2.854M⊙, respec-
tively, and four unequal mass models with M ≃ 2.53M⊙
and q≃ 0.94, 0.88, 0.83, and 0.77 (where q ¼ Mð1Þ=Mð2Þ).
One of the main characteristics of the present inves-

tigation is that it can be reproduced using only freely
available open source software. The public licensed
LORENE code [26] has been used for generating the
initial condition, and the Einstein Toolkit [21,27] was
deployed for the dynamical evolution. The Einstein
Toolkit is a free, publicly available, community-driven
GR code. In particular, we have chosen the 11th release
(code name “Hilbert,” ET_2015_05). Some local modifi-
cation and additions were necessary, all of which are open
source and freely available from the gravity group
SUBVERSION repository server of Parma University and
all of which are proposed to be in the next release of the
Einstein Toolkit (see the Appendix).
The Einstein Toolkit is based on the Cactus

Computational Toolkit [28–30], a software framework
for high-performance computing (HPC). Its main tools
used in the present study are:

(i) the adaptive mesh refinement methods implemented
by Carpet [31–33].

FIG. 1. Plot of the pressure (P) and of the adiabatic index
(Γ ¼ d logðPÞ=d logðρÞ) as a function of the energy density
(e ¼ ρð1þ ϵÞ) for the SLy EOS, its piecewise polytropic
approximation (the one used in the present work), and two
isentropic polytropic EOSs P ¼ KρΓ.

TABLE II. Properties of the initial irrotational BNS models
simulated in the present work. All these models were generated
using the public LORENE code [26]. The columns show, in this
order, the baryonic masses of the two stars (Mð1Þ

0 , Mð2Þ
0 ), their

gravitational masses (Mð1Þ, Mð2Þ) at infinite separation, the initial
rotational angular velocity (Ω), the total initial ADM mass
(MADM), and the angular momentum (J). The notation for the
model names is as in the following example: SLy13vs15 denotes
the SLyPP EOS and baryonic masses equal to 1.3M⊙ and 1.5M⊙,
respectively, while G275th14vs14 means a polytropic (Γ-law)
EOS with Γ ¼ 2.75.

Name
Mð1Þ

0

½M⊙&
Mð2Þ

0

½M⊙&
Mð1Þ

½M⊙&
Mð2Þ

½M⊙&
Ω

½krads &
MADM
½M⊙&

J

½GM
2
⊙

c &

SLy12vs12 1.20 1.20 1.11 1.11 1.932 2.207 5.076
SLy13vs13 1.30 1.30 1.20 1.20 1.989 2.373 5.730
SLy14vs14 1.40 1.40 1.28 1.28 2.040 2.536 6.405
SLy15vs15 1.50 1.50 1.36 1.36 2.089 2.697 7.108
SLy16vs16 1.60 1.60 1.44 1.44 2.134 2.854 7.832
SLy135vs145 1.35 1.45 1.24 1.32 2.040 2.536 6.397
SLy13vs15 1.30 1.50 1.20 1.36 2.040 2.535 6.376
SLy125vs15 1.25 1.55 1.16 1.40 2.040 2.533 6.337
SLy12vs16 1.20 1.60 1.11 1.44 2.039 2.531 6.281
G275th14vs14 1.40 1.40 1.29 1.29 2.053 2.554 6.513
G300th14vs14 1.40 1.40 1.26 1.26 2.028 2.498 6.243

MODELING EQUAL AND UNEQUAL MASS BINARY … PHYSICAL REVIEW D 93, 064047 (2016)

064047-3

The true EOS for nuclear matter in a 
system similar to a NS is still unknown, 
not even assuming a small effect on the 
temperature, i.e., cold neutron star, as 

expected here for initial data.



EOS used in our simulations
❖ Piecewise polytropic 

representation of SLy EOS + 
thermal component:

❖ 7 pieces EOS => realistic treatment 
of the NS crust and the BH 
accretion disk eventually produced

❖ High density region similar to 
Gamma = 3.00 polytropic.

❖ Still only approximate treatment of 
thermal component.
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Read et 
al. 2009
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Effect of the EOS (four different EOS)
❖ APR4 EOS obtained using variational chain summation methods with the Argonne two-nucleon interaction 

and including also boost corrections and three-nucleon interactions

❖ The SLy EOS based on the Skyrme Lyon effective nuclear interaction  

❖ The H4 EOS constructed in a relativistic mean field framework including also Hyperons contributions and 
tuning the parameters to have the stiffest possible EOS compatible with astrophysical data 

❖ The MS1 EOS constructed with relativistic mean field theory considering only standard nuclear matter. 

15
Binary neutron star merger simulations with different initial orbital frequency and equation of state, F. Maione, R. De Pietri, A. Feo and F. Loeffler,  

Classical and Quantum Gravity, 33, no. 17, 175009 (2016).  arXiv:1605.03424



Multi Orbits simulations (four different EOS)
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(a) Mass-Radius relations (b) Initial density profiles

Figure 1 – Left: Mass-radius relations for non-rotating neutron stars with four nuclear
EOSs. The horizontal gray line marks the mass of PSRJ0348+0432 M = 2.01M§[75].
Right: Initial density profiles for the stars using these four EOSs, with a Baryon mass
of 1.4M§.

stars for each of these EOS. They have been generated solving the TOV equations with
the code rns [76].

We followed [77] parameterizing the EOSs as piecewise polytropes, with the
following expressions in each density interval [fl

i≠1

, fl
i

]:
P

cold

= K
i

fl�i (1)

‘
cold

= ‘
i

+ K
i

�
i

≠ 1fl�i≠1. (2)

For each EOS we used 7 polytropic pieces, of which the first four (at lower densities)
always adopt the prescription of [71, 72] for the stellar crust and the three remaining,
instead, use the coe�cient found in appendix B of [77] for each of the four EOS models
described above. Characteristics of the employed EOSs and of their impact on the
initial models are listed in Tab. 1.

During the evolution, the EOS is supplemented by a thermal component of the
form

P
th

= �
th

fl(‘ ≠ ‘
cold

), (3)
choosing �

th

= 1.8 following the results of the discussion in [78].

3. Results

We analyzed the dynamics of the inspiral phase of a BNS merger, performing numerical
simulations of an equal mass binary system using four di�erent EOSs for the cold
nuclear matter and starting the dynamical evolution from four di�erent values of
coordinate distance between the star centers.
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Figure 8 – Overview of the plus polarization of the gravitational wave strain rh+
22

for each model simulated. The waveforms of models with the same EOS are aligned at
their merger times (the time of the maximum of |h22|). The waves starting from di�erent
initial frequencies are marked with di�erent colors (blue: d = 60 km, green: d = 50 km,
red: d = 44.3 km, cyan: d = 40 km). They show a di�erent phase evolution in the
last orbits and some di�erences in the wave amplitude in the merger and post-merger
phases.

All this analysis neglects the interplay between eccentricity and tidal e�ects,
since Post Newtonian approximants including both have not been yet developed.
Nevertheless, eccentricity is a known source of error, and can be reduced with the
procedure outlined above [68, 69], which is advisable when calibrating analytical
models with long, high-resolution numerical simulations.

