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The theoretical nuclear landscape several years ago...
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Theory of the strong interaction:
Quantum chromodynamics

• theory perturbative at high energies

• highly non-perturbative at low energies
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nuclear structure and 
reaction observables

Quantum Chromodynamics

Ab initio nuclear structure and reaction theory



Lattice QCD

• requires extreme amounts 
of computational resources

• currently limited to 1- or 2-nucleon systems

• current accuracy insufficient for 
precision nuclear structure
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Chiral effective field theory
nuclear interactions and currents 

nuclear structure and 
reaction observables

Quantum Chromodynamics

Renormalization Group methods

ab initio many-body frameworks
Faddeev, Quantum Monte Carlo, no-core shell model, coupled cluster ...

Ab initio nuclear structure and reaction theory



Overview RG Summary Extras Physics Resolution Forces Filter Coupling

Why is textbook nuclear physics so hard?

VL=0(k , k �) ⇤
�

r2 dr j0(kr) V (r) j0(k �r) = ⌅k |VL=0|k �⇧ =⇥ Vkk � matrix

Momentum units (� = c = 1): typical relative momentum
in large nucleus � 1 fm�1 � 200 MeV but . . .

Repulsive core =⇥ large high-k (� 2 fm�1) components
Dick Furnstahl RG in Nuclear Physics

• constructed to fit scattering data (long-wavelength information!)

• long-range pion exchange part agrees in all potentials

• short range part strongly scheme dependent!

• “hard” NN interactions contain repulsive core at small relative distance

• strong coupling between low and high-momentum components, hard to solve!

“Traditional” empirical NN interactions
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Nuclear effective degrees of freedom

• if a nucleus is probed at high energies, 
  nucleon substructure is resolved

• at low energies, details are not resolved



Nuclear effective degrees of freedom

• if a nucleus is probed at high energies, 
  nucleon substructure is resolved

• at low energies, details are not resolved

• replace fine structure by something 
simpler (like multipole expansion),
low-energy observables unchanged

Resolution

effective field theory
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Changing the resolution scale: 
the Similarity Renormalization Group

• generate unitary transformation which decouples low- and high momenta

• basic idea: change resolution successively in small steps:

with the resolution parameter 

• observables are preserved due to unitarity of transformation

• generator       can be chosen and tailored to different applications ⌘�



H� = U�HU†
� �

dH�

d⇥
= [��, H�]

Changing the resolution scale: 
the Similarity Renormalization Group

• generate unitary transformation which decouples low- and high momenta

• basic idea: change resolution successively in small steps:

with the resolution parameter 

• observables are preserved due to unitarity of transformation

• generator       can be chosen and tailored to different applications ⌘�



H� = U�HU†
� �

dH�

d⇥
= [��, H�]

Changing the resolution scale: 
the Similarity Renormalization Group

• generate unitary transformation which decouples low- and high momenta

• basic idea: change resolution successively in small steps:

with the resolution parameter 

• observables are preserved due to unitarity of transformation

• generator       can be chosen and tailored to different applications ⌘�



H� = U�HU†
� �

dH�

d⇥
= [��, H�]

Changing the resolution scale: 
the Similarity Renormalization Group

• generate unitary transformation which decouples low- and high momenta

• basic idea: change resolution successively in small steps:

with the resolution parameter 

• observables are preserved due to unitarity of transformation

• generator       can be chosen and tailored to different applications ⌘�



H� = U�HU†
� �

dH�

d⇥
= [��, H�]

Changing the resolution scale: 
the Similarity Renormalization Group

• generate unitary transformation which decouples low- and high momenta

• basic idea: change resolution successively in small steps:

with the resolution parameter 

• observables are preserved due to unitarity of transformation

• generator       can be chosen and tailored to different applications ⌘�



H� = U�HU†
� �

dH�

d⇥
= [��, H�]

Changing the resolution scale: 
the Similarity Renormalization Group

• generate unitary transformation which decouples low- and high momenta

• basic idea: change resolution successively in small steps:

with the resolution parameter 

• observables are preserved due to unitarity of transformation

• generator       can be chosen and tailored to different applications ⌘�



H� = U�HU†
� �

dH�

d⇥
= [��, H�]

Changing the resolution scale: 
the Similarity Renormalization Group

• generate unitary transformation which decouples low- and high momenta

• basic idea: change resolution successively in small steps:

with the resolution parameter 

• observables are preserved due to unitarity of transformation

• generator       can be chosen and tailored to different applications ⌘�



H� = U�HU†
� �

dH�

d⇥
= [��, H�]

Changing the resolution scale: 
the Similarity Renormalization Group

• generate unitary transformation which decouples low- and high momenta

• basic idea: change resolution successively in small steps:

with the resolution parameter 

• observables are preserved due to unitarity of transformation

• generator       can be chosen and tailored to different applications ⌘�



H� = U�HU†
� �

dH�

d⇥
= [��, H�]

Changing the resolution scale: 
the Similarity Renormalization Group

• generate unitary transformation which decouples low- and high momenta

• basic idea: change resolution successively in small steps:

with the resolution parameter 

• observables are preserved due to unitarity of transformation

• generator       can be chosen and tailored to different applications ⌘�



H� = U�HU†
� �

dH�

d⇥
= [��, H�]

Changing the resolution scale: 
the Similarity Renormalization Group

• generate unitary transformation which decouples low- and high momenta

• basic idea: change resolution successively in small steps:

with the resolution parameter 

• observables are preserved due to unitarity of transformation

• generator       can be chosen and tailored to different applications ⌘�



H� = U�HU†
� �

dH�

d⇥
= [��, H�]

Changing the resolution scale: 
the Similarity Renormalization Group

• generate unitary transformation which decouples low- and high momenta

• basic idea: change resolution successively in small steps:

with the resolution parameter 

• observables are preserved due to unitarity of transformation

• generator       can be chosen and tailored to different applications ⌘�



H� = U�HU†
� �

dH�

d⇥
= [��, H�]

Changing the resolution scale: 
the Similarity Renormalization Group

• generate unitary transformation which decouples low- and high momenta

• basic idea: change resolution successively in small steps:

with the resolution parameter 

• observables are preserved due to unitarity of transformation

• generator       can be chosen and tailored to different applications ⌘�



H� = U�HU†
� �

dH�

d⇥
= [��, H�]

Changing the resolution scale: 
the Similarity Renormalization Group

• generate unitary transformation which decouples low- and high momenta

• basic idea: change resolution successively in small steps:

with the resolution parameter 

• observables are preserved due to unitarity of transformation

• generator       can be chosen and tailored to different applications ⌘�



H� = U�HU†
� �

dH�

d⇥
= [��, H�]

Changing the resolution scale: 
the Similarity Renormalization Group

• generate unitary transformation which decouples low- and high momenta

• basic idea: change resolution successively in small steps:

with the resolution parameter 

• observables are preserved due to unitarity of transformation

• generator       can be chosen and tailored to different applications ⌘�



0 1 2 3 4
r [fm]

−100

0

100

200

V
(r

) 
[M

eV
]

λ = 20 fm
−1

1 2 3 4
r [fm]

λ = 4 fm
−1

1 2 3 4
r [fm]

λ = 3 fm
−1

1 2 3 4
r [fm]

λ = 2 fm
−1

1 2 3 4
r [fm]

λ = 1.5 fm
−1

AV18

N
3
LO

V �(r) =

Z
dr0r02V�(r, r

0)

Systematic decoupling of high-momentum physics:
The Similarity Renormalization Group



• elimination of coupling between low- and high momentum components,
          simplified many-body calculations, smaller required model spaces

• observables unaffected by resolution change (for exact calculations)

• residual resolution dependences can be used as tool to test calculations

Not the full story:
RG transformation also changes three-body (and higher-body) interactions.

Systematic decoupling of high-momentum physics:
The Similarity Renormalization Group



Aren’t 3N forces unnatural? Do we really need them?

Why are there three-nucleon (3N) forces?

Nucleons are finite-mass composite particles,

can be excited to resonances

dominant contribution from !(1232 MeV)

+ shorter-range parts

tidal effects leads to 3-body forces in earth-sun-moon system

Why are there three-nucleon (3N) forces?

Nucleons are finite-mass composite particles,

can be excited to resonances

dominant contribution from !(1232 MeV)

+ shorter-range parts

tidal effects leads to 3-body forces in earth-sun-moon system

Consider classical analog: tidal effects in earth-sun-moon system

 

• force between earth and moon depends on the position of sun

• tidal deformations represent internal excitations

• describe system using point particles           3N forces inevitable!

• nucleons are composite particles, can also be excited

• change of resolution change excitations that can be described explicitly

• existence of three-nucleon forces natural

• crucial question: How important are their contributions?



• choose relevant degrees of 
freedom: here nucleons and pions

• operators constrained by 
symmetries of QCD

• short-range physics captured in 
few short-range couplings

• separation of scales: Q << Λb, 
breakdown scale Λb~500 MeV

• power-counting:                 
expand in powers Q/Λb

• systematic: work to desired 
accuracy, obtain error estimates

Chiral effective field theory for nuclear forces
                    NN!       3N!           4N

2006

1994

2011
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long (2π)        intermediate (π)     short-range

c1, c3, c4 terms cD term cE term

Many-body forces in chiral EFT
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             NN! 3N!  4N

long (2π)        intermediate (π)     short-range

c1, c3, c4 terms cD term cE term

first incorporation in calculations of 
neutron and nuclear matter
Tews, Krueger, KH, Schwenk, PRL 110, 032504 (2013)
Krueger, Tews, KH, Schwenk, PRC 88, 025802 (2013)

Many-body forces in chiral EFT
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1994

2011

all terms predicted
(no new low-energy couplings)



             NN! 3N!  4N

long (2π)        intermediate (π)     short-range

c1, c3, c4 terms cD term cE term

first incorporation in calculations of 
neutron and nuclear matter
Tews, Krueger, KH, Schwenk, PRL 110, 032504 (2013)
Krueger, Tews, KH, Schwenk, PRC 88, 025802 (2013)
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2011

first calculation of matrix elements for 
ab initio studies of matter and nuclei
KH, Krebs, Epelbaum, Golak, Skibinski, PRC 91, 044001(2015)

Many-body forces in chiral EFT
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Contributions of many-body forces at N3LO in neutron matter

Tews, Krüger, KH, Schwenk
PRL 110, 032504 (2013)

                    NN         3N           4N

• first calculations of N3LO 3NF and 4NF

contributions to EOS of neutron matter

• found large contributions in Hartree Fock appr.,

comparable to size of N2LO contributions,

(power counting?)
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                    NN         3N           4N

• first calculations of N3LO 3NF and 4NF

contributions to EOS of neutron matter

• found large contributions in Hartree Fock appr.,

comparable to size of N2LO contributions,

(power counting?)

• 4NF contributions small
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FIG. 2. (Color online) Energy per particle versus density for all individual N3LO 3N and 4N force contributions to neutron
matter at the Hartree-Fock level. The bands are obtained by varying the 3N/4N cutoff Λ = 2 − 2.5 fm−1. For the two-pion-
exchange–contact and the relativistic-corrections 3N forces, the different bands correspond to the different NN contacts, CT

and CS , determined consistently for the N3LO EM/EGM potentials. The inset diagram illustrates the 3N/4N force topology.

ity of the energy to the single-particle spectrum used.
We find that the energy changes from second to third
order, employing a free or Hartree-Fock spectrum, by
0.8, 0.4, 1.3MeV (1.4, 0.9, 2.7MeV) per particle at n0/2
(n0) for the EGM 450/500, 450/700, EM 500 N3LO po-
tentials, respectively. The results, which include all these
uncertainties, are displayed by the bands in Fig. 1. Un-
derstanding the cutoff dependence and developing im-
proved power counting schemes remain important open
problems in chiral EFT [21]. For the neutron matter en-
ergy at n0, our first complete N3LO calculation yields
14.1 − 21.0MeV per particle. If we were to omit the
results based on the EM 500 N3LO potential, as it con-
verges slowest at n0, the range would be 14.1−18.4MeV.

As we find relatively large contributions from N3LO
3N forces, it is important to study the EFT convergence
from N2LO to N3LO. This is shown in Fig. 3 for the
EGM potentials (N2LO is not available for EM), where
the N3LO results are found to overlap with the N2LO
band across a ±1.5MeV range around 17MeV at satura-
tion density. As expected from the net-attractive N3LO
3N contributions in Fig. 2, the N3LO band yields lower
energies. For the N2LO band, we have estimated the the-
oretical uncertainties in the same way, and the neutron
matter energy ranges from 15.5 − 21.4MeV per particle

at n0. The theoretical uncertainty is reduced from N2LO
to N3LO to 14.1 − 18.4MeV, but not by a factor ∼ 1/3
based on the power counting estimate. This reflects the
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FIG. 3. (Color online) Neutron matter energy per particle as
a function of density at N2LO (upper/blue band that extends
to the dashed line) and N3LO (lower/red band). The bands
are based on the EGM NN potentials and include uncertainty
estimates as in Fig. 1.

