A new quark-hadron hybrid EOS for corecollapse supernovae and neutron star mergers

Matthias Hempel, Basel University From quarks to gravitational waves, CERN, 6.12.2016

QCD phase diagram

- M-R of neutron stars may not be sufficient to identify quark matter
- "masquerade", Alford et al. 2005
- → cooling/transport properties, signatures in dynamic scenarios (see, e.g. Buballa et al. arXiv:1402.6911)

- what is the state of matter at extreme densities?
- is there a first-order phase transition to quark matter?

Motivation: core-collapse supernovae

- how do massive stars explode?
- still many open questions in core-collapse supernova theory
- which progenitors end as black holes, which as neutron stars?
- what is their nucleosynthesis contribution, galactical chemical evolution?

The general purpose "supernova" EOS

progenitor star at onset of collapse

Wikimedia

Quark-hadron hybrid general purpose EOSs

Model	Nuclear	Degrees	$M_{ m max}$	$R_{1.4\mathrm{M}_{\odot}}$	References
	Interaction	of Freedom	$({ m M}_{\odot})$	(km)	
$STOS\pi Q$	TM1	$n, p, \alpha, (A, Z), \pi, q$	1.85	13.6	Nakazato et al. (2008)
STOSQ	TM1	n,p,lpha,(A,Z),q	1.81	14.4	Nakazato et al. (2008)
STOSB139	TM1	n,p,lpha,(A,Z),q	2.08	12.6	Fischer et al. (2014)
STOSB145	TM1	n,p,lpha,(A,Z),q	2.01	13.0	Sagert et al. (2012)
STOSB155	TM1	n,p,lpha,(A,Z),q	1.70	9.93	Fischer et al. (2011)
STOSB162	TM1	n,p,lpha,(A,Z),q	1.57	8.94	Sagert <i>et al.</i> (2009)
STOSB165	TM1	n,p,lpha,(A,Z),q	1.51	8.86	Sagert <i>et al.</i> (2009)

- hadronic phase: "STOS", Shen, Toki, Oyamatsu and Sumiyoshi 1998, 2011
- quark phase: bag model (u,d,s), first-order strong interactions, α_{S} (Farhi and Jaffe 1984)
- Gibbs conditions for phase equilibrium
- only two hybrid EOSs with sufficiently high M_{max}

Characteristic properties of STOS ("Shen") EOS

- •STOS: nucleons, alpha particles, representative heavy nucleus
- non-linear relativistic mean-field interactions (TM1)
- symmetry energy not compatible with various experimental constraints

Quark-hadron hybrid general purpose EOSs

Model	Nuclear		Degrees	$M_{ m max}$	$R_{1.4\mathrm{M}_{\odot}}$	References
	In	teractio	on of Freedom	$({ m M}_{\odot})$	(km)	
$STOS\pi Q$		TM1	$n, p, \alpha, (A, Z), \pi, q$	1.85	13.6	Nakazato et al. (2008)
STOSQ		TM1	n,p,lpha,(A,Z),q	1.81	14.4	Nakazato et al. (2008)
STOSB139		TM1	n,p,lpha,(A,Z),q	2.08	12.6	Fischer et al. (2014)
STOSB145		TM1	n,p,lpha,(A,Z),q	2.01	13.0	Sagert <i>et al.</i> (2012)
STOSB155		TM1	n,p,lpha,(A,Z),q	1.70	9.93	Fischer et al. (2011)
STOSB162		TM1	n,p,lpha,(A,Z),q	1.57	8.94	Sagert <i>et al.</i> (2009)
STOSB165		TM1	n,p,lpha,(A,Z),q	1.51	8.86	Sagert <i>et al.</i> (2009)

- hadronic phase: "STOS", Shen, Toki, Oyamatsu and Sumiyoshi 1998, 2011
- quark phase: bag model (u,d,s), first-order strong interactions, α_S (Farhi and Jaffe 1984)
- Gibbs conditions for phase equilibrium
- only two hybrid EOSs with sufficiently high M_{max}
- TM1: unrealistic symmetry energy

→ need for new hybrid EOSs which quark matter properties could be interesting?

CCSN explosions by the QCD phase transition

$$t_{pb}$$
= 240.5 ms

$$t_{pb}$$
= 255.2 ms

$$t_{pb}$$
= 255.4 ms

$$t_{pb} = 255.5 \text{ ms}$$

$$t_{pb} = 256.3 \text{ ms}$$

$$t_{pb} = 261.2 \text{ ms}$$

- phase transition induces collapse of the proto-neutron star
- collapse halts when pure quark matter is reached
- formation of a second shock, merges with standing accretion shock and triggers an explosion
- second neutrino burst as a clear observable signal (DasGupta et al. 2009)
- weak r-process (Nishimura et al. 2012)

Mass-radius relation of hybrid EOS and SN explosions

explosions in spherical symmetry (T. Fischer et al. ApJS 2011)