3.3. Comparison of BNS simulations with di�erent starting distance

The main purpose of this work is to compare the dynamical evolution of initial BNS
models with the same EOS and di�erent starting distance between the stars (i.e.
di�erent initial frequencies). This comparison is useful to get insights on the numerical
errors accumulated during many orbits and to validate the correctness of LORENE
initial data, even when the two starts are close to each other and the tidal e�ects
have a relevant impact on the system evolution from the beginning of the dynamical
simulation. This can also be seen as using the full 3d numerical evolution to fill the
gaps between several quasi-equilibrium configurations through which the coalescing
binary must pass.
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Figure 5 – Evolution of the coordinate distance between the star centers, assumed
as the points with the maximum density inside each star. The e�ect of the orbital
eccentricity is clearly recognizable in the distance oscillations. We note also that the
orbital evolution of models starting at di�erent initial distances does not perfectly match,
in particular for the more compact models. Also see Sec. 3.3 for a discussion.

3.2. Orbital Eccentricity

The amplitude of the gravitational wave strain shows a characteristic oscillation in
all our simulations (see Figs. 6 and 8). This phenomenon has been interpreted in
the literature as an imprint of a small eccentricity in the orbital evolution due to
the missing approaching radial velocity in the quasi-circular initial data [68, 69] (see
Sec. 2). We checked the trajectories of our BNS systems, calculating their eccentricity
in a simple way, and later confronted their gravitational wave strain with the one
computed with a recently developed analytical model for eccentric binaries [95].

We computed the trajectories by following the dynamics of the star centers,
defined as the points on the numerical grid with the maximum density fl. Next,
we computed the coordinate distance D between the star centers at each time step,
and fitted its derivative (computed with a fourth order operator) with the following
Newtonian approximation for the orbital evolution:

Ḋ(t) = A
0

+ A
1

t ≠ e D
0

Ê
e

sin (Ê
e

t + „
e

) , (20)
where e is the eccentricity and D

0

= d the initial coordinate interbinary distance. The
fit is performed in the time interval between t

ret

= 3ms and t
ret

= 2

3

t
merger

, to avoid
the initial spurious radiation and the plunge phase but having at least one eccentricity
cycle included. For the models starting from only d = 40 km it is not possible to satisfy
that last requirement, which is why we excluded those simulations from the analysis

❖ Long term (up to 16 orbits) equal mass BNS 
simulations with four different EOS, starting with four 
different values of the star center d=(40,44.3,50,60)Km 
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Separation as function of time (eccentricity)



The pulsar J0453+1559 (q=0.75)  
with four different  EOS
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A. Feo, R. De Pietri, F. Maione and F. Loeffler,  
Modeling Mergers of known Galactic Binary Neutron Stars, 

Class and Quantum Gravity (to appear) arXiv 1608.02810(2016) 



The pulsar J0453+1559 (q=0.75) with four different  EOS
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Simulation of NS merger as a key to 
get insight on the EOS 
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Neutron Stars

❖ Neutron Stars are a degenerate state of matter that is formed after the core 
collapse in a supernova event (where the electrons fall into nuclear matter and 
get captured by protons forming neutrons).

❖ Excellent laboratory to study high-density nuclear physics and EOS.

❖ Neutron star composition still unknown (neutron, resonance, hyperons,…) 

❖ The extreme condition inside a NS cannot be reproduced in a laboratory. 

❖ Typical properties of NS:

20

R ' 10Km

M ' 1.4M�

T 2 [1.4ms, 8.5s]

B 2 [108, 1014]Gauss



BNS as a probe for Nuclear Matter EOS

❖ Gravitational wave detection by BNS system will give us information 
on the EOS that cover matter at extreme conditions.

❖ Different possibilities:
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Many different possibilities depending on the EOS

22

Many different possibilities depending on the EOS. GWs in the late inspiral and merger 
phases could constrain NS EOS. Many GW templates from Numerical Relativity are 

necessary 



How we do simulate such system.
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 General Relativity (in short)
➡ The gravity is shown as a result of the fact that the space-

time is curved! 

๏ Each mass-energy curved the space-time 

๏ Freely falling objects follow the geodetic (straight line) 
of a curved space-time.

๏ Einstein’s fields equation are:  
 

➡ There is a real space-time but we are free to choose any 
reference systems (atlas) to describe physical laws.
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Rµ⌫ � 1

2
gµ⌫R =

8⇡G

c4
Tµ⌫

 John Archibald Wheeler:
spacetime tells  

matter how to move;  
matter tells  

spacetime how to curve



Numerical Relativity in a nutshell

❖ But these are 4D equations! Need to write as 3+1 evolution equations.

❖ Spacetime get foliated into 3D spacelike surfaces, in which we define our variables. We evolve them along a 
time direction normal to those surfaces.

❖ (Magneto)Hydrodynamics is written in terms of conservative form and special numerical techniques are 
used for the fluxes calculations.

❖ All physical variables and equations are discretized on a 3D Cartesian mesh and solved by a computer. Uses 
finite differences for derivative computations and standard Runge-Kutta method for time integrations. 

❖ Different formulation of the Einstein Eqs have been developed in the last 20 years. BSSN-NOK version of the 
Einstein’s Eqs.
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Rµ⇥ �
1
2
gµ⇥R = 8�G Tµ⇥

�µTµ⇥ = 0

p = p(⇥, �)

Einstein Equations
Conservation of energy momentum

Equation of state
Conservation of baryon density

Tµ⇥ = (⇥(1 + �) + p)uµu⇥ + pgµ⇥

Ideal Fluid Matter



The base formalism (ADM)
1. Choose initial spacelike surface and provide 

initial data (3-metric, extrinsic curvature)

2. Choose coordinates:
❖ Construct timelike unit normal to surface, choose 

lapse function

❖ Choose time axis at each point on next surface (shift 
vector)

❖ Evolve 3-metric, extrinsic curvature 
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Use usual numerical methods:

1. Structured meshes (including multi-patch), finite differences (finite 
volumes for matter), adaptive mesh refinement (since ~2003). High order 
methods. 

2. Some groups use high accuracy spectral methods for vacuum space times



Unfortunately Einstein Equation must be rewritten !

❖ BSSN version of the  
Einstein’s equations  
that introduce additional  
conformal variables:

❖ Matter evolution  
(B set to zero)  
using shock capturing  
methods based on the  
GRHydro code
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[4] M. Shibata, T. Nakamura: “Evolution of three dimensional gravitational ..”, Phys. Rev. D52(1995)5429 
[5] T.W. Baumgarte, S.L. Shapiro: “On the numerical integration of Einstein..”, Phys. Rev. D59(1999)024007

Other formulation with the same good properties and constrain dumping are used: 
namely Z4, Z4c,…..



Matter evolution need HRSC Methods

❖ The equation of  a perfect fluid are a non linear  
hyperbolic  system.

❖ Wilson (1972) wrote the system as a set of advection equation within the 
3+1 formalism. 