Contributions of many-body forces at N3LO in neutron matter



Chiral effective field theory
nuclear interactions and currents 

nuclear structure and 
reaction observables

Development of nuclear interactions

predictions
validation

optimization
power counting
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intermediate (cD) and short-range 
(cE) 3NF couplings fitted to few-body 
systems at different resolution scales: 
E3H = �8.482 MeV r4He = 1.464 fm

c1, c3, c4 terms cD term cE term

Equation of state of symmetric nuclear matter
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(cE) 3NF couplings fitted to few-body 
systems at different resolution scales: 
E3H = �8.482 MeV r4He = 1.464 fm

c1, c3, c4 terms cD term cE term Drischler, KH, Schwenk, PRC93, 054314 (2016)
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Three-body forces and the limit of oxygen isotopes

Takaharu Otsuka,1, 2, 3 Toshio Suzuki,4 Jason D. Holt,5 Achim Schwenk,5 and Yoshinori Akaishi6

1Department of Physics, University of Tokyo, Hongo, Tokyo 113-0033, Japan
2Center for Nuclear Study, University of Tokyo, Hongo, Tokyo 113-0033, Japan

3National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI, 48824, USA
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5TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3, Canada

6RIKEN Nishina Center, Hirosawa, Wako-shi, Saitama 351-0198, Japan

The limit of neutron-rich nuclei, the neutron drip-line, evolves regularly from light to medium-
mass nuclei except for a striking anomaly in the oxygen isotopes. This anomaly is not reproduced
in shell-model calculations derived from microscopic two-nucleon forces. Here, we present the first
microscopic explanation of the oxygen anomaly based on three-nucleon forces that have been estab-
lished in few-body systems. This leads to repulsive contributions to the interactions among excess
neutrons that change the location of the neutron drip-line from 28O to the experimentally observed
24O. Since the mechanism is robust and general, our findings impact the prediction of the most
neutron-rich nuclei and the synthesis of heavy elements in neutron-rich environments.

PACS numbers: 21.10.-k, 21.30.-x, 21.60.Cs, 27.20.+n

One of the central challenges of nuclear physics is to
develop a unified description of all nuclei created in the
laboratory and the cosmos based on the underlying forces
between neutrons and protons (nucleons). This involves
understanding the sequences of isotopes in the nuclear
chart, Fig. 1, from the limits of proton-rich nuclei to
the neutron drip-line. These limits have been established
experimentally up to oxygen with proton number Z=8.
Mapping out the neutron drip-line for larger Z [1] and ex-
ploring unexpected structures in neutron-rich nuclei are a
current frontier in the physics of rare isotopes. The years
of discovery in Fig. 1 highlight the tremendous advances
made over the last decade.

Figure 1 shows that the neutron drip-line evolves reg-
ularly with increasing proton number, with an odd-even
bound-unbound pattern due to neutron halos and pairing
effects. The only known anomalous behavior is present
in the oxygen isotopes, where the drip-line is strikingly
close to the stability line [2]. Already in the fluorine iso-
topes, with one more proton, the drip-line is back to the
regular trend [3]. In this Letter, we discuss this puzzle
and show that three-body forces are necessary to explain
why 24O [4, 5] is the heaviest oxygen isotope.

Three-nucleon (3N) forces were introduced in the pio-
neering work of Fujita and Miyazawa (FM) [7] and arise
because nucleons are composite particles. The FM 3N
mechanism is due to one nucleon virtually exciting a sec-
ond nucleon to the ∆(1232MeV) resonance, which is de-
excited by scattering off a third nucleon, see Fig. 3(e).

Three-nucleon interactions arise naturally in chiral ef-
fective field theory (EFT) [8], which provides a system-
atic basis for nuclear forces, where nucleons interact via
pion exchanges and shorter-range contact interactions.
The resulting nuclear forces are organized in a system-
atic expansion from leading to successively higher orders,
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FIG. 1: Stable and unstable nuclei with Z ! 14 and neutron
number N [6]. The oxygen anomaly in the location of the
neutron drip-line is highlighted. Element names and years of
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numbers indicate the conventional magic numbers.

and include the ∆ excitation as the dominant part of the
leading 3N forces [8]. The quantitative role of 3N interac-
tions has been highlighted in recent ab-initio calculations
of light nuclei with A = N + Z ! 12 [9, 10].
We first discuss why the oxygen anomaly is not re-

produced in shell-model calculations derived from micro-
scopic NN forces. This can be understood starting from
the stable 16O and adding neutrons into single-particle
orbitals (with standard quantum numbers nlj) above the
16O core. We will show that correlations do not change
this intuitive picture. Starting from 16O, neutrons first
fill the 0d5/2 orbitals, with a closed subshell configuration
at 22O (N = 14), then the 1s1/2 orbitals at

24O (N = 16),
and finally the 0d3/2 orbitals at 28O (N = 20). For sim-
plicity, we will drop the n label in the following.
In Fig. 2, we show the single-particle energies (SPE) of

the neutron d5/2, s1/2 and d3/2 orbitals at subshell clo-

• remarkable agreement between different many-body frameworks
• excellent agreement between theory and experiment for masses of 
oxygen and calcium isotopes based on specific chiral interactions
• need to quantify theoretical uncertainties

Gallant et al. 
PRL 109, 032506 (2012)

Wienholtz et al. 
Nature 498, 346 (2013)

Studies of neutron-rich nuclei

during spectra 5 to 11, which resulted in the disappearance of the ion
counts in question. This unambiguously identified these ions as 54Ca.
Figure 2b corresponds to about 90 min of data-taking. MR-TOF MS
spectra of 53Ca and 54Ca were taken in total for 12.6 h and 18.2 h,
respectively.

Our results (rICR and CTOF) for the exotic calcium isotopes investi-
gated (51,52Ca and 53,54Ca, respectively) are summarized in Table 1,
including the resulting mass excesses. The ISOLTRAP values of 51Ca

and 52Ca determined with the Penning trap agree well with the recent
measurements by TITAN4. The uncertainties were reduced by factors
of 40 and 80, respectively, owing to longer excitation times (600 ms in
the case of ISOLTRAP as compared to 80 ms in the case of TITAN),
higher cyclotron frequencies and higher calcium ion yields. The masses
of 53,54Ca determined by the MR-TOF MS have been experimentally
addressed for the first time. As a consistency check, the 52Ca mass was
also measured by the new MR-TOF method, and the mass excess is in
full agreement with both Penning-trap results (Table 1). Furthermore,
a second cross-check measurement in the vicinity of the newly mea-
sured masses was performed. The mass excess of the stable isotope 58Fe
was determined with the stable reference isotopes 58Ni and 85Rb. The
measurement resulted in a mass excess of 262,168.0(47.0) keV/c2,
where the statistical uncertainty is given in parentheses. With a devi-
ation of 13.5 keV/c2 from the literature value28, it agrees well within its
statistical uncertainty. The uncertainties in the MR-TOF method
quoted in Table 1 for 53Ca and 54Ca denote the statistical standard
deviation. For the cross-checks, the MR-TOF method has thus been
employed to measure the mass of a slightly lighter isotope and a slightly
heavier isotope, 52Ca and 58Fe, respectively. The deviations from the
Penning-trap measurement and the literature value, respectively, are
taken as estimates of the relative systematic uncertainty, which lies in
the low 1027 range. Additional cross-check measurements to determine
the systematic uncertainty have been performed over a wide mass range
and will be detailed elsewhere. The precision and fast measurement
cycle of the MR-TOF method makes this a promising approach for the
mass spectrometry of isotopes with lower yield and shorter half-life
than currently accessible.

The binding energies encode information about the ordering of shell
occupation, and thus are essential in the quest for shell closures in exotic
regions of the nuclear chart. Our high-precision data can be used to
provide a critical benchmark for the behaviour far from stability, namely,
the two-neutron separation energy S2n 5 B(Z,N) 2 B(Z,N 2 2), where
B(Z,N) is the binding energy (defined as positive) of a nucleus with Z
protons and N neutrons. The S2n values are a preferred probe of the
evolution of nuclear structure with neutron number, and can be used to
challenge model predictions, as shown in Fig. 3. The pronounced
decrease in S2n revealed by the new 53Ca and 54Ca ISOLTRAP masses
is similar to the decrease beyond the doubly magic 48Ca. In general,
correlations induced by deformation could also cause such a reduction
in S2n, but in the calcium isotopes studied here deformation is expected
to have no role29. Therefore, our new data unambiguously establish a
prominent shell closure at N 5 32. The strength of this shell closure can
be evaluated from the two-neutron shell gap, that is, the two-neutron
separation energy difference S2n(Z,N) 2 S2n(Z,N 1 2). Figure 3c shows a
two-neutron shell gap for 52Ca of almost 4 MeV, where the rise towards
52Ca at N 5 32 is as steep as that towards 48Ca at N 5 28. The peaks at
N 5 Z in Fig. 3c are due to the additional correlation energy for sym-
metric N 5 Z nuclei, known as Wigner energy.

Calcium marks the heaviest chain of isotopes studied with three-
nucleon forces based on chiral effective field theory3–6. Figure 3a shows
the predictions of our microscopic calculations with three-nucleon
forces (that is, ‘NN 1 3N’) using many-body perturbation theory
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Figure 3 | Comparison of experimental results with theoretical predictions.
a, b, Two-neutron separation energy S2n (ref. 28) of the neutron-rich calcium
isotopes as a function of neutron number N, where the new ISOLTRAP values
are shown in red. In a, the ISOLTRAP masses are compared to predictions from
microscopic valence-shell calculations with three-nucleon forces (NN13N)
based on chiral effective field theory (solid line, MBPT) and large-space coupled-
cluster calculations including three-nucleon forces as density-dependent two-
body interactions (dashed line, CC)5. For comparison, we also show the results
of the phenomenological shell-model interactions KB3G21 and GXPF1A22. In
b, the ISOLTRAP masses are compared to state-of-the-art nuclear density-
functional-theory predictions15,29. Insets in a and b show the difference between
the theoretical predictions and experiment. c, Empirical two-neutron shell gap
as a function of proton number Z for N 5 28 and N 5 32. Error bars, 61 s.d.
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FIG. 5: (Color online) Ground-state energies from CR-CC(2,3) for (a) the NN+3N-induced Hamiltonian starting from the N3LO and N2LO-
optimized NN interaction and (c) the NN+3N-full Hamiltonian with Λ3N = 400 MeV/c and Λ3N = 350 MeV/c. The boxes represent the
spread of the results from α = 0.04 fm4 to α = 0.08 fm4, and the tip points into the direction of smaller values of α. Also shown are the
contributions of the CR-CC(2,3) triples correction to the (b) NN+3N-induced and (d) NN+3N-full results. All results employ !Ω = 24 MeV
and 3N interactions with E3max = 18 in NO2B approximation and full inclusion of the 3N interaction in CCSD up to E3max = 12. Experimental
binding energies [32] are shown as black bars.

ies have shown that for both cutoffs, the induced 4N inter-
action are small up into the sd-shell [6, 9]. For heavier nuclei,
Fig. 5(c) reveals that the α-dependence of the ground-state
energies remains small for Λ3N = 400 MeV/c up to the heav-
iest nuclei. Thus, the attractive induced 4N contributions that
originate from the initial NN interaction are canceled by ad-
ditional repulsive 4N contributions originating from the ini-
tial chiral 3N interaction. By reducing the initial 3N cutoff
to Λ3N = 350 MeV/c, the repulsive 4N component resulting
for the initial 3N interaction is weakened [9] and the attrac-
tive induced 4N from the initial NN prevails, leading to an
increased α-dependence indicating an attractive net 4N con-
tribution. All of these effects are larger than the truncation un-
certainties of the calculations, such as the cluster truncation,
as is evident by the comparatively small triples contributions
shown in Fig. 5(b) and (d).

Taking advantage of the cancellation of induced 4N terms
for the NN+3N-full Hamiltonian with Λ3N = 400 MeV/c we
compare the energies to experiment. Throughout the different
isotopic chains starting from Ca, the experimental pattern of
the binding energies is reproduced up to a constant shift of
the order of 1 MeV per nucleon. The stability and qualitative
agreement of the these results over an unprecedented mass
range is remarkable, given the fact that the Hamiltonian was
determined in the few-body sector alone.

When considering the quantitative deviations, one has to
consider consistent chiral 3N interaction at N3LO, and the
initial 4N interaction. In particular for heavier nuclei, the

contribution of the leading-order 4N interaction might be siz-
able. Another important future aspect is the study of other
observables, such as charge radii. In the present calcula-
tions the charge radii of the HF reference states are sys-
tematically smaller than experiment and the discrepancy in-
creases with mass. For 16O, 40Ca, 88Sr, and 120Sn the cal-
culated charge radii are 0.3 fm, 0.5 fm, 0.7 fm, and 1.0 fm
too small [32]. These deviations are larger than the ex-
pected effects of beyond-HF correlations and consistent SRG-
evolutions of the radii. This discrepancy will remain a chal-
lenge for future studies of medium-mass and heavy nuclei
with chiral Hamiltonians.