• see also: Fischer, Blaschke, et al. 2012: PNJL hybrid EOS

A hot third family of proto-compact stars

- after onset of phase transition: loss of stability, regained for sufficiently large quark matter core
- third family feature ("twins") arises for high entropies
- novel aspect: a third family that exists only in the protoneutron star stage

A hot third family of proto-compact stars — EOS dependence

 for B139: third family arises only for very high entropies, much less pronounced

Collapse to the third family in a supernova

schematically:

- accretion: increase of the proto-neutron star mass from ~1 M_{sun} to ~1.5 M_{sun} in the first 200 ms
- collapse from the second to the third family with gravitational binding energy release
- exactly this was seen in the core-collapse supernova simulations by
 T. Fischer in 2009-2012
- results in an energetic explosion even in spherical symmetry
- new insight: the unusual thermal properties and the hot third family stand behind the explosion
- third family feature in cold neutron stars helpful, but not necessary

Pressure-energy density relation

- hadronic and quark matter stiffens when it is heated
- in the phase coexistence region it softens

Temperature for isentropes with B165 hybrid EOS

• dT/dn_B<0 in parts of the phase coexistence region

Pressure-temperature phase diagrams

[MH, V. Dexheimer, S. Schramm, I. Iosilevskiy, PRC 88 (2013)]

liquid-gas phase transition

chiral/deconfinement phase transition

enthalpic

entropic

opposite slope in P-T as fundamental difference

see also:

[Satarov, Dmitriev, Mishustin, PAN72 (2009)]

[Bombaci et al., PLB680 (2009)]

[Wambach, Heckmann, Buballla, AIPC1441 (2011)]

[Steinheimer, Randrup, Koch, PRC89 (2014)]

[losilevskiy, arXiv:1403.8053]

Unusual thermal properties of entropic phase transitions

Clausius-Clapeyron equation

$$\frac{dP}{dT}\bigg|_{PT} = \frac{S^I - S^{II}}{1/n_B^I - 1/n_B^{II}}$$

for Maxwell phase transition

$$\left. \frac{dP}{dT} \right|_{\mathrm{PT}} = \left. \frac{\partial P}{\partial T} \right|_{n_{B}}$$

$$\left. \frac{\partial P}{\partial T} \right|_{n_B} < 0 \Leftrightarrow \left. \frac{\partial T}{\partial n_B} \right|_S < 0$$

- mass-radius relation given by P(ε,S)
- to characterize thermal effects: dP/dS|ε
- dP/dS|_ε>0: stiffening, dP/dS|_ε<0: softening for increasing entropy

$$\left. \frac{\partial P}{\partial S} \right|_{\epsilon} = -T n_B \left(\frac{c_s}{c} \right)^2 + \left. \frac{T}{C_V} \left. \frac{\partial P}{\partial T} \right|_{n_B} \right.$$

· first term small, relativistic correction

entropic PT: unusual thermal properties, softening of the EOS with increasing entropy

Towards generating a new hybrid supernova EOS: A systematic analysis of cold hybrid stars

[Oliver Heinimann, MH, Friedrich-Karl Thielemann, PRD 94 (2016)]

Alford's parameter scan

- quark matter: constant speed of sound
- systematic variation of transition pressure and energy density discontinuity
- maximum mass and classification of hybrid stars

New parameter scan for HS(DD2) hadronic EOS

• HS(DD2): general purpose (supernova) EOS, good nuclear matter properties, $M_{max} = 2.42 \; M_{sun}$

- M_{max} > M_{max}(HSDD2) possible
- limited parameter region with $M_{max} > 2 M_{sun}$ and third family
- favorable region extended for c_s²>1/3

Thermodynamic stability

- previous parameter scans: only pressure and temperature equilibrium (T=0)
- p(μ) relation can be derived from p(ε)

$$p^{\text{CSS}}(\mu) = \frac{c_{QM}^2}{1 + c_{QM}^2} p_0 \left[\left(\frac{\mu}{\mu_0} \right)^{\frac{1 + c_{QM}^2}{c_{QM}^2}} + \frac{1}{c_{QM}^2} \right]$$

- imposing chemical equilibrium fixes μ₀
- spurious multiple phase transitions and/or reconfinement can occur

Effect of thermodynamic stability

- reconfinement for low transition pressures and weak phase transitions
- (almost pure) quark stars appear
- M_{max} > M_{max}(HSDD2) only possible for quark stars

Comparison with existing hybrid EOSs

Summary and conclusions

- the QCD phase transition is entropic (dP/dT|_{PT}<0) and leads to unusual thermal properties
- possible consequences:
 - inverted convection in proto-neutron stars (Yudin et al. MNRAS 2016)
 - hot third family of compact stars
 - core-collapse supernova explosions (?)
- systematic analysis of quark matter properties, reconfinement problem
- new hybrid EOS with interesting properties just finished
- work in progress: spherically symmetric and multi-D CCSN simulations
- compare prediction for neutron star and black hole birth mass distribution with observations
- effects of quark matter in NS mergers?