❖ Non-conservative. Conservative formulations well-adapted to numerical 
methodology: 
❖ Martí, Ibáñez & Miralles (1991): 1+1, general EOS

❖ Eulderink & Mellema (1995): covariant, perfect fluid • Banyuls et al (1997): 3+1, 
general EOS

❖ Papadopoulos & Font (2000): covariant, general EOS 
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�µTµ⇥ = 0 Ideal Fluid Matter
Tµ⇥ = (⇥(1 + �) + p)uµu⇥ + pgµ⇥The equations of perfect fluid dynamics are a nonlinear 

hyperbolic system of conservation laws:

is a conservative external force field (e.g. gravitational field): 

Hyperbolic system of conservation laws

(state vector)

(fluxes)

(sources)

~g = �r� �� = 4⇡G⇢

~u = (⇢, ⇢ vj , e)

~

f

i = (⇢ vi, ⇢ vi vj + p �

ij
, (e+ p) vi)

~s =

✓
0,�⇢

@�

@x

j
+Q

j
M ,�⇢ v

i @�

@x

i
+QE + v

i
Q

i
M

◆

~g

p = p(⇥, �)



The numerical challenge
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A challenging numerical problem
❖ The accurate simulation of a BNS merger is among the most challenging tasks 

in numerical relativity.

❖ Involve strong gravitational fields, matter motion with relativistic speeds, 
relativistic shock waves, (and strong magnetic fields).

❖ Increasing difficulty due to the multidimensional character of the PDE and by 
the complexity of the Einstein’s equations such as coordinates degrees of 
freedom and formation of black holes (curvature singularity).

❖ Despite the problems, major progress achieved during the last decade in 
numerical simulations of BNS mergers (since the seminal work by Shibata 
and Uryu, 2000) due to:  improved numerical methods (high resolutions 
methods and adaptive mesh refinements), improved physics (nuclear physics 
EOS, thermal effects) and increased computational resources!!
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A challenging numerical problem (2)
❖ In the description of BNS mergers are involved three stages, the inspiral, the merger and 

the evolution to its final state (post-merger stage) that would quite likely be a BH 
surrounded by an accretion disk.

❖ The inspiral stage can be modeled with good accuracy by analytical techniques (PN 
calculations and EOB). Produce accurate waveforms up to a time very close to the 
merger. Useful to quickly computing waveform templates to matched filtering searches 
in GW detector data analysis. The role of NR in this regime is mainly to test and help 
improve these techniques.

❖ For the merger and post-merger stage, NR is the only available investigation tool to 
compare the experimental results that would be obtained by LIGO/Virgo detection with 
the underlying physics of the NS.

❖ An accurate description of GW emission of different model sources (different choice of 
the underlying NS physics through different choices of EOS) are useful for developing 
empirical relations to be able to infer NS parameter from future GW detections, as well 
as, to get information on the correct EOS that describe matter at this extreme conditions.
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The code: Einstein TOOLKIT + LORENE
• Einstein Toolkit open set of over 100 Cactus thorns for computational 

relativity along with associated tools for simulation management and 
visualization

• Cactus framework for parallel high performance computing (Grid 
computing, parallel I/O)

• Data are evolved on a Cartesian Mesh with 6 levels of refinement with 
Carpet 

• Matter Evolution with the module GRHydro:  
(Magnetic+CT evolution of Magnetic Field) 
HLLE Riemann Solver  
WENO Reconstruction method (*)  
PPM Reconstruction methods

• Spacetime Metric evolution is performed with the module 
MacLachlan implementing a 3+1 dimensional split of the Einstein Eqs.  
BSSN-NOK Gravitational Evolution scheme (*)  
CCZ4 gravitational evolutions 

• Initial data computed using the LORENE CODE
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einsteintoolkit.org



The computational challenge 
❖ Cartesian grid with 6 refinement  

levels (7 when we get a BH).

❖ Standard Resolution in the finest  
grid 0.25 CU and up to 0.125 CU.  
=> from 5,337,100 points up to 42,696,800 
per grid.

❖ Outer grid extends to (1063Km) to extract 
gravitational waves far from the source.

❖ One extra refinement level added just before 
collapse to black hole. 

❖ 12 spacetime variables + 4 gauge variables + 
5 hydrodynamical variables evolved in each 
point. 

❖ MPI+OpenMP code parallelization.
33
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Level min(x/y) max(x/y) min(z) max(z) (N
x

, N

y

, N

z

)
(CU) (CU) (CU) (CU) dx = 0.25

1 ≠720 720 0 720 (185,185,96)
2 ≠360 360 0 360 (205,205,106)
3 ≠180 180 0 180 (205,205,106)
4 ≠90 90 0 90 (205,205,106)
5 ≠60 60 0 30 (265,265,76)
6 ≠30 30 0 15 (265,265,76)

(7 ≠15 15 0 7.5) (265,265,76)

TABLE V. Simulation grid boundaries of refinement levels.
Level 7 is only used for simulations forming a BH, once the
minimum of the lapse – < 0.5. Resolutions as reported in
this paper always refer to grid 6.

—x (CU) 0.75 0.50 0.375 0.25 0.185 0.125
# threads 16 64 128 256 512 2048
# MPI 2 8 16 32 64 256
Memory (GBytes) 3.8 19 40 108 237 768
speed (CU/h) 252 160 124 53 36 16
speed (ms/h) 1.24 0.78 0.61 0.26 0.18 0.08
cost (SU/ms) 13 81 209 974 2915 26053
total cost (kSU, 50 ms) 0.65 4 10.5 49 146 1300

TABLE VI. Computational cost of the simulations, for the ex-
ample of using BSSN-NOK, with WENO reconstruction for
the hydrodynamics. SU stands for service unit: one hour on
one CPU core. The reported values refers to the “GALILEO”
PRACE-Tier1 machine locate at CINECA (Bologna, Italy)
equipped with 521 nodes, two-8 cores Haswell 2.40 GHz, with
128 GBytes/node memory and 4xQDR Infiniband intercon-
nect. Also, these are only correct for evolutions that do not
end with the formation of a BH, as an additional refinement
level was used to resolve the BH surroundings, and more anal-
ysis quantities had to be computed (e.g., the apparent horizon
had to be found). In addition, the simulations resulting in a
BH were performed on facilities at Louisiana State University:
SuperMike II (LSU HPC) and QB2 (Loni).

however, are not the only variables to consider. Required
memory puts a lower bound on the size of the employed
resources, while an upper bound is present at the break-
down of strong scaling.

To quantify these needs, the resolution and the size of
the computational grid are most important. Table V
shows the characteristics of the grid we used for the
present work. In particular we use a fixed structure of
mesh-refined, centered grids, with the exception of an
additional refinement level for simulations resulting in
an apparent horizons, and then only after merge (when
the minimum of the lapse – on the grid dropped below
0.5). In the last column of Table V we show the actual
grid-size in computation-points of each level, for resolu-
tion dx = 0.25 CU. Clearly the actual grid size (including
ghost-zones and bu�er-zones) changes varying with res-
olution, and is not explicitly shown here for that reason.