Conclusions. In this Letter we have presented the first
accurate ab initio calculations for heavy nuclei using SRG-
evolved chiral interactions. We have identified and eliminated
a number of technical hurdles, e.g., regarding the SRG model
space, that have inhibited state-of-the-art medium-mass ap-
proaches to address heavy nuclei. As a result, many-body
calculations up to 132Sn are now possible with controlled un-
certainties on the order of 2%. The qualitative agreement of
ground-state energies for nuclei ranging from 16O to 132Sn
obtained in a single theoretical framework demonstrates the
potential of ab initio approaches based on chiral Hamiltoni-
ans. This is a first direct validation of chiral Hamiltonians in
the regime of heavy nuclei using ab initio techniques. Future
studies will have to involve consistent chiral Hamiltonians at
N3LO considering initial and SRG-induced 4N interactions
and provide an exploration of other observables.

Binder et al., Phys. Lett B 736, 119 (2014)
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binding energies [32] are shown as black bars.

ies have shown that for both cutoffs, the induced 4N inter-
action are small up into the sd-shell [6, 9]. For heavier nuclei,
Fig. 5(c) reveals that the α-dependence of the ground-state
energies remains small for Λ3N = 400 MeV/c up to the heav-
iest nuclei. Thus, the attractive induced 4N contributions that
originate from the initial NN interaction are canceled by ad-
ditional repulsive 4N contributions originating from the ini-
tial chiral 3N interaction. By reducing the initial 3N cutoff
to Λ3N = 350 MeV/c, the repulsive 4N component resulting
for the initial 3N interaction is weakened [9] and the attrac-
tive induced 4N from the initial NN prevails, leading to an
increased α-dependence indicating an attractive net 4N con-
tribution. All of these effects are larger than the truncation un-
certainties of the calculations, such as the cluster truncation,
as is evident by the comparatively small triples contributions
shown in Fig. 5(b) and (d).

Taking advantage of the cancellation of induced 4N terms
for the NN+3N-full Hamiltonian with Λ3N = 400 MeV/c we
compare the energies to experiment. Throughout the different
isotopic chains starting from Ca, the experimental pattern of
the binding energies is reproduced up to a constant shift of
the order of 1 MeV per nucleon. The stability and qualitative
agreement of the these results over an unprecedented mass
range is remarkable, given the fact that the Hamiltonian was
determined in the few-body sector alone.

When considering the quantitative deviations, one has to
consider consistent chiral 3N interaction at N3LO, and the
initial 4N interaction. In particular for heavier nuclei, the

contribution of the leading-order 4N interaction might be siz-
able. Another important future aspect is the study of other
observables, such as charge radii. In the present calcula-
tions the charge radii of the HF reference states are sys-
tematically smaller than experiment and the discrepancy in-
creases with mass. For 16O, 40Ca, 88Sr, and 120Sn the cal-
culated charge radii are 0.3 fm, 0.5 fm, 0.7 fm, and 1.0 fm
too small [32]. These deviations are larger than the ex-
pected effects of beyond-HF correlations and consistent SRG-
evolutions of the radii. This discrepancy will remain a chal-
lenge for future studies of medium-mass and heavy nuclei
with chiral Hamiltonians.

Conclusions. In this Letter we have presented the first
accurate ab initio calculations for heavy nuclei using SRG-
evolved chiral interactions. We have identified and eliminated
a number of technical hurdles, e.g., regarding the SRG model
space, that have inhibited state-of-the-art medium-mass ap-
proaches to address heavy nuclei. As a result, many-body
calculations up to 132Sn are now possible with controlled un-
certainties on the order of 2%. The qualitative agreement of
ground-state energies for nuclei ranging from 16O to 132Sn
obtained in a single theoretical framework demonstrates the
potential of ab initio approaches based on chiral Hamiltoni-
ans. This is a first direct validation of chiral Hamiltonians in
the regime of heavy nuclei using ab initio techniques. Future
studies will have to involve consistent chiral Hamiltonians at
N3LO considering initial and SRG-induced 4N interactions
and provide an exploration of other observables.

Binder et al., Phys. Lett B 736, 119 (2014)

Hagen et al., Nature Physics 12, 186 (2016)
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binding energies [32] are shown as black bars.

ies have shown that for both cutoffs, the induced 4N inter-
action are small up into the sd-shell [6, 9]. For heavier nuclei,
Fig. 5(c) reveals that the α-dependence of the ground-state
energies remains small for Λ3N = 400 MeV/c up to the heav-
iest nuclei. Thus, the attractive induced 4N contributions that
originate from the initial NN interaction are canceled by ad-
ditional repulsive 4N contributions originating from the ini-
tial chiral 3N interaction. By reducing the initial 3N cutoff
to Λ3N = 350 MeV/c, the repulsive 4N component resulting
for the initial 3N interaction is weakened [9] and the attrac-
tive induced 4N from the initial NN prevails, leading to an
increased α-dependence indicating an attractive net 4N con-
tribution. All of these effects are larger than the truncation un-
certainties of the calculations, such as the cluster truncation,
as is evident by the comparatively small triples contributions
shown in Fig. 5(b) and (d).

Taking advantage of the cancellation of induced 4N terms
for the NN+3N-full Hamiltonian with Λ3N = 400 MeV/c we
compare the energies to experiment. Throughout the different
isotopic chains starting from Ca, the experimental pattern of
the binding energies is reproduced up to a constant shift of
the order of 1 MeV per nucleon. The stability and qualitative
agreement of the these results over an unprecedented mass
range is remarkable, given the fact that the Hamiltonian was
determined in the few-body sector alone.

When considering the quantitative deviations, one has to
consider consistent chiral 3N interaction at N3LO, and the
initial 4N interaction. In particular for heavier nuclei, the

contribution of the leading-order 4N interaction might be siz-
able. Another important future aspect is the study of other
observables, such as charge radii. In the present calcula-
tions the charge radii of the HF reference states are sys-
tematically smaller than experiment and the discrepancy in-
creases with mass. For 16O, 40Ca, 88Sr, and 120Sn the cal-
culated charge radii are 0.3 fm, 0.5 fm, 0.7 fm, and 1.0 fm
too small [32]. These deviations are larger than the ex-
pected effects of beyond-HF correlations and consistent SRG-
evolutions of the radii. This discrepancy will remain a chal-
lenge for future studies of medium-mass and heavy nuclei
with chiral Hamiltonians.

Conclusions. In this Letter we have presented the first
accurate ab initio calculations for heavy nuclei using SRG-
evolved chiral interactions. We have identified and eliminated
a number of technical hurdles, e.g., regarding the SRG model
space, that have inhibited state-of-the-art medium-mass ap-
proaches to address heavy nuclei. As a result, many-body
calculations up to 132Sn are now possible with controlled un-
certainties on the order of 2%. The qualitative agreement of
ground-state energies for nuclei ranging from 16O to 132Sn
obtained in a single theoretical framework demonstrates the
potential of ab initio approaches based on chiral Hamiltoni-
ans. This is a first direct validation of chiral Hamiltonians in
the regime of heavy nuclei using ab initio techniques. Future
studies will have to involve consistent chiral Hamiltonians at
N3LO considering initial and SRG-induced 4N interactions
and provide an exploration of other observables.

Binder et al., Phys. Lett B 736, 119 (2014)

Hagen et al., Nature Physics 12, 186 (2016)

• power counting?

• missing NN and many-body contributions? 

• optimized fitting procedures?, 

• selection of fitting observables? 



First application to isospin asymmetric nuclear matter

• uncertainty bands determined 
by set of 7 Hamiltonians

Drischler, KH, Schwenk,
PRC 054314 (2016)

x =
np

np + nn

• many-body framework allows 
treatment of any decomposed 
3N interaction

• generalization to finite 
temperature work in progress



Symmetry energy and neutron skin constraints 

• neutron matter give tightest constraints

• in agreement with all other constraints
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Figure 3. Allowed range for αL and ηL of the parameterizations (2) and (3) fit
to the saturation point of symmetric nuclear matter and to the calculated neutron
matter energy and pressure.
(A color version of this figure is available in the online journal.)

The parameters αL and ηL are extracted from the calcu-
lated bands for the neutron matter energy and pressure of
Figures 1 and 2. Our results are based on the blue bands (with
renormalization-group evolution) unless stated otherwise. We
have first checked that the parameterizations (2) and (3) provide
excellent global fits for the energy and pressure up to a density
n1 ≈ 1.1 n0. To determine αL and ηL, we sample their values
systematically and require that the resulting energy and pres-
sure be within the uncertainty bands shown in Figures 1 and 2
for densities from 0.45 n0 to 1.1 n0. This leads to the allowed
range for αL and ηL shown in Figure 3, with correlated limits
αL = 1.18–1.59 and ηL = 0.64–1.11.

The proton fraction x for matter in beta equilibrium is
determined by minimizing, for a given nucleon density, the total
energy per particle, Equation (2), plus the contributions from
electrons and from the rest mass of the nucleons. This amounts
to the condition that µn + mnc

2 = µp + mpc2 + µe, where µn

and µp are the neutron and proton chemical potentials without
the rest mass contribution, or equivalently

∂ϵ(n̄, x)
∂x

+ µe(n̄, x) − (mn − mp)c2 = 0 . (6)

For an ultrarelativistic, degenerate electron gas, the chemical
potential is given by µe(n̄, x) = h̄c (3π2xn0n̄)1/3. The allowed
ranges for αL and ηL imply ranges for the proton fraction and
the neutron and proton chemical potentials in beta equilibrium,
which are given for the saturation density n0 and for n0/2 in
Table 2. In the calculations we neglected the difference between
the neutron and proton masses (1.3 MeV), which is small
compared with µe ∼ 100 MeV. These ranges provide anchor
points for other equations of state.

The parameterizations (2) and (3) also make it possible to reli-
ably extract the symmetry energy Sv and its density derivative L,

Sv = 1
8

∂2ϵ(n̄, x)
∂x2

∣∣∣∣
n̄=1,x=1/2

and L = 3
8

∂3ϵ(n̄, x)
∂n̄∂x2

∣∣∣∣
n̄=1,x=1/2

.

(7)

Figure 4. Constraints for the symmetry energy Sv and the L parameter following
Lattimer & Lim (2013). The blue region shows our neutron matter constraints,
in comparison to bands based on different empirical extractions (for details,
see the text). The white area gives the overlap region of the different empirical
ranges.
(A color version of this figure is available in the online journal.)

Table 2
Proton Fraction x and Chemical Potentials µn and µp in Beta

Equilibrium for the Saturation Density n0 and for n0/2

n = n0 x µn µp

(MeV) (MeV)

min 0.040 54.2 −58.0
max 0.053 51.9 −71.5

n = n0/2

min 0.030 34.6 −46.1
max 0.033 34.3 −48.7

Note. The rows marked “min” and “max” give the range of the
uncertainty band.

The region for αL and ηL translates into an allowed region for
the symmetry energy Sv and the L parameter shown in Fig-
ure 4, after Lattimer & Lim (2013). In addition, we give in
Table 1 the predicted ranges for Sv and L for different γ values,
corresponding to different incompressibilities K = 210 MeV,
236 MeV and 260 MeV. The predicted range for γ = 4/3 nearly
spans the ranges for the other γ values. This demonstrates that
the extrapolation (2) is robust and that the theoretical uncertainty
due to the choice of γ is very weak and clearly much smaller
than the empirical bands shown in Figure 4.

In Figure 4, we compare the Sv and L region predicted by
our neutron matter results with values extracted from other data
(Lattimer & Lim 2013). It is striking that the neutron matter
results lead to the strongest constraints. These agree well with

4

rskin[
208Pb] = 0.14� 0.2 fm

KH, Lattimer, Pethick, Schwenk, PRL 105, 161102 (2010)

constraint from neutron matter results:

current constraints from PREX:
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FIG. 3. The derivative of the neutron EOS at rn !
0.10 neutron!fm3 (in units of MeV fm3!neutron) vs the S value
in 208Pb for 18 Skyrme parameter sets. The cross is SkX.

provided by Wiringa, Fiks, and Fabrocini [17] and Akmal
and Pandharipande [18]. Generally the agreement with FP
is good up to about rn ! 0.10 neutron!fm3. At higher
density the differences in the various NN potentials [17]
and the very uncertain NNN potential become important.
Thus, although the FP neutron EOS serves as a reasonable
starting point, we do not have a truly fundamental theory
for neutron EOS. Any constraints coming from the prop-
erties of nuclei such as the neutron radii are extremely
important.

Given the difficulty of the JLAB measurement, it is
important to know to what extent a measurement of S
in one nucleus such as 208Pb will be applicable to other
nuclei. There are two points to investigate: the dependence
of S on mass and the dependence of S on the asymmetry
in the Fermi energy for protons and neutrons. For the first
case, I compare in Fig. 4 the S values for two nuclei near
the valley of stability (where the Fermi energies for protons
and neutrons are about equal to each other), those for 208Pb
and 138Ba. One observes a nearly linear relationship which
starts at S ! 0. For the second case, I compare in the
same figure the S value in 208Pb to the S value for 132Sn
where the neutrons at the Fermi surface are bound about
8 MeV less than the protons (see Figs. 4 and 5 in Ref. [6]).
Again there is a tight correlation, but the asymmetry in
the Fermi energy produces a systematic increase in the
neutron skin for all of the 18 SHF parameter sets. Thus
there are two clear mechanisms for producing a neutron
skin. One which is related to the asymmetry in the Fermi
energy is well determined within SHF, and another which
depends on the neutron EOS is undetermined unless one
adds a constraint to the neutron EOS. It is the Fermi-
energy asymmetry effect which dominates the increase in
the matter radii of neutron-rich light nuclei such as in the
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FIG. 4. The S value for 208Pb vs the S values for 132Sn (filled
circles) and 138Ba (plusses) for 18 Skyrme parameter sets. The
horizontal line is the SkX value for 208Pb.