With the computational domain completely specified,
the next step of an analysis of the computational cost
is to asses the cost for a full simulation of a particular
model at the desired resolution. Table VI shows the ac-
tual simulation cost as function of resolution, for a partic-
ular High-Performance-Computer (HPC) system used in
the present research program, namely the “GALILEO”
system installed at the Italian CINECA supercomputer
center. As it was discussed in the conclusion, our result
show that the combined use of BSSN-NOK and WENO
allows the possibility to find qualitatively accurate results
in agreement with high-resolutions simulations. This is
a very desirable feature since it allows researchers to
quickly scan numerous di�erent models in order to se-
lect the most interesting for further study using higher
resolution.

All of our results have been produced using open source
and freely available software, the Einstein Toolkit for the
dynamical evolution and the LORENE library for gener-
ating the initial models. That means that the whole set
of our result can be reproduced and re-analyzed by re-
running the simulation from a common code-base. Some
modifications of the above mentioned software were nec-
essary, but these changes are also open source, and are
available for download from the University of Parma
WEB web server of the gravitational group [83]. We
kindly ask to cite this work if you find any of the ma-
terial there useful for your own research.
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Scaling on real world simulations
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❖ Scaling of the the Einstein 
Toolkit on the CINECA 
“Galielo” system.

❖ Performance on a real 
world simulation!
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Level min(x/y) max(x/y) min(z) max(z) (N
x

, N

y

, N

z

)
(CU) (CU) (CU) (CU) dx = 0.25

1 ≠720 720 0 720 (185,185,96)
2 ≠360 360 0 360 (205,205,106)
3 ≠180 180 0 180 (205,205,106)
4 ≠90 90 0 90 (205,205,106)
5 ≠60 60 0 30 (265,265,76)
6 ≠30 30 0 15 (265,265,76)

(7 ≠15 15 0 7.5) (265,265,76)

TABLE V. Simulation grid boundaries of refinement levels.
Level 7 is only used for simulations forming a BH, once the
minimum of the lapse – < 0.5. Resolutions as reported in
this paper always refer to grid 6.

—x (CU) 0.75 0.50 0.375 0.25 0.185 0.125
# threads 16 64 128 256 512 2048
# MPI 2 8 16 32 64 256
Memory (GBytes) 3.8 19 40 108 237 768
speed (CU/h) 252 160 124 53 36 16
speed (ms/h) 1.24 0.78 0.61 0.26 0.18 0.08
cost (SU/ms) 13 81 209 974 2915 26053
total cost (kSU, 50 ms) 0.65 4 10.5 49 146 1300

TABLE VI. Computational cost of the simulations, for the ex-
ample of using BSSN-NOK, with WENO reconstruction for
the hydrodynamics. SU stands for service unit: one hour on
one CPU core. The reported values refers to the “GALILEO”
PRACE-Tier1 machine locate at CINECA (Bologna, Italy)
equipped with 521 nodes, two-8 cores Haswell 2.40 GHz, with
128 GBytes/node memory and 4xQDR Infiniband intercon-
nect. Also, these are only correct for evolutions that do not
end with the formation of a BH, as an additional refinement
level was used to resolve the BH surroundings, and more anal-
ysis quantities had to be computed (e.g., the apparent horizon
had to be found). In addition, the simulations resulting in a
BH were performed on facilities at Louisiana State University:
SuperMike II (LSU HPC) and QB2 (Loni).

however, are not the only variables to consider. Required
memory puts a lower bound on the size of the employed
resources, while an upper bound is present at the break-
down of strong scaling.

To quantify these needs, the resolution and the size of
the computational grid are most important. Table V
shows the characteristics of the grid we used for the
present work. In particular we use a fixed structure of
mesh-refined, centered grids, with the exception of an ad-
ditional refinement level for simulations resulting in an
apparent horizon, and then only starting shortly before
the merger (when the minimum of the lapse – on the grid
dropped below 0.5). In the last column of Table V we
show the actual grid-size in computation-points of each
level, for resolution dx = 0.25 CU. Clearly the actual
grid size (including ghost-zones and bu�er-zones) changes
varying with resolution, and is not explicitly shown here
for that reason.

With the computational domain completely specified,
the next step of an analysis of the computational cost
is to asses the cost for a full simulation of a particular
model at the desired resolution. Table VI shows the ac-
tual simulation cost as function of resolution, for a partic-
ular High-Performance-Computer (HPC) system used in
the present research program, namely the “GALILEO”
system installed at the Italian CINECA supercomputer
center. As it was discussed in the conclusion, our result
show that the combined use of BSSN-NOK and WENO
allows the possibility to find qualitatively accurate results
in agreement with high-resolutions simulations. This is
a very desirable feature since it allows researchers to
quickly scan numerous di�erent models in order to se-
lect the most interesting for further study using higher
resolution.

All of our results have been produced using open source
and freely available software, the Einstein Toolkit for the
dynamical evolution and the LORENE library for gener-
ating the initial models. That means that the whole set
of our result can be reproduced and re-analyzed by re-
running the simulation from a common code-base. Some
modifications of the above mentioned software were nec-
essary, but these changes are also open source, and are
available for download from the University of Parma
WEB web server of the gravitational group [81]. We
kindly ask to cite this work if you find any of the ma-
terial there useful for your own research.
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50 ms in a week



Results on Numerical Methods comparisons

❖ The combination BSSN + WENO is the best for running 
sensible simulations at low resolution.

❖ With those methods you can run a qualitatively correct 
BNS simulation on your laptop!
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Data Analysis: Convergence
❖ Merger time measured from at least 

three different resolution 
simulations for each model.

❖ Convergence order and 
extrapolated “infinite” resolution 
merger time obtained with a fit to:

❖ Despite all observed differences it is 
important to make sure that all 
tested method lead to the same 
determination of the “true” merger 
time t_merger(dx=0).
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Initial Models
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From EOS to initial data
❖ An EOS is a table that connect pressure and energy to 

barion density (possible also to temperature, electron 
fraction,…)

❖ Given the EOS is possible to solve Einstein Equations + 
Matter imposing stationarity and axial symmetry => 
Models for Isolated Stars. Various codes allow to get such 
solutions: LORENE and RNSID for uniformly and 
differentially rotating Stars.

❖ It is possible to calculate the maximum mass for non-
rotating or uniformly rotating stars.     
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FIG. 6. Angular momentum (top-panel) and mass budget
(middle-panel) for the evolution of model B1913+16. The
blue, dashed, horizontal line indicates the ADM values of the
initial data, as calculated by LORENE. The red-hatched area
shows the matter contribution, while the green-hatched area
shows the contributions from the emitted GWs, and finally,
the black-solid line represents the BH contribution. The bot-
tom panel shows the total gravitational mass of the matter
present on the numerical grid, zoomed-in to highlight the late-
time accretion.

all dynamics concerning the energy E

gw

and the angular
momentum J

gw

carried away by gravitational radiation
and the BH formation is shown in Fig. 6. From there it
also apparent that about 30 ms after BH formation the
accretion dynamics has stabilized, within the time-scales
considered in these simulations.