Na isotopes [11]. Thus it is most important to accurately
determine the neutron rms radius in a stable nucleus such
as 208Pb. The neutron rms radius of 208Pb will provide
an important new constraint on the neutron EOS models
which are used to calculate the properties of neutron stars
[17]. The results discussed here are based upon a wide
variety of parametrizations for the Skyrme Hartree-Fock
model for finite nuclei and nucleon matter. It will be
important to explore the generality of these conclusions
within the Skyrme model as well as in other mean-field
models.
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the precise value of the measured electric dipole polariz-
ability of 208Pb: α

D
=(20.1±0.6) fm3.

It is the purpose of this work to examine possible corre-
lations between the dipole polarizability and the neutron-
skin thickness of 208Pb. Generally, to assess a linear cor-
relation between two observables A and B within one

given model, one resorts to a least-squares covariance
analysis, with the correlation coefficient

CAB =
|∆A∆B|

√

∆A2 ∆B2
, (1)

providing the proper statistical measure [20]. In Eq. (1)
the overline means an average over the statistical sam-
ple. A value of |CAB| = 1 means that the two observables
are fully correlated whereas CAB = 0 implies that they
are totally uncorrelated. Recently, the statistical mea-
sure CAB was used to study correlations between various
nuclear observables [8] in the context of the Skyrme SV-
min model [21]. In particular, it was concluded that good
isovector indicators that strongly correlate with the neu-
tron radius of 208Pb are its electric dipole polarizability as
well as neutron skins and radii of neutron-rich nuclei [8].
Indeed, by relying on the strong correlation between α

D

and rskin (CAB=0.98) predicted by such DFT calcula-
tions, Tamii et al. deduced a value of 0.156+0.025

−0.021 fm for
the neutron-skin thickness of 208Pb.
However, the correlation coefficient CAB cannot as-

sess systematic errors that reflect constraints and limita-
tions of a given model [8]. Such systematic uncertainties
can only emerge by comparing different models (or suffi-
ciently flexible variants of a model) and this is precisely
what has been done in this Letter. To assess the linear
dependence between two observables A and B for a sam-
ple of several models, the correlation coefficient Cmodels

AB is
now obtained by averaging over the predictions of those
models. Although the correlation coefficient Cmodels

AB de-
termined in such a way may not have a clear statistical
interpretation, it is nevertheless an excellent indicator of
linear dependence.
To this end, we have computed the distribution of E1

strength using both relativistic and non-relativistic DFT
approaches with different EDFs. In all cases, these self-
consistent models have been calibrated to selected global
properties of finite nuclei and some parameters of nuclear
matter. Once calibrated, these models are used without
any further adjustment to compute the E1 strength R

E1

using a consistent random-phase approximation. The
electric dipole polarizability is then obtained from the
inverse energy-weighted sum [8, 18, 22]:

α
D
=

8π

9
e2

∫

∞

0

ω−1R
E1
(ω) dω . (2)

The relation between α
D

and rskin for 208Pb is dis-
played in Fig. 1 using the predictions from the 48 EDFs
chosen in this work. In particular, the up-triangles

!"#$

"%&!

FIG. 1: (Color online) Predictions from 48 nuclear EDFs dis-
cussed in the text for the electric dipole polarizability and
neutron-skin thickness of 208Pb. Constrains on the neutron-
skin thickness from PREX [3] and on the dipole polarizability
from RCNP [19] have been incorporated into the plot.

mark predictions from a broad choice of Skyrme EDFs
that have been widely used in the literature: SGII,
SIII, SkI3, SkI4, SkM∗, SkO, SkP, SkX, SLy4, SLy6,
(see Refs. [23, 24] for the original references), Sk255
[25], BSk17 [26], LNS [27], and UNEDF0 and UNEDF1
[28]. In addition, we consider a collection of relativistic
and Skyrme EDFs that have been systematically varied
around an optimal model without a significant deterio-
ration in the quality of the fit. (This is particularly true
for the case of the isovector interaction which at present
remains poorly constrained.) Those results are marked
in Fig. 1 as NL3/FSU [18, 29] (circles), DD-ME [30]
(squares), and Skyrme-SV [21] (down-triangles). Note
that the “stars” in the figure are meant to represent the
predictions from the optimal models within the chain of
systematic variations of the symmetry energy. At first
glance a clear (positive) correlation between the dipole
polarizability and the neutron skin is discerned.

Yet on closer examination, one observes a signifi-
cant scatter in the results, especially for the standard
Skyrme models. In particular, by including the predic-
tions from all the 48 EDFs considered here, the correla-
tion Cmodels

AB =0.77 is obtained. However, as seen in Ta-
ble I, within each set of the systematically varied mod-

Brown, 
PRL 85, 5296 (2000)

Piekarewicz, 
PRC 85, 041302 (2012)

rskin[
208Pb] = 0.15� 0.49 fm
Abrahamyan et al., PRL 108, 112502 (2012)
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A two-solar-mass neutron star measured using
Shapiro delay
P. B. Demorest1, T. Pennucci2, S. M. Ransom1, M. S. E. Roberts3 & J. W. T. Hessels4,5

Neutron stars are composed of the densest form of matter known
to exist in our Universe, the composition and properties of which
are still theoretically uncertain. Measurements of the masses or
radii of these objects can strongly constrain the neutron starmatter
equation of state and rule out theoretical models of their composi-
tion1,2. The observed range of neutron star masses, however, has
hitherto been too narrow to rule out many predictions of ‘exotic’
non-nucleonic components3–6. The Shapiro delay is a general-relat-
ivistic increase in light travel time through the curved space-time
near a massive body7. For highly inclined (nearly edge-on) binary
millisecond radio pulsar systems, this effect allows us to infer the
masses of both the neutron star and its binary companion to high
precision8,9. Here we present radio timing observations of the binary
millisecond pulsar J1614-223010,11 that show a strong Shapiro delay
signature.We calculate the pulsarmass to be (1.976 0.04)M[, which
rules out almost all currently proposed2–5 hyperon or boson con-
densate equations of state (M[, solar mass). Quark matter can sup-
port a star thismassive only if the quarks are strongly interacting and
are therefore not ‘free’ quarks12.
In March 2010, we performed a dense set of observations of J1614-

2230 with the National Radio Astronomy Observatory Green Bank
Telescope (GBT), timed to follow the system through one complete
8.7-d orbit with special attention paid to the orbital conjunction, where
theShapirodelay signal is strongest.Thesedatawere takenwith thenewly
built Green Bank Ultimate Pulsar Processing Instrument (GUPPI).
GUPPI coherently removes interstellar dispersive smearing from the
pulsar signal and integrates the data modulo the current apparent pulse
period, producing a set of average pulse profiles, or flux-versus-rota-
tional-phase light curves. From these, we determined pulse times of
arrival using standard procedures, with a typical uncertainty of,1ms.
We used themeasured arrival times to determine key physical para-

meters of the neutron star and its binary system by fitting them to a
comprehensive timing model that accounts for every rotation of the
neutron star over the time spanned by the fit. The model predicts at
what times pulses should arrive at Earth, taking into account pulsar
rotation and spin-down, astrometric terms (sky position and proper
motion), binary orbital parameters, time-variable interstellar disper-
sion and general-relativistic effects such as the Shapiro delay (Table 1).
We compared the observed arrival times with the model predictions,
and obtained best-fit parameters by x2 minimization, using the
TEMPO2 software package13. We also obtained consistent results
using the original TEMPO package. The post-fit residuals, that is,
the differences between the observed and the model-predicted pulse
arrival times, effectively measure how well the timing model describes
the data, and are shown in Fig. 1. We included both a previously
recorded long-term data set and our new GUPPI data in a single fit.
The long-term data determine model parameters (for example spin-
down rate and astrometry) with characteristic timescales longer than
a few weeks, whereas the new data best constrain parameters on
timescales of the orbital period or less. Additional discussion of the

long-termdata set, parameter covariance and dispersionmeasure vari-
ation can be found in Supplementary Information.
As shown in Fig. 1, the Shapiro delay was detected in our data with

extremely high significance, and must be included to model the arrival
times of the radio pulses correctly.However, estimating parameter values
and uncertainties can be difficult owing to the high covariance between
many orbital timing model terms14. Furthermore, the x2 surfaces for the
Shapiro-derived companionmass (M2) and inclination angle (i) are often
significantly curved or otherwise non-Gaussian15. To obtain robust error
estimates, we used a Markov chain Monte Carlo (MCMC) approach to
explore the post-fitx2 space andderive posterior probability distributions
for all timing model parameters (Fig. 2). Our final results for the model

1National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, Virginia 22093, USA. 2Astronomy Department, University of Virginia, Charlottesville, Virginia 22094-4325, USA. 3Eureka
Scientific, Inc., Oakland, California 94602, USA. 4Netherlands Institute for Radio Astronomy (ASTRON), Postbus 2, 7990 AA Dwingeloo, The Netherlands. 5Astronomical Institute ‘‘Anton Pannekoek’’,
University of Amsterdam, 1098 SJ Amsterdam, The Netherlands.

Table 1 | Physical parameters for PSR J1614-2230
Parameter Value

Ecliptic longitude (l) 245.78827556(5)u
Ecliptic latitude (b) 21.256744(2)u
Proper motion in l 9.79(7)mas yr21

Proper motion in b 230(3)mas yr21

Parallax 0.5(6)mas
Pulsar spin period 3.1508076534271(6)ms
Period derivative 9.6216(9) 310221 s s21

Reference epoch (MJD) 53,600
Dispersion measure* 34.4865pc cm23

Orbital period 8.6866194196(2) d
Projected semimajor axis 11.2911975(2) light s
First Laplace parameter (esinv) 1.1(3) 31027

Second Laplace parameter (ecosv) 21.29(3) 31026

Companion mass 0.500(6)M[
Sine of inclination angle 0.999894(5)
Epoch of ascending node (MJD) 52,331.1701098(3)
Span of timing data (MJD) 52,469–55,330
Number of TOAs{ 2,206 (454, 1,752)
Root mean squared TOA residual 1.1 ms

Right ascension (J2000) 16h 14min 36.5051(5) s
Declination (J2000) 222u 309 31.081(7)99
Orbital eccentricity (e) 1.30(4) 31026

Inclination angle 89.17(2)u
Pulsar mass 1.97(4)M[
Dispersion-derived distance{ 1.2 kpc
Parallax distance .0.9 kpc
Surface magnetic field 1.8 3108G
Characteristic age 5.2Gyr
Spin-down luminosity 1.2 31034 erg s21

Average flux density* at 1.4GHz 1.2mJy
Spectral index, 1.1–1.9GHz 21.9(1)
Rotation measure 228.0(3) radm22

Timingmodel parameters (top), quantities derived from timingmodel parameter values (middle) and
radio spectral and interstellar medium properties (bottom). Values in parentheses represent the 1s
uncertainty in the final digit, asdeterminedbyMCMCerror analysis. The fit includedboth ‘long-term’ data
spanning seven years and new GBT–GUPPI data spanning three months. The new data were observed
using an800-MHz-wide band centred at a radio frequency of 1.5GHz. The rawprofileswere polarization-
and flux-calibrated and averaged into 100-MHz, 7.5-min intervals using the PSRCHIVE software
package25, from which pulse times of arrival (TOAs) were determined. MJD, modified Julian date.
*These quantities vary stochastically on>1-d timescales. Values presented here are the averages for
our GUPPI data set.
{Shown in parentheses are separate values for the long-term (first) and new (second) data sets.
{Calculated using the NE2001 pulsar distance model26.
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parameters, withMCMC error estimates, are given in Table 1. Owing to
the high significance of this detection, our MCMC procedure and a
standard x2 fit produce similar uncertainties.
From the detected Shapiro delay, we measure a companion mass of