In contrast to B1913+16, B1534+12 does not show a
prompt collapse, as can be seen in a similar Fig. 7. The
BH formation itself also happens slower in that case.
5 ms after BH formation the BH is characterized by a
M

bh

= 2.45 M§ and a = 0.61, and these values keep
increasing to their final measured values (30 ms after BH
formation) of M = 2.49 M§ and a = 0.65. At that
time, the computational grid still contains matter of to-
tal gravitational mass of M

disk

= 0.06 M§ and angular
momentum J

disk

= 0.398 GM§/c

2. From this informa-
tion we can deduce that the final state of the BH will be
M = 2.49 M§ and a = 0.68, since the amount of gravi-
tational energy and angular momentum carried away by
gravitational radiation from this moment on is negligi-
ble. In this case it is possible to estimate the accretion
rate from the measure of the mass of the BH. In partic-
ular, the accretion rate A

r

= dM

bh

/dt of the remnant
BH 35 ms after BH is ƒ 0.86 10≠3

M§/ms, that is still
decreasing but stabilizing.

To summarize, systems B1534+12 and B1913+16 will

FIG. 7. Angular momentum (top-panel), mass budget
(middle-panel) and total matter present in the grid (bottom-
panel) for the evolution of model B1534+12. This figure is
similar to Fig. 6

EOS SMNS HMNS
(M§) (M§)

SLy 2.04 (2.42) 2.41 (2.82)
H4 2.01 (2.30) 2.37 (2.70)
APR4 2.19 (2.66) 2.60 (3.09)
MS1 2.75 (3.30) 3.29 (3.90)

TABLE IV. Maximum masses for a SMNS and HMNS for
a set of 4 di�erent EOSs. Quantities in brackets show the
corresponding conserved baryonic mass.

both collapse to rapidly rotating BH, characterized by a
dimensionless rotational parameter a = J

bh

/M

2

bh

of 0.68
and 0.80, respectively. However, B1534+12 will show a
short-lived HMNS, while B1913+16 collapses promptly.

C. E�ect of the EOS on the J0453+1559 (q = 0.75)
galactic system

We study the e�ects of di�erent EOSs on the re-
cently discovered [10] BNS model associated to the pulsar
J0453+1559, which is the most asymmetric known bi-
nary system, characterized by the mass ratio of q = 0.75.
Here we analyze, as in [81], the e�ect of the EOS on an
unequal mass BNS. In particular, we used the three ad-
ditional EOSs (see Section II) APR4, H4 and MS1. The
use of a di�erent EOS changes the threshold for (follow-
ing the terminology introduced by [82]) a supra-massive
neutron star (SMNS), or a hyper-massive neutron star
(HMNS), as can be seen in Tab. IV.

From this it is clear that for the J0453+1559 system,

TOV UNIF.
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Figure 1. Left panel: position in the (β, M/Re) plane of the initial models computed with Â = 1,
with the filled circles representing those we have evolved numerically. A similar behavior is shown
also by the models with Â = 2. Indicated with solid thin lines are isocontours of constant baryon
mass models while indicated with a thick dashed line is the threshold to the dynamical bar-mode
instability as computed for a " = 2 polytrope [7]. Note that the threshold for the instability tends
to increase for smaller rest masses. Right panel: the same initial models as in the left panel but
shown in (ρc, rp/re) planes with isocontours of the constant β (upper part) or the constant M/Re

(lower part). See table 1 for a summary of the properties of the initial models.

A second approach that removes all of these problems uses analytic fits that have been
proposed for the pressure. As an example, [48] suggested to fit the specific internal energy of
the unified SLy EOS table with the expression6

ϵ = p1ρ
p2 + p3ρ

p4

(1 + p5ρ)2
f0{−p6(log(ρ) + p7)} +

ρ

8 × 10−6 + 2.1ρ0.585
f0{p6(log(ρ) + p7)}, (4)

where f0{x} = 1/(ex + 1), ρ and ϵ are in cgs units, and the coefficients pi are pi =
{0.320, 2.17, 0.173, 3.01, 0.540, 0.847, 3.581} (see table 2 of [48]). Equation (4) is obtained
from equation (15) of [48] after using ρ = mBn, where n is the baryon number density and
mB = 1.66 × 10−24 g is the mass of the nucleons. As discussed in [51], it is then possible
to compute the pressure from the value of ϵ using the first principle of thermodynamics at
T = 0:

p = ρ2 dϵ
dρ

, (5)

and thus to have an evaluation of the pressure which is thermodynamically consistent.
The differences between the fit and the table are typically less than 2%. Unfortunately,
although apparently very convenient, the evaluation of the fitting formulas containing several
exponential and logarithmic functions turns out to be computationally rather expensive even
if done in an optimized way.

A third approach, which combines the efficiency of a table search with the
thermodynamical consistency of an analytic fit, consists of performing a simple linear
interpolation among the tabulated values constructed from the analytic fit. Besides being
highly efficient, a linear interpolation also eliminates the spurious oscillations that arise, for
instance, in the derivative of the pressure if high-order interpolation formulas are used. In this
case, the interpolation error can be reduced simply by populating the analytically constructed
tables with a large number of entries, e.g. ∼600 in place of the ∼150 which are typically

6 Note that a different notation is used in [48] for some primitive variables.

6

SLy - differential rotation
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Instability types in rotating stars
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• Secular (m = 2): β ≥ βsec ≈ 0.14
• growth time determined by dissipative time scale  

(tens of seconds for neutron stars)
 

e.g., see Chandrasekhar (1970), Ou, Tohline and Lindblom (2004)

• Dynamical (m = 2): β ≥ βdyn ≈ 0.27 
• grows on dynamical timescale  

(tens of milliseconds for neutron stars)
e.g., see Shibata, Tohline, Baiotti, Manca, ...

• “Low T/W instability” - Shear? 
• first “observed” numerically  

(grows on dynamical time scale)
e.g., see Centrella et al (2001),  
Corvino (2010), ...
      

[*]  Chandrasekhar, “Elipsoidal figures 
of Equilibrium” (Yale Univ. Press, 1969)
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Figure 4. A schematic summary of the instability results for rotating ellipsoids (a2/a1 represents
the axis ratio, i.e., the ellipticity of the configuration). For values of β greater than 0.14
the Maclaurin spheroids are secularly unstable. Viscosity tends to drive the system towards a
triaxial Jacobi ellipsoid, while gravitational radiation leads to an evolution towards a Dedekind
configuration. Indicated in the figure is an evolution of this latter kind. Above β ≈ 0.27 the
Maclaurin spheroids are dynamically unstable, as there exists a Riemann-S ellipsoid with lower
(free) energy. (For more details, see [54, 56].)

when β > βs . The gravitational-wave instability tends to drive the system towards the
Dedekind sequence (the members of which do not radiate gravitationally)5.

These classical secular instabilities set in through the quadrupole f-modes of the ellipsoids.
In figure 5 we show the frequencies of the l = |m| = 2 Maclaurin spheroid f-modes. These
modes are usually referred to as the ‘bar-modes’. The figure illustrates several general features
of the pulsation problem for rotating stars. In particular, we note that (i) the rotational splitting
of modes that are degenerate in the non-rotating limit, i.e., the m = ±2 modes become distinct
in the rotating case, and (ii) the symmetry with respect to ω = 0, which reflects the fact that
the governing equations are invariant under the change [ω,m] → [−ω,−m]. In figure 5 we
also show the pattern speed for the two modes that have positive frequency in the non-rotating
limit, cf (18). From this figure we see that the l = −m = 2 mode, which is always prograde
moving in the inertial frame, has zero pattern speed in the rotating frame at βs (σp = $). At
this point, the mode becomes unstable to the viscosity driven instability. That the instability
should set in at this point is natural since the perturbed configuration is ‘Jacobi-like’ when
the mode is stationary in the rotating frame. Meanwhile, the gravitational-wave instability
sets in through the originally retrograde moving l = m = 2 modes. At βs these modes have
zero pattern speed in the inertial frame (σp = 0). At this point, the perturbed configuration is
‘Dedekind-like’ since the mode is stationary according to an inertial observer.

The evolution of the secular instabilities depends on the relative strength of the
dissipation mechanisms. This tug-of-war is typical of these kinds of problems. Since the

5 Recent results concerning the stability of the Riemann-S ellipsoids complicate this picture considerably. These
results, due to Lebovitz and Lifschitz [57], show that the Riemann-S ellipsoids suffer a ‘strain’ instability in most of
the parameter space. In particular, the Dedekind ellipsoids are always unstable due to this new instability.
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Figure 5. Results for the l = |m| = 2 f-modes of a Maclaurin spheroid. In the left frame we show
the oscillation frequencies (solid lines) and imaginary parts (dashed lines) of the modes, while
the right frame shows the mode pattern speed σi for the two modes that have positive frequency
in the non-rotating limit (the pattern speeds for the modes which have negative frequency in the
non-rotating limit are obtained by reversing the sign of m). All results are according to an observer
in the inertial frame. The dashed curves in the right frame represent a vanishing pattern speed (i) in
the inertial frame (the horizontal line), and (ii) in the rotating frame (the circular arc, which shows
"/"K as a function of β). The points where the Maclaurin ellipsoid becomes secularly (βs ) and
dynamically (βd ) unstable are indicated by vertical dotted lines.

gravitational-wave driven mode involves differential rotation it is damped by viscosity, and
since the viscosity driven mode is triaxial it tends to be damped by gravitational-wave
emission. A detailed understanding of the dissipation mechanisms is therefore crucial for
any investigation into secular instabilities of spinning stars.

Given the competition between gravitational radiation and viscosity, one would expect
a ‘realistic’ star to be stabilized beyond the point βs . Also, the secular instabilities are no
longer realized in the extreme case of a perfect fluid which conserves both angular momentum
and circulation6. Then the Maclaurin sequence remains stable up to the point βd ≈ 0.27. At
this point, there exists a bifurcation to the x = +1 Riemann-S sequence. These equilibria
have lower ‘free energy’ [56] than the corresponding Maclaurin spheroid for the same angular
momentum and circulation. This means that a dynamical transition to a lower energy state
may take place without violating any conservation laws. In other words, at βd the Maclaurin
spheroids become dynamically unstable to m = 2 perturbations. This instability is usually
referred to as the dynamical bar-mode instability.

In terms of the pulsation modes, the dynamical instability sets in at a point where two
real-frequency modes merge, cf figure 5. At the bifurcation point βd the two modes have
identical oscillation frequencies and their angular momenta will vanish. Given this, one of the
degenerate modes can grow without violating the conservation of angular momentum. The
physical conditions required for the dynamical instability are easily understood. The instability
occurs when the originally backward moving f-mode (which has δJ < 0 for β < βd) has
been dragged forwards by rotation so much that it has ‘caught up’ with the originally forward

6 Note that in general relativity all non-axisymmetric modes of oscillation radiate gravitational waves. Hence, this
argument is only relevant in Newtonian gravity.
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SLy:  unified  Sly  EOS  models  high-density  and 
cold (i.e. zero temperature) matter via a Skyrme 
effective  potential  for  the  nucleon-nucleon 
interactions
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3

In particular we are using the BSSN variant of the ADM

evolution [35–37] which is conformal traceless reformulation

of the above system of evolution equation where the evolved

variable are the conformal factor (φ), the trace of the extrinsic
curvature (K), the conformal 3-metric (γ̃ ij), the conformal
traceless extrinsic curvature (Ãij) and the conformal connec-
tion functions (Γ̃i) defined as:

φ =
1
4

log( 3
√

γ) (2.5)

K = γijKij (2.6)

γ̃ij = e−4φγij (2.7)

Ãij = e−4φ(Kij − γijK) (2.8)

Γ̃i = γ̃ij
,j (2.9)

The code is designed to handle arbitrary shift and lapse con-

ditions, which can be chosen as appropriate for a given space-

time simulation. More information about the possible families

of space-time slicings which have been tested and used with

the present code can be found in [38? ]. Here, we limit our-

selves to recalling details about the specific foliations used in

the present evolutions. In particular, we have used hyperbolic

K-driver slicing conditions of the form

(∂t − βi∂i)α = −f(α) α2(K − K0), (2.10)

with f(α) > 0 andK0 ≡ K(t = 0). This is a generalization
of many well known slicing conditions. For example, setting

f = 1 we recover the “harmonic” slicing condition, while,
by setting f = q/α, with q an integer, we recover the gener-
alized “1+log” slicing condition [39]. In particular, all of the
simulations discussed in this paper are done using condition

(2.10) with f = 2/α. This choice has been made mostly be-
cause of its computational efficiency, but we are aware that

“gauge pathologies” could develop with the “1+log” slic-
ings [40, 41].

As for the spatial gauge, we use one of the “Gamma-driver”

shift conditions proposed in [38] (see also [42]), that essen-

tially act so as to drive the Γ̃i to be constant. In this re-

spect, the “Gamma-driver” shift conditions are similar to the

“Gamma-freezing” condition ∂tΓ̃k = 0, which, in turn, is
closely related to the well-knownminimal distortion shift con-

dition [43]. The differences between these two conditions in-

volve the Christoffel symbols and are basically due to the fact

that the minimal distortion condition is covariant, while the

Gamma-freezing condition is not.

In particular, all of the results reported here have been ob-

tained using the hyperbolic Gamma-driver condition,

∂2
t βi = F ∂tΓ̃i − η ∂tβ

i, (2.11)

where F and η are, in general, positive functions of space
and time. For the hyperbolic Gamma-driver conditions it is

crucial to add a dissipation term with coefficient η to avoid
strong oscillations in the shift. Experience has shown that by

tuning the value of this dissipation coefficient it is possible to

almost freeze the evolution of the system at late times. We

typically choose F = 3
4α and η = 2 and do not vary them in

time.