(0.50060.006)M[, which implies that the companion is a helium–
carbon–oxygenwhite dwarf16. The Shapiro delay also shows the binary

system to be remarkably edge-on, with an inclination of 89.17u6 0.02u.
This is the most inclined pulsar binary system known at present. The
amplitude and sharpness of the Shapiro delay increase rapidly with
increasing binary inclination and the overall scaling of the signal is
linearly proportional to the mass of the companion star. Thus, the
unique combination of the high orbital inclination and massive white
dwarf companion in J1614-2230 cause a Shapiro delay amplitude
orders of magnitude larger than for most other millisecond pulsars.
In addition, the excellent timing precision achievable from the pulsar
with the GBT and GUPPI provide a very high signal-to-noise ratio
measurement of both Shapiro delay parameters within a single orbit.
The standardKeplerian orbital parameters, combinedwith the known

companionmass and orbital inclination, fully describe the dynamics of a
‘clean’ binary system—one comprising two stable compact objects—
under general relativity and therefore also determine the pulsar’s mass.
Wemeasure a pulsar mass of (1.976 0.04)M[, which is by far the high-
est preciselymeasured neutron star mass determined to date. In contrast
with X-ray-based mass/radius measurements17, the Shapiro delay pro-
videsno informationabout theneutron star’s radius.However, unlike the
X-ray methods, our result is nearly model independent, as it depends
only on general relativity being an adequate description of gravity.
In addition, unlike statistical pulsar mass determinations based on
measurement of the advance of periastron18–20, pure Shapiro delay mass
measurements involve no assumptions about classical contributions to
periastron advance or the distribution of orbital inclinations.
The mass measurement alone of a 1.97M[ neutron star signifi-

cantly constrains the nuclear matter equation of state (EOS), as shown
in Fig. 3. Any proposed EOS whose mass–radius track does not inter-
sect the J1614-2230 mass line is ruled out by this measurement. The
EOSs that produce the lowestmaximummasses tend to be thosewhich
predict significant softening past a certain central density. This is a
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Figure 1 | Shapiro delay measurement for PSR
J1614-2230. Timing residual—the excess delay
not accounted for by the timing model—as a
function of the pulsar’s orbital phase. a, Full
magnitude of the Shapiro delay when all other
model parameters are fixed at their best-fit values.
The solid line shows the functional form of the
Shapiro delay, and the red points are the 1,752
timingmeasurements in ourGBT–GUPPI data set.
The diagrams inset in this panel show top-down
schematics of the binary system at orbital phases of
0.25, 0.5 and 0.75 turns (from left to right). The
neutron star is shown in red, the white dwarf
companion in blue and the emitted radio beam,
pointing towards Earth, in yellow. At orbital phase
of 0.25 turns, the Earth–pulsar line of sight passes
nearest to the companion (,240,000 km),
producing the sharp peak in pulse delay.We found
no evidence for any kind of pulse intensity
variations, as from an eclipse, near conjunction.
b, Best-fit residuals obtained using an orbitalmodel
that does not account for general-relativistic effects.
In this case, some of the Shapiro delay signal is
absorbed by covariant non-relativistic model
parameters. That these residuals deviate
significantly from a random, Gaussian distribution
of zero mean shows that the Shapiro delay must be
included to model the pulse arrival times properly,
especially at conjunction. In addition to the red
GBT–GUPPI points, the 454 grey points show the
previous ‘long-term’ data set. The drastic
improvement in data quality is apparent. c, Post-fit
residuals for the fully relativistic timing model
(including Shapiro delay), which have a root mean
squared residual of 1.1ms and a reduced x2 value of
1.4 with 2,165 degrees of freedom. Error bars, 1s.
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Figure 2 | Results of theMCMCerror analysis. a, Grey-scale image shows the
two-dimensional posterior probability density function (PDF) in theM2–i
plane, computed from a histogram ofMCMC trial values. The ellipses show 1s
and 3s contours based on a Gaussian approximation to the MCMC results.
b, PDF for pulsar mass derived from the MCMC trials. The vertical lines show
the 1s and 3s limits on the pulsar mass. In both cases, the results are very well
described by normal distributions owing to the extremely high signal-to-noise
ratio of our Shapiro delay detection. Unlike secular orbital effects (for example
precession of periastron), the Shapiro delay does not accumulate over time, so
the measurement uncertainty scales simply as T21/2, where T is the total
observing time. Therefore, we are unlikely to see a significant improvement on
these results with currently available telescopes and instrumentation.
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parameters, withMCMC error estimates, are given in Table 1. Owing to
the high significance of this detection, our MCMC procedure and a
standard x2 fit produce similar uncertainties.
From the detected Shapiro delay, we measure a companion mass of

(0.50060.006)M[, which implies that the companion is a helium–
carbon–oxygenwhite dwarf16. The Shapiro delay also shows the binary

system to be remarkably edge-on, with an inclination of 89.17u6 0.02u.
This is the most inclined pulsar binary system known at present. The
amplitude and sharpness of the Shapiro delay increase rapidly with
increasing binary inclination and the overall scaling of the signal is
linearly proportional to the mass of the companion star. Thus, the
unique combination of the high orbital inclination and massive white
dwarf companion in J1614-2230 cause a Shapiro delay amplitude
orders of magnitude larger than for most other millisecond pulsars.
In addition, the excellent timing precision achievable from the pulsar
with the GBT and GUPPI provide a very high signal-to-noise ratio
measurement of both Shapiro delay parameters within a single orbit.
The standardKeplerian orbital parameters, combinedwith the known

companionmass and orbital inclination, fully describe the dynamics of a
‘clean’ binary system—one comprising two stable compact objects—
under general relativity and therefore also determine the pulsar’s mass.
Wemeasure a pulsar mass of (1.976 0.04)M[, which is by far the high-
est preciselymeasured neutron star mass determined to date. In contrast
with X-ray-based mass/radius measurements17, the Shapiro delay pro-
videsno informationabout theneutron star’s radius.However, unlike the
X-ray methods, our result is nearly model independent, as it depends
only on general relativity being an adequate description of gravity.
In addition, unlike statistical pulsar mass determinations based on
measurement of the advance of periastron18–20, pure Shapiro delay mass
measurements involve no assumptions about classical contributions to
periastron advance or the distribution of orbital inclinations.
The mass measurement alone of a 1.97M[ neutron star signifi-

cantly constrains the nuclear matter equation of state (EOS), as shown
in Fig. 3. Any proposed EOS whose mass–radius track does not inter-
sect the J1614-2230 mass line is ruled out by this measurement. The
EOSs that produce the lowestmaximummasses tend to be thosewhich
predict significant softening past a certain central density. This is a
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Figure 1 | Shapiro delay measurement for PSR
J1614-2230. Timing residual—the excess delay
not accounted for by the timing model—as a
function of the pulsar’s orbital phase. a, Full
magnitude of the Shapiro delay when all other
model parameters are fixed at their best-fit values.
The solid line shows the functional form of the
Shapiro delay, and the red points are the 1,752
timingmeasurements in ourGBT–GUPPI data set.
The diagrams inset in this panel show top-down
schematics of the binary system at orbital phases of
0.25, 0.5 and 0.75 turns (from left to right). The
neutron star is shown in red, the white dwarf
companion in blue and the emitted radio beam,
pointing towards Earth, in yellow. At orbital phase
of 0.25 turns, the Earth–pulsar line of sight passes
nearest to the companion (,240,000 km),
producing the sharp peak in pulse delay.We found
no evidence for any kind of pulse intensity
variations, as from an eclipse, near conjunction.
b, Best-fit residuals obtained using an orbitalmodel
that does not account for general-relativistic effects.
In this case, some of the Shapiro delay signal is
absorbed by covariant non-relativistic model
parameters. That these residuals deviate
significantly from a random, Gaussian distribution
of zero mean shows that the Shapiro delay must be
included to model the pulse arrival times properly,
especially at conjunction. In addition to the red
GBT–GUPPI points, the 454 grey points show the
previous ‘long-term’ data set. The drastic
improvement in data quality is apparent. c, Post-fit
residuals for the fully relativistic timing model
(including Shapiro delay), which have a root mean
squared residual of 1.1ms and a reduced x2 value of
1.4 with 2,165 degrees of freedom. Error bars, 1s.
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Figure 2 | Results of theMCMCerror analysis. a, Grey-scale image shows the
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plane, computed from a histogram ofMCMC trial values. The ellipses show 1s
and 3s contours based on a Gaussian approximation to the MCMC results.
b, PDF for pulsar mass derived from the MCMC trials. The vertical lines show
the 1s and 3s limits on the pulsar mass. In both cases, the results are very well
described by normal distributions owing to the extremely high signal-to-noise
ratio of our Shapiro delay detection. Unlike secular orbital effects (for example
precession of periastron), the Shapiro delay does not accumulate over time, so
the measurement uncertainty scales simply as T21/2, where T is the total
observing time. Therefore, we are unlikely to see a significant improvement on
these results with currently available telescopes and instrumentation.
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parameters, withMCMC error estimates, are given in Table 1. Owing to
the high significance of this detection, our MCMC procedure and a
standard x2 fit produce similar uncertainties.
From the detected Shapiro delay, we measure a companion mass of

(0.50060.006)M[, which implies that the companion is a helium–
carbon–oxygenwhite dwarf16. The Shapiro delay also shows the binary

system to be remarkably edge-on, with an inclination of 89.17u6 0.02u.
This is the most inclined pulsar binary system known at present. The
amplitude and sharpness of the Shapiro delay increase rapidly with
increasing binary inclination and the overall scaling of the signal is
linearly proportional to the mass of the companion star. Thus, the
unique combination of the high orbital inclination and massive white
dwarf companion in J1614-2230 cause a Shapiro delay amplitude
orders of magnitude larger than for most other millisecond pulsars.
In addition, the excellent timing precision achievable from the pulsar
with the GBT and GUPPI provide a very high signal-to-noise ratio
measurement of both Shapiro delay parameters within a single orbit.
The standardKeplerian orbital parameters, combinedwith the known

companionmass and orbital inclination, fully describe the dynamics of a
‘clean’ binary system—one comprising two stable compact objects—
under general relativity and therefore also determine the pulsar’s mass.
Wemeasure a pulsar mass of (1.976 0.04)M[, which is by far the high-
est preciselymeasured neutron star mass determined to date. In contrast
with X-ray-based mass/radius measurements17, the Shapiro delay pro-
videsno informationabout theneutron star’s radius.However, unlike the
X-ray methods, our result is nearly model independent, as it depends
only on general relativity being an adequate description of gravity.
In addition, unlike statistical pulsar mass determinations based on
measurement of the advance of periastron18–20, pure Shapiro delay mass
measurements involve no assumptions about classical contributions to
periastron advance or the distribution of orbital inclinations.
The mass measurement alone of a 1.97M[ neutron star signifi-

cantly constrains the nuclear matter equation of state (EOS), as shown
in Fig. 3. Any proposed EOS whose mass–radius track does not inter-
sect the J1614-2230 mass line is ruled out by this measurement. The
EOSs that produce the lowestmaximummasses tend to be thosewhich
predict significant softening past a certain central density. This is a
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Figure 1 | Shapiro delay measurement for PSR
J1614-2230. Timing residual—the excess delay
not accounted for by the timing model—as a
function of the pulsar’s orbital phase. a, Full
magnitude of the Shapiro delay when all other
model parameters are fixed at their best-fit values.
The solid line shows the functional form of the
Shapiro delay, and the red points are the 1,752
timingmeasurements in ourGBT–GUPPI data set.
The diagrams inset in this panel show top-down
schematics of the binary system at orbital phases of
0.25, 0.5 and 0.75 turns (from left to right). The
neutron star is shown in red, the white dwarf
companion in blue and the emitted radio beam,
pointing towards Earth, in yellow. At orbital phase
of 0.25 turns, the Earth–pulsar line of sight passes
nearest to the companion (,240,000 km),
producing the sharp peak in pulse delay.We found
no evidence for any kind of pulse intensity
variations, as from an eclipse, near conjunction.
b, Best-fit residuals obtained using an orbitalmodel
that does not account for general-relativistic effects.
In this case, some of the Shapiro delay signal is
absorbed by covariant non-relativistic model
parameters. That these residuals deviate
significantly from a random, Gaussian distribution
of zero mean shows that the Shapiro delay must be
included to model the pulse arrival times properly,
especially at conjunction. In addition to the red
GBT–GUPPI points, the 454 grey points show the
previous ‘long-term’ data set. The drastic
improvement in data quality is apparent. c, Post-fit
residuals for the fully relativistic timing model
(including Shapiro delay), which have a root mean
squared residual of 1.1ms and a reduced x2 value of
1.4 with 2,165 degrees of freedom. Error bars, 1s.

 89.1

 89.12

 89.14

 89.16

 89.18

 89.2

 89.22

 89.24a b

0.48 0.49 0.5 0.51 0.52

In
cl

in
at

io
n 

an
gl

e,
 i 

(°
)

Companion mass, M2 (M()
1.8 1.85 1.9 1.95 2 2.05 2.1 2.15

P
ro

ba
bi

lit
y 

de
ns

ity

Pulsar mass (M()

Figure 2 | Results of theMCMCerror analysis. a, Grey-scale image shows the
two-dimensional posterior probability density function (PDF) in theM2–i
plane, computed from a histogram ofMCMC trial values. The ellipses show 1s
and 3s contours based on a Gaussian approximation to the MCMC results.
b, PDF for pulsar mass derived from the MCMC trials. The vertical lines show
the 1s and 3s limits on the pulsar mass. In both cases, the results are very well
described by normal distributions owing to the extremely high signal-to-noise
ratio of our Shapiro delay detection. Unlike secular orbital effects (for example
precession of periastron), the Shapiro delay does not accumulate over time, so
the measurement uncertainty scales simply as T21/2, where T is the total
observing time. Therefore, we are unlikely to see a significant improvement on
these results with currently available telescopes and instrumentation.

RESEARCH LETTER

1 0 8 2 | N A T U R E | V O L 4 6 7 | 2 8 O C T O B E R 2 0 1 0

Macmillan Publishers Limited. All rights reserved©2010

Demorest et al., Nature 467, 1081 (2010)

Mmax = 1.65M� � 1.97± 0.04 M�

Calculation of neutron star properties require EOS up to high densities.

Strategy: 
Use observations to constrain the high-density part of the nuclear EOS.

High-density constraints from observations:

Fig. 1. Radial velocities and spectrum of the white dwarf companion
to PSR J0348+0432. (A) Radial velocities of the WD companion to PSR
J0348+0432 plotted against the orbital phase (shown twice for clarity). Over-
plotted is the best-fit orbit of the WD (blue line) and the mirror orbit of the
pulsar (green). Error bars indicate 1-s confidence intervals. (B) Details of the
fit to the Balmer lines (Hb to H12) in the average spectrumof theWD companion

to PSR J0348+0432 created by the coherent addition of 26 individual spectra
shifted to zero velocity. Lines from Hb (bottom) to H12 are shown. The red
solid lines are the best-fit atmospheric model (see text). Two models, one with
Teff = 9900 K and log10g = 5.70 and one with Teff = 10,200 K and log10 g =
6.30, each ∼ 3-s off from the best-fit central value (including systematics), are
shown for comparison (dashed blue lines).

Fig. 2. Mass measurement of the white dwarf companion to PSR
J0348+0432. (A) Constraints on Teff and g for the WD companion to PSR
J0348+0432 compared with theoretical WD models. The shaded areas depict
the c2 − c2min = 2.3, 6.2, and 11.8 intervals (equivalent to 1-, 2-, and 3-s) of
our fit to the average spectrum. Dashed lines show the detailed theoretical

cooling models of (11). Continuous lines depict tracks with thick envelopes for
masses up to ∼0.2M◉ that yield the most conservative constraints for the mass
of the WD. (B) Finite-temperature mass-radius relations for our models to-
gether with the constraints imposed from modeling of the spectrum. Low
mass–high temperature points are an extrapolation from lower temperatures.
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A Massive Pulsar in a 

Compact Relativistic Binary

John Antoniadis,* Paulo C. C. Freire, Norbert Wex, Thomas M. Tauris, Ryan S. Lynch, 
Marten H. van Kerkwijk, Michael Kramer, Cees Bassa, Vik S. Dhillon, Thomas Driebe, 
Jason W. T. Hessels, Victoria M. Kaspi, Vladislav I. Kondratiev, Norbert Langer, 
Thomas R. Marsh, Maura A. McLaughlin, Timothy T. Pennucci, Scott M. Ransom, 
Ingrid H. Stairs, Joeri van Leeuwen, Joris P. W. Verbiest, David G. Whelan

Introduction: Neutron stars with masses above 1.8 solar masses (M�), possess extreme gravitational 
fi elds, which may give rise to phenomena outside general relativity. Hitherto, these strong-fi eld devia-
tions have not been probed by experiment, because they become observable only in tight binaries 
containing a high-mass pulsar and where orbital decay resulting from emission of gravitational waves 
can be tested. Understanding the origin of such a system would also help to answer fundamental ques-
tions of close-binary evolution.

Methods: We report on radio-timing observations of the pulsar J0348+0432 and phase-resolved 
optical spectroscopy of its white-dwarf companion, which is in a 2.46-hour orbit. We used these to 
derive the component masses and orbital parameters, infer the system’s motion, and constrain its age.

Results: We fi nd that the white dwarf has a mass of 0.172 ± 0.003 M�, which, combined with orbital 
velocity measurements, yields a pulsar mass of 2.01 ± 0.04 M�. Additionally, over a span of 2 years, 
we observed a signifi cant decrease in the orbital period, P�b

obs = –8.6 ± 1.4 µs year�1 in our radio-
timing data.

Discussion: Pulsar J0348+0432 is only the second neutron star with a precisely determined mass 
of 2 M� and independently confi rms the existence of such massive neutron stars in nature. For these 

masses and orbital period, general relativity 
predicts a significant orbital decay, which 
matches the observed value, P�b

obs/ P�b
GR = 1.05 

± 0.18.
The pulsar has a gravitational binding 

energy 60% higher than other known neu-
tron stars in binaries where gravitational-
wave damping has been detected. Because 
the magnitude of strong-field deviations 
generally depends nonlinearly on the bind-
ing energy, the measurement of orbital 
decay transforms the system into a gravita-
tional laboratory for an as-yet untested grav-
ity regime. The consistency of the observed 
orbital decay with general relativity  therefore 
supports its validity, even for such extreme 
gravity-matter couplings, and rules out 
strong-fi eld phenomena predicted by physi-
cally well-motivated alternatives. Moreover, 
our result supports the use of general rela-
tivity–based templates for the detection of 
gravitational waves from merger events with 
advanced ground-based detectors.

Lastly, the system provides insight into 
pulsar-spin evolution after mass accretion. 
Because of its short merging time scale of 
400 megayears, the system is a direct chan-
nel for the formation of an ultracompact x-ray 
binary, possibly leading to a pulsar-planet 
system or the formation of a black hole.

Artist’s impression of the PSR J0348+0432 system. 
The compact pulsar (with beams of radio emission) produces 
a strong distortion of spacetime (illustrated by the green 
mesh). Conversely, spacetime around its white dwarf com-
panion (in light blue) is substantially less curved. According 
to relativistic theories of gravity, the binary system is subject 
to energy loss by gravitational waves.
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companionwith awell-determinedmass of 0.20M◉
(15) that appears to be hot (10), suggesting that its
envelope is thick. For this reason, we base the
WD mass estimate on cooling tracks with thick
hydrogen atmospheres for masses up to 0.2M◉,
which we constructed by using the MESA stellar
evolution code (8, 16). Initial models were built
for masses identical to the ones in (11), for which
previous comparisons have yielded good agree-
ment with observations (14), with the addition
of tracks with 0.175 and 0.185 M◉ for finer
coverage (Fig. 2). For masses up to 0.169M◉, our
models show excellent agreement with (11);
however, our 0.196 M◉ model is quite different,
because it has a thick envelope instead of a thin
one. Being closer to the constraints for the WD
companion to PSR J0348+0432, it yields a more
conservative mass constraint, MWD = 0.165 to
0.185 at 99.73% confidence (Fig. 3 and Table 1),
which we adopt. The corresponding radius is
RWD = 0.046 to 0.092 R◉ at 99.73% confidence.
Our models yield a cooling age of tcool ∼ 2 Gy.

Pulsar Mass
The derived WD mass and the observed mass
ratio q imply a NSmass in the range from 1.97 to
2.05M◉ at 68.27% or 1.90 to 2.18M◉ at 99.73%
confidence. Hence, PSR J0348+0432 is only the
second NS with a precisely determined mass
around 2M◉, after PSR J1614−2230 (2). It has a
3-s lower mass limit 0.05M◉ higher than the latter
and therefore provides a verification, using a dif-
ferent method, of the constraints on the EOS of
superdense matter present in NS interiors (2, 17).
For these masses and the known orbital period,
GR predicts that the orbital period should decrease

at the rate of P
:GR
b ¼ ð−2:58þ0:07

−0:11 Þ % 10−13 s s−1

(68.27%confidence) because of energy loss through
GW emission.

Radio Observations
Since April 2011, we have been observing PSR
J0348+0432 with the 1.4-GHz receiver of the
305-m radio telescope at the Arecibo Observatory
by using its four wide-band pulsar processors (18).
In order to verify the Arecibo data, we have been
independently timing PSR J0348+0432 at 1.4 GHz
by using the 100-m radio telescope in Effelsberg,
Germany. The two timing data sets produce con-
sistent rotational models, providing added con-
fidence in both. Combining the Arecibo and
Effelsberg data with the initial GBTobservations
(7), we derived the timing solution presented in
Table 1. To match the arrival times, the solution
requires a significant measurement of orbital de-
cay, P

:
b ¼ −2:73 % 10−13 T 0:45% 10−13 s s−1

(68.27% confidence).
The total proper motion and distance estimate

(Table 1) allowed us to calculate the kinematic
corrections to P

:
b from its motion in the Galaxy,

plus any contribution from possible variations of
G: dP

:
b ¼ 0:016% 10−13 T 0:003% 10−13 s s−1.

This is negligible compared to the measurement
uncertainty. Similarly, the small rate of rotational
energy loss of the pulsar (Table 1) excludes any
substantial contamination resulting frommass loss
from the system; furthermore, we can exclude
substantial contributions to P

:
b from tidal effects

[see (8) for details]. Therefore, the observedP
:
b is

caused by GW emission, and its magnitude is
entirely consistent with the one predicted by GR:
P
:
b=P

:GR
b ¼ 1:05 T 0:18 (Fig. 3).

If we assume that GR is the correct theory of
gravity, we can then derive the component masses
from the intersection of the regions allowed by
q and P

:
b (Fig. 3): MWD ¼ 0:177þ0:017

−0:018 M◉ and
MPSR ¼ 2:07þ0:20

−0:21 M◉ (68.27% confidence). These
values are not too constraining yet. However, the
uncertainty of the measurement of P

:
b decreases

with T baseline
−5/2 (where Tbaseline is the timing base-

line); therefore, this method will yield very precise
mass measurements within a couple of years.

Discussion

PSR J0348+0432 as a Testbed for Gravity
There are strong arguments for GR not to be valid
beyond a (yet unknown) critical point, like its
incompatibility with quantum theory and its pre-
diction of the formation of spacetime singularities.
Therefore, it remains an open question whether
GR is the final description of macroscopic gravity.
This strongly motivates testing gravity regimes
that have not been tested before, in particular
regimes where gravity is strong and highly non-
linear. Presently, binary pulsars provide the best
high-precision experiments to probe strong-field
deviations from GR and the best tests of the
radiative properties of gravity (19–23). The orbital
period of PSR J0348+0432 is only 15 s longer
than that of the double pulsar system PSR J0737–
3039, but it has ∼two times more fractional grav-
itational binding energy than each of the double-
pulsar NSs. This places it far outside the presently
tested binding energy range (Fig. 4A) (8). Be-
cause the magnitude of strong-field effects gener-
ally depends nonlinearly on the binding energy,
the measurement of orbital decay transforms the

Fig. 3. System masses and
orbital-inclination constraints.
Constraints on system masses and
orbital inclination from radio and
optical measurements of PSR
J0348+0432 and its WD compan-
ion. Each triplet of curves corre-
sponds to the most likely value
and standard deviations (68.27%
confidence) of the respective pa-
rameters. Of these, two (q and MWD)
are independent of specific gravity
theories (in black). The contours
contain the 68.27 and 95.45% of
the two-dimensional probability
distribution. The constraints from
the measured intrinsic orbital decay
(P
:
b
int, in orange) are calculated as-

suming that GR is the correct theory
of gravity. All curves intersect in
the same region, meaning that
GR passes this radiative test (8).
(Bottom left) cosi-MWD plane. The
gray region is excluded by the con-
dition MPSR > 0. (Bottom right)
MPSR-MWD plane. The gray region
is excluded by the condition sini ≤ 1. The lateral graphs depict the one-dimensional probability-distribution function for the WD mass (right), pulsar mass
(top right), and inclination (top left) based on the mass function, MWD, and q.
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Neutron star radius constraints

   incorporation of beta-equilibrium: neutron matter         neutron star matter

parametrize piecewise high-density extensions of EOS:

• use polytropic ansatz

• range of parameters
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Constraints on the nuclear equation of state

use the constraints:

vs(�) =
�

dP/d⇥ < c

Mmax > 1.97 M�

causality

recent NS observations

constraints lead to significant reduction of EOS uncertainty band

KH, Lattimer, Pethick, Schwenk, ApJ 773,11 (2013)



vs(�) =
�

dP/d⇥ < c

causality

fictitious NS mass

Mmax > 2.4 M�

increased          systematically reduces width of bandMmax

use the constraints:

Constraints on the nuclear equation of state

KH, Lattimer, Pethick, Schwenk, ApJ 773,11 (2013)



• current radius prediction for typical            neutron star:  
• low-density part of EOS sets scale for allowed high-density extensions 
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• constructed 3 representative EOS compatible with uncertainty bands for 
astrophysical applications: soft, intermediate and stiff

• allows to probe impact of current theoretical EOS uncertainties on 
astrophysical observables

Representative set of EOS

KH, Lattimer, Pethick, Schwenk, ApJ 773, 11 (2013)
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• current radius prediction for typical            neutron star:  
• low-density part of EOS sets scale for allowed high-density extensions 

14.2 14.4 14.6 14.8 15.0 15.2 15.4
log 10  [g / cm3]

33

34

35

36

lo
g 1

0
P 

[d
yn

e/
cm

2 ]

WFF1
WFF2
WFF3
AP4
AP3
MS1
MS3
GM3
ENG
PAL
GS1
GS2

14.2 14.4 14.6 14.8 15.0 15.2 15.4

33

34

35

36

PCL2
SQM1
SQM2
SQM3
PS

Constraints on EOS from M-R measurements
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• proposed LOFT mission could significantly improve constraints
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FIG. 2: Scaled power spectral density of the GW signal for
the Shen (black solid line) and the eosUU (blue line) EoSs
compared to the Advanced LIGO (red dashed line) and ET
(black dashed line) unity SNR sensitivities. The inset shows
the GW amplitude of the + polarization at 50 Mpc for the
Shen EoS.