B. Evolution of the hydrodynamics equations

In this work we have considered the space time described

in the standard 3+1 metric decomposition variables γ ij , α, βi

andmatter is assumed described by a perfect fluid EnergyMo-

mentum tensor:

T µν = ρhuµuν + pgµν (2.12)

h = 1 + ϵ +
p

ρ
(2.13)

and an equation of state of type p = p(ρ, ϵ). The code has
been written to use any EOS, but all of the simulation per-

formed so far have been performed using either a (isoentropic)

polytropic EOS

p = KρΓ , (2.14)

e = ρ +
p

Γ − 1
, (2.15)

or an “ideal fluid” (Γ-law) EOS

p = (Γ − 1)ρ ϵ . (2.16)

Here, e = ρ(1+ϵ) is the energy density in the rest-frame of the
fluid,K the polytropic constant and Γ the adiabatic exponent.
In the case of the polytropic EOS (2.14), Γ = 1+1/N , where
N is the polytropic index (we have always used N = 1, i.e.,
Γ = 2 that is a good approximation for a quite stiff equation of
state) and the evolution equation for τ needs not be solved. In
the case of the ideal-fluid EOS (2.16), on the other hand, non-

isentropic changes can take place in the fluid and the evolution

equation for τ (see below) needs to be solved. This means that
matter is described by the five dynamical variables ρ, ϵ, uµ

(where uµuµ = −1) with the equation of motions

▽µT µν = 0 ,

▽µ(ρuµ) = 0 .
(2.17)

An important feature of the Whisky code is the imple-

mentation of a conservative formulation of the hydrodynam-

ics equations [44–46], in which the set of equations (2.17) is

written in a hyperbolic, first-order and flux-conservative form

of the type

∂tq + ∂if (i)(q) = s(q) , (2.18)

where f (i)(q) and s(q) are the flux-vectors and source terms,
respectively [47]. Note that the right-hand side (the source

terms) depends only on the metric, and its first derivatives,

and on the stress-energy tensor. Furthermore, while the sys-

tem (2.18) is not strictly hyperbolic, strong hyperbolicity is

recovered in a flat space-time, where s(q) = 0.
As shown by [45], in order to write system (2.17) in the

form of system (2.18), the primitive hydrodynamical variables

(i.e. the rest-mass density ρ and the pressure p (measured in
the rest-frame of the fluid), the fluid three-velocity v i (mea-

sured by a local zero-angular momentum observer), the spe-

cific internal energy ϵ and the Lorentz factor W ) are mapped
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Shear instability
❖ Possibility of other  instabilities in rapidly 

and differentially rotating neutron stars. 

❖ Evidence of instabilities below the 
expected threshold for the dynamical bar-
mode instability, βc ≡T/|W|≃0.25

❖ Shear Instability on a dynamical timescale 
and for a wide range of values of β. 

❖ This class of instability support the 
phenomenological predictions made by 
Watts et al (2005 Astrophys. J. 618 L37) on 
the nature of the low-T /|W | instability.

❖  Manifestation of a shear instability in a 
region where the latter is possible only for 
small values of β.
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Figure 6. Left panel: radial profiles of the vortensity V for three representative models with small,
medium and high values of β. The different symbols match the ones in figure 2 and in the left
panel of figure 5, with the one for model M.1.150 reported as filled, and show the actual position
of the corotation radii. Note that none of these coincides with the minimum of V; for compactness
we have reported only the models with Â = 1. Right panel: normalized corotation radii for the
different frequencies σ i

2 presented in the left panel of figure 5 shown as a function of β; the same
convention of the previous figures is used for the different symbols.

values of Â, the corotation band is rather wide and there will be both an upper value and a
lower value of β between which the shear instability can develop (these critical values of β

correspond to the entrance and exit of the unstable mode in the corotation band). This situation
corresponds therefore to the one commonly encountered in numerical simulations, such as
those in [18–24], and for which the shear instability takes place only for very small values
of the instability parameter and on timescales that are much longer than the dynamical one.
When moving to larger degrees of differential rotation, that is, when going to smaller values
of Â, the corotation band becomes larger and larger and the shear instability can develop
essentially for all values of β, merging with the dynamical bar-mode instability for β ! 0.25.
This is exactly what has been found here. Conversely, when moving to smaller degrees of
differential rotation, that is, when going to higher values of Â, the corotation band becomes
thinner and the shear instability can develop only for a smaller range of β. As the differential
rotation is further decreased and the star tends to rotate uniformly, the corotation bandwidth
vanishes, all the models are stable to the shear instability and subject only to the dynamical
bar-mode instability for β ! 0.25. This is indeed the case for the unstable models evolved in
[6], which were purely (bar-mode) dynamically unstable and none of which had the unstable
mode within the corresponding corotation band, but above it.

In essence, therefore, there should be an intermediate range of Â for which the instability
is absent at low β, appears at intermediate values and then disappears again at high β, thus
defining an interval of values of β for which the models are unstable. To also validate this
prediction, we simulated a sequence of models with smaller differential rotation and Â = 2.
This second sequence has the same baryonic mass as that with Â = 1, but with β in a smaller
range, namely between β = 0.125 and β = 0.200. (Note that β = 0.200 is also very close
to the largest value for which we could build an equilibrium model.) Unfortunately, also all
of these models show an m = 2 shear instability, with the unstable frequencies falling within
the corotation band, as it was for the Â = 1 stars. Of course, lack of evidence is not evidence
of absence and the fact that we have not found stable models within our range of values of β

16
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Figure 2. Left panel: initial angular velocity profiles for three representative models with small,
medium and high values of β and Â = 1. (A similar behavior is shown also by the models with
Â = 2.) Indicated with different symbols, which match the ones in the left panel of figures 5 and 6,
are the normalized radial positions of the corotation radii, with the one for model M.1.150 being
shown filled to help distinguish it. Right panel: the same as in the left panel but for the initial
rest-mass density.

available in published tables. This third approach is the one actually implemented in Whisky
and provides a speed up of about 20% with respect to the evaluation of the pressure via the
analytic fits and with comparable accuracy.

2.3. Initial data

The initial data for our simulations are prepared as stationary and axisymmetric equilibrium
solutions for rapidly rotating relativistic stars [52]. Adopting spherical quasi-isotropic
coordinates, the line element of the corresponding spacetime is

ds2 = −eµ+ν dt2 + eµ−νr2 sin2 θ(dφ − ω dt)2 + e2ξ (dr2 + r2 dθ2), (6)

where µ, ν,ω and ξ are functions of r and θ . Moreover we assume the usual relativistic j -
constant law of differential rotation and that amounts to assume an angular velocity distribution
of the form

'c − ' = 1

Â2r2
e

[
(' − ω)r2 sin2 θ e−2ν

1 − (' − ω)2r2 sin2 θ e−2ν

]
, (7)

where re is the coordinate equatorial stellar radius and the coefficient Â provides a measure of
the degree of differential rotation. Expression (7) represents the general relativistic equivalent
of the simpler Newtonian j -constant law [27]

'c − ' = 'cr
2 sin2 θ

(
Â

2
r2
e + r2 sin2 θ

) . (8)

Clearly, Â → ∞ corresponds to a star in uniform rotation, while Â → 0 corresponds to a star
with increasing degree of differential rotation. As a reference, Â = 1 yields a star with an
angular velocity profile which varies by a factor ∼3 between the center and the surface of the
star (cf the left panel of figure 2).

In practice, we have computed a very large number of initial models using the SLy
prescription for the EOS for which we have computed baryonic mass Mb, the gravitational

7



A short note on Magnetic Fields
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Magnetic fields of realistic strengths imprint correction on matter dynamics to 
small to be significative but:

Magnetic fields are expected to be amplified:
* At the merger (via Kelvin-Helmholtz instability), 
* After the merger (via a magneto-rotational instability or a dynamo action 

converting small-scale fields into large-scale ones). 
* The final and effective amplification of the resulting magnetic fields is still 

uncertain, although it should be of at least two-three orders of magnitude. 