gles) belong to simulations for the MIT60 and Glendnh3
EoSs, which both have strikingly different M-R relations
(dashed lines in Fig. 1). Note that a SQM EoS could
lead to discriminating observational features, e.g. in the
cosmic ray flux [20, 22], but the particular model MIT60
is ruled out by the 1.97M⊙ NS of [3]. The Glendnh3 EoS
seems in conflict with theoretical knowledge of EoS prop-
erties at subnuclear densities [4]. Ignoring the two out-
liers, thefpeak −Rmax correlation (crosses only) becomes
even stronger. Already one determination of fpeak could
therefore seriously constrain the M-R relation and conse-
quently the nuclear EoS. Additionally, simulated merg-
ers of 1.2 M⊙-1.5 M⊙ binaries for selected EoSs (circles)
demonstrate that the relation between fpeak and Rmax is
not very sensitive to the initial mass ratio [11]. Squares
in Fig. 3 display results for 1.2 M⊙-1.2 M⊙ mergers. For
those fpeak is clearly lower [11] with differences being
larger for smaller Rmax. But also for the symmetric bi-
naries with lower mass a correlation seems to exist. We
stress that the total binary mass Mtot will be measurable
by the GW inspiral signal [43].
fpeak turns out to correlate also with other NS proper-

ties: From Fig. 4 (left panel) a close relation between the
radius R1.35 of a 1.35 M⊙ star (or alternatively its com-
pactnessGM/(c2R)) and fpeak is evident. Again only the
MIT60 and Glendnh3 EoSs occur as outliers. This find-
ing is not surprising, because the TOV solutions show
already an approximate correlation between R1.35 and
Rmax. A similar coupling is found between fpeak and
the maximum central density ρmax of non-rotating NSs,
where higher ρmax yield higher fpeak.
However, no clear correlation exists between fpeak

and the maximum compactness of non-spinning NSs or
Mmax, though typically a lower Mmax gives a higher
fpeak, and fpeak > 2.8 kHz seems incompatible with
Mmax > 2.4 M⊙. We propose the following expla-
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FIG. 3: Peak frequency of the postmerger GW emission vs.
radius of the maximum-mass TOV solution. Blue cases are
excluded by [3]. See text for symbols.
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FIG. 4: Peak frequency vs. radius of a 1.35 M⊙ NS (left) and

vs.
√
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max in geometrical units (right) with Mtot being

the binary mass. Symbols have same meaning as in Fig. 3.

nation for the fact that the postmerger GW emission
is determined by Rmax. Numerical calculations have
shown that for any EoS the frequency of the f-mode,
which generates the GW radiation at fpeak [42], depends
nearly linearly on the square root of the mean density
(M/R3)1/2 [44]. Since we fix Mtot, the mass-dependence
drops out. Assuming that the radius of the DRO re-
lates to the M-R relation of non-rotating NSs [47], we
end up with fpeak ∝ R−1.5

max . This hypothesis is verified
in the right panel of Fig. 4, where fpeak is plotted versus
(Mtot/R3

max)
1/2 and except for the mentioned outliers a

clear power-law scaling is visible.
Despite an estimated detection rate of only 0.1 to 1

events/yr for Advanced LIGO (accounting for random
orientation and adopting the “realistic” and the “high”
merger rates of [18]) the relations found in this work may
prove very useful, because already a single measurement
is likely to determine Rmax and R1.35 to within some
100 m. This will place significant constraints on the
M-R relation and thus the EoS (see [2, 45] for the in-
verse procedure). These prospects appear superior to the

Bauswein and Janka, PRL 108, 011101 (2012),
Bauswein, Janka, KH, Schwenk, PRD 86, 063001

• simulations of NS binary mergers show strong correlation between between
           of the GW spectrum and the radius of a NS

• measuring         is key step for constraining EOS systematically at large  
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FIG. 9: Peak frequency of the postmerger GW emission ver-
sus the radius of the maximum-mass configuration of non-
rotating NSs for different EoSs. Red symbols correspond to
microphysical EoSs with a consistent temperature treatment
(class i), black symbols show data points for barotropic mi-
crophysical EoSs (without temperature and electron fraction
dependence) (class ii), green (smaller) symbols belong to EoSs
implemented as piecewise polytropes fitting barotropic micro-
physical EoSs (class iii), and blue symbols display results for
microphysical EoSs at low densities with high-density exten-
sions by piecewise polytropes (class iv). Classes (ii) to (iv)
are supplemented with an ideal-gas component for mimicking
thermal effects. Plus signs indicate EoSs which are excluded
by the observation of a 1.97 M⊙ pulsar [10]. EoSs describing
absolutely stable strange quark matter are denoted by trian-
gles. Note that the MIT60 EoS (red triangle) is ruled out by
the 1.97 M⊙ mass limit.

The EoSs of class (iv) (blue) cover a broad range of pos-
sible behaviors at intermediate and high densities, which
are partially very extreme (e.g., very high pressure and
sound speed at high densities, see Figs. 2 and 3). There-
fore, it is expected that the resulting variations will also
span a broad range, which is however consistent with
the chiral effective field theory constraints at saturation
densities and below. The models of class (iii) involve a
twofold simplification that can explain the larger devia-
tions from the correlations. First, the fits of the EoSs do
not perfectly match the underlying microphysical model
(e.g. in the sound speed, see [42]), leading to peak fre-
quencies which may be slightly different from those ob-
tained by the original model. Second, due to the usage
of the fit also the stellar parameters of nonrotating NSs
differ slightly from those obtained with the original EoSs.
Bear in mind that the same reasoning for EoSs of class
(iii) and class (iv) EoSs also applies to all following rela-
tions discussed in this paper (Fig. 13 to 21).
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FIG. 10: Peak frequency of the postmerger GW emission ver-
sus the radius of a nonrotating NS with 1.8 M⊙ for different
EoSs. Symbols have the same meaning as in Fig. 9.

10 11 12 13 14 15 16
1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

f p
e

a
k
 [

k
H

z
]

R
1.6

 [km]

FIG. 11: Peak frequency of the postmerger GW emission ver-
sus the radius of a nonrotating NS with 1.6 M⊙ for different
EoSs. Symbols have the same meaning as in Fig. 9.

B. Fits and residuals

To quantify the discussion above and to introduce a
measure for the scatter inherent to the presented rela-
tions, we fit power laws of the type RTOV = a·(fpeak)b+c
through the data points of Figs. 9-12 with a, b, c being pa-
rameters to be obtained by a least-square fit. RTOV de-

Gravitational wave signals from 
neutron star binary mergers



3

0 1 2 3 4
Ecm (MeV)

0

20

40

60

80

100

120

140

�
(d

eg
.)

3
2
�

1
2
�

(b) NLO

N2LO (D2, E� )

N2LO (D2, EP)

R�matrix

FIG. 1. (a) Couplings cE vs cD obtained by fitting the 4He binding energy for di↵erent 3N-operator forms. Triangles are
obtained by using VD1 and VE⌧ , while the other symbols are obtained for VD2 and three di↵erent VE-operator structures. The
blue and green lines (lower and upper) correspond to R0 = 1.0 fm, while the red lines (central) correspond to R0 = 1.2 fm. The
GFMC statistical errors are smaller than the symbols. The stars correspond to the values of cD and cE which simultaneously
fit the n-↵ P -wave phase shifts (see Table I and the right panel). No fit to both observables can be obtained for the case with
R0 = 1.2 fm and VD1. (b) P -wave n-↵ elastic scattering phase shifts compared with an R-matrix analysis of experimental data.
Colors and symbols correspond to the left panel. We also include phase shifts calculated at NLO which clearly indicate the
necessity of 3N interactions to fit the P -wave splitting.

TABLE I. Fit values for the couplings cD and cE for di↵erent
choices of 3N forces and cuto↵s.

V3N R0 (fm) cE cD

N2LO (D1, E⌧)
1.0 �0.63 0.0

1.2

N2LO (D2, E⌧)
1.0 �0.63 0.0

1.2 0.09 3.5

N2LO (D2, E ) 1.0 0.62 0.5

N2LO (D2, EP) 1.0 0.59 0.0

results in n-↵ P -wave scattering show a substantial sen-
sitivity: VD1

appears to have a smaller e↵ect than VD2

.

In Fig. 2, we show ground-state energies and point pro-
ton radii for A = 3, 4 nuclei at NLO and N2LO using VD2

and VE⌧ for R
0

= 1.0 fm and R
0

= 1.2 fm, in compar-
ison with experiment. The ground-state energies of the
A = 3 systems compare well with experimental values.
The ground-state energy of 4He is used in fitting cD and
cE , and so it is forced to match the experimental value to
within ⇡ 0.03 MeV. The point proton radii also compare
well with values extracted from experiment. The theo-
retical uncertainty at each order is estimated through the
expected size of higher-order contributions; see Ref. [32]
for details. We include results from LO, NLO, and N2LO

in the analysis using the Fermi momentum and the pion
mass as the small scales for neutron matter (discussed
below) and nuclei, respectively. The error bars presented
here are comparable to those shown in Ref. [33], although
it is worth emphasizing that our calculations represent a
complete estimate of the uncertainty at N2LO since we
include 3N interactions. Other choices for 3N structures
give similar results.

It is noteworthy that NN and 3N interactions derived
from chiral EFT up to N2LO have su�cient freedom such
that n-↵ scattering phase shifts in Fig. 1(b) and proper-
ties of light nuclei in Fig. 2 can be simultaneously de-
scribed. The failures of the Urbana IX model in under-
binding nuclei and underpredicting the spin-orbit split-
ting in neutron-rich systems, including the n-↵, system
were among the factors motivating the addition of the
three-pion exchange diagrams in the Illinois 3N mod-
els [7]. Our results show that chiral 3N forces at N2LO,
including the shorter-range parts in the pion exchanges,
allow the simultaneous fit. These interactions should be
tested further in light p-shell nuclei.

Finally, we study the full chiral N2LO forces, includ-
ing all 3N contributions, in neutron matter to extend the
results from Ref. [24]. More specifically, we examine the
e↵ects of di↵erent VD and VE structures on the equation
of state of neutron matter. Although these terms vanish

Gezerlis et al.,
PRL 111, 032501 (2013)
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FIG. 1. (Color online) Neutron-proton phase shifts as a function of laboratory energy Elab = 2p2/m in the 1S0, 3P0, 3P1, and
3P2 partial waves (from left to right) in comparison to the Nijmegen partial-wave analysis (PWA) [43]. The LO, NLO, and

N2LO bands are obtained by varying R0 between 0.8 − 1.2 fm (with a spectral-function cutoff Λ̃ = 800MeV).

and provide a measure of the theoretical uncertainty. For
the R0 = 1.2 fm N2LO NN potential, we list the low-
energy couplings at LO, NLO, and N2LO in Table I. At
N2LO, an isospin-symmetry-breaking contact interaction
(Cnn for neutrons) is added in the spin S = 0 channel (to
CS−3CT ), which is fit to a scattering length of −18.8 fm.
As shown in Fig. 1, the comparison with NN phase shifts
is very good for Elab ! 150MeV. This is similar for
higher partial waves and isospin T = 0 channels, which
will be reported in a later paper that will also study im-
proved fits. In cases where there are deviations for higher
energies (such as in the 3P2 channel of Fig. 1), the width
of the band signals significant theoretical uncertainties
due to the chiral EFT truncation at N2LO. The NLO
and N2LO bands nicely overlap (as shown for the cases
in Fig. 1), or are very close, but it is also apparent that
the N2LO bands are of a similar size as at NLO. This is
because the width of the bands at both NLO and N2LO
shows effects of the neglected order-Q4 contact interac-
tions.

Finally, we emphasize that the newly introduced local
chiral EFT potentials include the same physics as the
momentum-space versions. This is especially clear when
antisymmetrizing. Besides the new idea of removing the
k2 terms, there are no conceptual differences between the
two ways of regularizing (see also the early work [44]).

We then apply the developed local LO, NLO, and
N2LO chiral EFT interactions in systematic QMC cal-
culations for the first time. Since nuclear forces con-
tain quadratic spin, isospin, and tensor operators (of the
form σ

α
i Aαβ

ij σ
β
j ), the many-body wave function cannot

be expressed as a product of single-particle spin-isospin
states. All possible spin-isospin nucleon-pair states need
to be explicitly accounted for, leading to an exponential
increase in the number of possible states. As a result,
Green’s Function Monte Carlo (GFMC) calculations are
presently limited to 12 nucleons and 16 neutrons [30]. In
this Letter, we would like to simulate O(100) neutrons

0 0.05 0.1 0.15

n [fm-3]

0

5

10

15

20

E/
N

 [M
eV

]

AFDMC LO
AFDMC NLO
AFDMC N2LO

R 0
=0

.8
 fm

R 0
=1

.2
 fm

FIG. 2. (Color online) Neutron matter energy per particle
E/N as a function of density n calculated using AFDMC
with chiral EFT NN interactions at LO, NLO, and N2LO.
The statistical errors are smaller than the points shown. The
lines give the range of the energy band obtained by varying
R0 between 0.8 − 1.2 fm (as for the phase shifts in Fig. 1),
which provides an estimate of the theoretical uncertainty at
each order. The N2LO band is comparable to the one at NLO
due to the large ci couplings in the N2LO two-pion exchange.

to access the thermodynamic limit. We therefore turn
to the auxiliary-field diffusion Monte Carlo (AFDMC)
method [45], which is capable of efficiently handling spin-
dependent Hamiltonians.
Schematically, AFDMC rewrites the Green’s function

by applying a Hubbard-Stratonovich transformation us-
ing auxiliary fields to change the quadratic spin-isospin
operator dependences to linear. As a result, when applied
to a wave function that is a product of single-particle

4

in the limit of infinite cuto↵, they contribute for finite
cuto↵s. In Fig. 3 we show results for the neutron mat-
ter energy per particle as a function of the density calcu-
lated with the AFDMC method described in Refs. [3, 34].
We show the energies for R

0

= 1.0 fm for the NN and
full 3N interactions. We use VD2

and the three di↵erent
VE structures: VE⌧ (blue band), VE (red band), and
VEP (green band). The error bands are determined as in
the light nuclei case. The VEP interaction fits A = 4, 5
with a vanishing cD; hence, this choice of VE leads to
an equation of state identical to the equation of state
with NN+ VC as in Ref. [24] (the projector P is zero for
pure neutron systems), and qualitatively similar to pre-
vious results using chiral interactions at N2LO [35] and
next-to-next-to-next-to-leading order [36].