Effect of adding a poloidal magnetic on BAR-mode rotating stars.

❖ for all values of B: a very strong 
growth of the toroidal component 
due to the winding of the magnetic 
field lines

❖ B < 10
14 

G:: the matter dynamics is 
quite unaffected for all models

❖ 10
14 

G < B < 10
15 

G:: onset and 
development of the bar-mode 
instability are affected by the 
presence of the B field

❖ 10
15 

G < B < 10
16 

G: the bar instability 
is completely suppressed (the 
threshold depends on the model) 
and the outer layers expand

❖ B > 10
16

 G: the initial configuration is 
no longer an equilibium model
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axi-symmetry  
is preserved

B=1015 G

B = 1015 G

U13U11

B = 6.0 • 1014 G

B = 2.0 • 1015 G

outer layers 
expand

B FIELD IS TOO STRONG 
to be added as a perturbation

B = 1016 G

B FIELD IS TOO WEAK 
no effects on the dynamics

bar-mode 
instability

S8
S7

S6 S1 U3

B = 1014 G

B = 2.4 • 1015 G

U11 U13

L. Franci, R. De Pietri, K. Dionysopoulou, L. Rezzolla,  
Dynamical bar-mode instability in rotating and magnetized relativistic stars,  

 Phys. Rev. D 88, 104028 (2013). arXiv:1308.3989



Magnetic Fields
❖ Dynamics of the evolution of  a model with a seed magnetic 

field of 10^14 Gauss.

❖ Left: matter density

❖ Right: modulus of the magnetic fields [1012-1016,5  Gauss] 
in the xy plane a z=1.5

❖ grid = [207x407x407], i.e more the 300 points inside the stars
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Binary Neutron Stars System 
❖ EOS … initial data for binary neutron star system … waveform 

… detection … validate the proposed form for the EOS.

❖ Question: Is it possible to discriminate between different 
EOS. Answer: Yes, it is.

❖ Main problem are:

❖ It is not easy to generate (consistent) initial data with complete 
control of the spin, orbital parameter, initial magnetic fields,… 
Recent progress by Rezzolla,Tichy, Kyutoku groups.

❖ HOWEVER: exist a PUBLIC CODE that allows to generate ID 
for non-rotating stars starting from a tabulated EOS at T=0. 
Need to extend the availability of PUBLIC initial data.
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Initial models we studied and how we computed them .
❖ The initial data of our simulations is 

calculated using the LORENE code 
[“LORENE: Langage Objet pour la 
RElativité NumériquE,” http://
www.lorene.obspm.fr/] that provides 
the possibility to generate arbitrary 
initial data for irrotational BNS. 

❖ The code is GPL free and can be 
freely and easily used to generate the 
initial data for the simulations.

❖ The initial data generated by 
LORENE show a residual eccentricity 
and we will show how this can be 
seen in numerical simulation 
(SLy14vs14)
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Table from: Martinez et al.: “Pulsar J0453+1559: A Double Neutron Star System with a Large
Mass Asymmetry” arXiv:1509.08805v1 

Analysed with 4-EOS and different initial separation



Gravitational Waves from our BNS merger simulations  
(or…what we do … the problems we have … and what we found  )
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❖ GW signal from BNS merger simulations using different EOS. 

❖ We look at the EOS signature in the GW signal. Different  
EOS give different signal.

16 orbits before merger



Results: gravitational waves signal properties 

❖ Example of the FFT of the 
gravitational wave signals 
and the oscillation of the 
maximum density for three 
simulations: an equal mass 
and an unequal-mass one 
and the one with a 
significant softer EOS.

❖  Only the equal mass one 
show the two side peaks

❖ The softer one show a clear 
effect of its greater 
deformability. 
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Result for the post merger spectrum
❖ Position of the 

peaks depends 
on the EOS and 
on the fact that 
the two masses 
are equal or 
unequal.

❖ Spectroscopic 
data are a direct 
route to the 
investigation of 
the true-EOS 
governing matter 
at extreme 
conditions.
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Unequal mass models 
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In the case of unequal 
mass models the 
remnant  neutron star 
do not shows a single 
bar deformation. 

In the merger phase the 
two arms structure 
present in the case of 
equal mass systems is 
transformed into a 
single arm structure as 
the mass ratio 
increases.



SLy 1.5 vs1.5  (Barionic Mass)
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Ė g
w

(1
049

W
)

�10 �5 0 5 10 15 20 25
t (ms)

�1.0

�0.5

0.0

0.5

1.0

r·
h 2

2
(k

m
)

Sly15vs15 dx=0.25

tmerger= 6.98 (ms)

Model dx=0.50 dx=0.375 dx=0.25

Sly15vs15 6.11 ms 11.81 ms 7.36 ms



Delayed Black-Hole Formation
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Model dx=0.50 dx=0.375 dx=0.25

Sly16vs16 0.83 ms 0.81 ms 0.79 ms

SLy 1.6 vs1.6  (Baryonic Mass)



Collapse time to Black Hole (after Merger)
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Model dx=0.50 dx=0.375 dx=0.25

Sly15vs15 6.11 ms 11.81 ms 7.36 ms

Sly16vs16 0.83 ms 0.81 ms 0.79 ms

Not to easy to get physical predictions. 

Presence of matter instabilities in the after 
merger dynamics (like Kelvin Helmotz)



Collapse time to Black Hole (after Merger)
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   Final mass BH np.max(Mbh[1]) is: 2.82937414009 
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The pulsar B1534+12 — The disk…
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and the SOUND!
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Different EOS — same stellar model
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Conclusions
❖ With the first detection of GWs the era of Gravitational waves astronomy 

just started.

❖ Long term simulation of BNS mergers using only public codes: You 
can re-run all the models on your own. 

❖ It is possible to check the code on a laptop … (Using our setting).

❖ All the simulation presented here were performed on Tier-1 system.

❖ More insight improving the resolution of the simulation. 

❖ Confirmation of previous results published in literature.

❖ New results for un-equal mass BNS systems, and the evolution of six 
galactic systems with different EOS. 

❖ Just a starting point for new research …. 
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What’s next ?
❖ Investigate dependence of collapse time on resolution and EoS.

❖ Matter expelled not-axisymmetrically during merger => study accretion disk 
formation, mass, composition and development to an equilibrium configuration.

❖ Can (magneto)hydrodynamical instabilities develop in the disk? 

❖ (Black hole like) kicks from linear momentum emitted in gravitational waves 
and unbound matter expelled not-axisymmetrically.

❖ Realistic treatment of EOS thermal component (ex. Using finite temperature 
EOS from relativistic mean field theory like Shen EOS).

❖ Simulations with magnetic fields to study the development of magnetic 
instabilities during the merger (Kelvin-Helmotz), in the hypermassive NS and 
the accretion disk (MRI).

❖ Studying possible electromagnetic and jet emissions after collapse.

❖ Use of OpenMP4 to test at least part of the code on GPUs and Intel MICs.
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The end …
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