As discussed, the contributions of VD and VE are only
regulator e↵ects for neutrons. However, they are sizable
and result in a larger error band. At saturation den-
sity n

0

⇠ 0.16 fm�3, the di↵erence of the central value
of the energy per neutron after inclusion of the 3N con-
tacts VE or VE⌧ is ⇠ 2 MeV, leading to a total error
band with a range of ⇠ 6.5 MeV when considering di↵er-
ent VE structures. This relatively large uncertainty can
be qualitatively explained when considering the following
e↵ects. Because the expectation value h

P
i<j ⌧ i ·⌧ ji has

a sign opposite to that of the expectation value h i in
4He, cE will also have opposite signs in the two cases to
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FIG. 2. Ground-state energies and point proton radii for A =
3, 4 nuclei calculated at NLO and N2LO (with VD2 and VE⌧ )
compared with experiment. Blue (red) symbols correspond
to R0 = 1.0 fm (R0 = 1.2 fm). The errors are obtained as
described in the text and also include the GFMC statistical
uncertainties.

FIG. 3. The energy per particle in neutron matter as a
function of density for the NN and full 3N interactions at
N2LO with R0 = 1.0 fm. We use VD2 and di↵erent 3N contact
structures: The blue band corresponds to VE⌧ , the red band
to VE , and the green band to VEP . The green band coincides
with the NN+ 2⇡-exchange-only result because both VD and
VE vanish in this case. The bands are calculated as described
in the text.

fit the binding energy. However, in neutron matter both
operators are the same, spreading the uncertainty band.
A similar argument was made in Ref. [37].

With the regulators used here, the Fierz-
rearrangement invariance valid at infinite cuto↵ is
only approximate at finite cuto↵, and hence the di↵erent
choices of VD and VE can lead to di↵erent results.
The di↵erent local structures can lead to finite relative
P -wave contributions. These can be eliminated by
choosing VEP , which has a projection onto even-parity
waves (predominantly S waves). The usual nonlocal
regulator in momentum space does not couple S and P
waves.

In conclusion, we find for the first time that chiral in-
teractions can simultaneously fit light nuclei and low-
energy P -wave n-↵ scattering and provide reasonable es-
timates for the neutron matter equation of state. Other
commonly used phenomenological 3N models do not pro-
vide this capability. These chiral forces should be tested
in light p-shell nuclei, medium-mass nuclei, and isospin-
symmetric nuclear matter to gauge their ability to de-
scribe global properties of nuclear systems.

We also find that the ambiguities associated with
contact-operator choices can be significant when mov-
ing from light nuclei to neutron matter and possibly to
medium-mass nuclei, where the T = 3

2

triples play a

Recent and current developments of novel nuclear interactions

Lynn et al.,
PRL 116, 062501 (2016)

1. local EFT interactions, suitable for Quantum Monte Carlo calculations
   status: NN plus 3N up to N2LO

Gezerlis et al.,
PRC 90, 054323 (2014)
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FIG. 1. (a) Couplings cE vs cD obtained by fitting the 4He binding energy for di↵erent 3N-operator forms. Triangles are
obtained by using VD1 and VE⌧ , while the other symbols are obtained for VD2 and three di↵erent VE-operator structures. The
blue and green lines (lower and upper) correspond to R0 = 1.0 fm, while the red lines (central) correspond to R0 = 1.2 fm. The
GFMC statistical errors are smaller than the symbols. The stars correspond to the values of cD and cE which simultaneously
fit the n-↵ P -wave phase shifts (see Table I and the right panel). No fit to both observables can be obtained for the case with
R0 = 1.2 fm and VD1. (b) P -wave n-↵ elastic scattering phase shifts compared with an R-matrix analysis of experimental data.
Colors and symbols correspond to the left panel. We also include phase shifts calculated at NLO which clearly indicate the
necessity of 3N interactions to fit the P -wave splitting.

TABLE I. Fit values for the couplings cD and cE for di↵erent
choices of 3N forces and cuto↵s.

V3N R0 (fm) cE cD

N2LO (D1, E⌧)
1.0 �0.63 0.0

1.2

N2LO (D2, E⌧)
1.0 �0.63 0.0

1.2 0.09 3.5

N2LO (D2, E ) 1.0 0.62 0.5

N2LO (D2, EP) 1.0 0.59 0.0

results in n-↵ P -wave scattering show a substantial sen-
sitivity: VD1

appears to have a smaller e↵ect than VD2

.

In Fig. 2, we show ground-state energies and point pro-
ton radii for A = 3, 4 nuclei at NLO and N2LO using VD2

and VE⌧ for R
0

= 1.0 fm and R
0

= 1.2 fm, in compar-
ison with experiment. The ground-state energies of the
A = 3 systems compare well with experimental values.
The ground-state energy of 4He is used in fitting cD and
cE , and so it is forced to match the experimental value to
within ⇡ 0.03 MeV. The point proton radii also compare
well with values extracted from experiment. The theo-
retical uncertainty at each order is estimated through the
expected size of higher-order contributions; see Ref. [32]
for details. We include results from LO, NLO, and N2LO

in the analysis using the Fermi momentum and the pion
mass as the small scales for neutron matter (discussed
below) and nuclei, respectively. The error bars presented
here are comparable to those shown in Ref. [33], although
it is worth emphasizing that our calculations represent a
complete estimate of the uncertainty at N2LO since we
include 3N interactions. Other choices for 3N structures
give similar results.

It is noteworthy that NN and 3N interactions derived
from chiral EFT up to N2LO have su�cient freedom such
that n-↵ scattering phase shifts in Fig. 1(b) and proper-
ties of light nuclei in Fig. 2 can be simultaneously de-
scribed. The failures of the Urbana IX model in under-
binding nuclei and underpredicting the spin-orbit split-
ting in neutron-rich systems, including the n-↵, system
were among the factors motivating the addition of the
three-pion exchange diagrams in the Illinois 3N mod-
els [7]. Our results show that chiral 3N forces at N2LO,
including the shorter-range parts in the pion exchanges,
allow the simultaneous fit. These interactions should be
tested further in light p-shell nuclei.

Finally, we study the full chiral N2LO forces, includ-
ing all 3N contributions, in neutron matter to extend the
results from Ref. [24]. More specifically, we examine the
e↵ects of di↵erent VD and VE structures on the equation
of state of neutron matter. Although these terms vanish

Gezerlis et al.,
PRL 111, 032501 (2013)
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FIG. 1. (Color online) Neutron-proton phase shifts as a function of laboratory energy Elab = 2p2/m in the 1S0, 3P0, 3P1, and
3P2 partial waves (from left to right) in comparison to the Nijmegen partial-wave analysis (PWA) [43]. The LO, NLO, and

N2LO bands are obtained by varying R0 between 0.8 − 1.2 fm (with a spectral-function cutoff Λ̃ = 800MeV).

and provide a measure of the theoretical uncertainty. For
the R0 = 1.2 fm N2LO NN potential, we list the low-
energy couplings at LO, NLO, and N2LO in Table I. At
N2LO, an isospin-symmetry-breaking contact interaction
(Cnn for neutrons) is added in the spin S = 0 channel (to
CS−3CT ), which is fit to a scattering length of −18.8 fm.
As shown in Fig. 1, the comparison with NN phase shifts
is very good for Elab ! 150MeV. This is similar for
higher partial waves and isospin T = 0 channels, which
will be reported in a later paper that will also study im-
proved fits. In cases where there are deviations for higher
energies (such as in the 3P2 channel of Fig. 1), the width
of the band signals significant theoretical uncertainties
due to the chiral EFT truncation at N2LO. The NLO
and N2LO bands nicely overlap (as shown for the cases
in Fig. 1), or are very close, but it is also apparent that
the N2LO bands are of a similar size as at NLO. This is
because the width of the bands at both NLO and N2LO
shows effects of the neglected order-Q4 contact interac-
tions.

Finally, we emphasize that the newly introduced local
chiral EFT potentials include the same physics as the
momentum-space versions. This is especially clear when
antisymmetrizing. Besides the new idea of removing the
k2 terms, there are no conceptual differences between the
two ways of regularizing (see also the early work [44]).

We then apply the developed local LO, NLO, and
N2LO chiral EFT interactions in systematic QMC cal-
culations for the first time. Since nuclear forces con-
tain quadratic spin, isospin, and tensor operators (of the
form σ

α
i Aαβ

ij σ
β
j ), the many-body wave function cannot

be expressed as a product of single-particle spin-isospin
states. All possible spin-isospin nucleon-pair states need
to be explicitly accounted for, leading to an exponential
increase in the number of possible states. As a result,
Green’s Function Monte Carlo (GFMC) calculations are
presently limited to 12 nucleons and 16 neutrons [30]. In
this Letter, we would like to simulate O(100) neutrons
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FIG. 2. (Color online) Neutron matter energy per particle
E/N as a function of density n calculated using AFDMC
with chiral EFT NN interactions at LO, NLO, and N2LO.
The statistical errors are smaller than the points shown. The
lines give the range of the energy band obtained by varying
R0 between 0.8 − 1.2 fm (as for the phase shifts in Fig. 1),
which provides an estimate of the theoretical uncertainty at
each order. The N2LO band is comparable to the one at NLO
due to the large ci couplings in the N2LO two-pion exchange.

to access the thermodynamic limit. We therefore turn
to the auxiliary-field diffusion Monte Carlo (AFDMC)
method [45], which is capable of efficiently handling spin-
dependent Hamiltonians.
Schematically, AFDMC rewrites the Green’s function

by applying a Hubbard-Stratonovich transformation us-
ing auxiliary fields to change the quadratic spin-isospin
operator dependences to linear. As a result, when applied
to a wave function that is a product of single-particle

4

in the limit of infinite cuto↵, they contribute for finite
cuto↵s. In Fig. 3 we show results for the neutron mat-
ter energy per particle as a function of the density calcu-
lated with the AFDMC method described in Refs. [3, 34].
We show the energies for R

0

= 1.0 fm for the NN and
full 3N interactions. We use VD2

and the three di↵erent
VE structures: VE⌧ (blue band), VE (red band), and
VEP (green band). The error bands are determined as in
the light nuclei case. The VEP interaction fits A = 4, 5
with a vanishing cD; hence, this choice of VE leads to
an equation of state identical to the equation of state
with NN+ VC as in Ref. [24] (the projector P is zero for
pure neutron systems), and qualitatively similar to pre-
vious results using chiral interactions at N2LO [35] and
next-to-next-to-next-to-leading order [36].

As discussed, the contributions of VD and VE are only
regulator e↵ects for neutrons. However, they are sizable
and result in a larger error band. At saturation den-
sity n

0

⇠ 0.16 fm�3, the di↵erence of the central value
of the energy per neutron after inclusion of the 3N con-
tacts VE or VE⌧ is ⇠ 2 MeV, leading to a total error
band with a range of ⇠ 6.5 MeV when considering di↵er-
ent VE structures. This relatively large uncertainty can
be qualitatively explained when considering the following
e↵ects. Because the expectation value h

P
i<j ⌧ i ·⌧ ji has

a sign opposite to that of the expectation value h i in
4He, cE will also have opposite signs in the two cases to
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FIG. 2. Ground-state energies and point proton radii for A =
3, 4 nuclei calculated at NLO and N2LO (with VD2 and VE⌧ )
compared with experiment. Blue (red) symbols correspond
to R0 = 1.0 fm (R0 = 1.2 fm). The errors are obtained as
described in the text and also include the GFMC statistical
uncertainties.

FIG. 3. The energy per particle in neutron matter as a
function of density for the NN and full 3N interactions at
N2LO with R0 = 1.0 fm. We use VD2 and di↵erent 3N contact
structures: The blue band corresponds to VE⌧ , the red band
to VE , and the green band to VEP . The green band coincides
with the NN+ 2⇡-exchange-only result because both VD and
VE vanish in this case. The bands are calculated as described
in the text.

fit the binding energy. However, in neutron matter both
operators are the same, spreading the uncertainty band.
A similar argument was made in Ref. [37].

With the regulators used here, the Fierz-
rearrangement invariance valid at infinite cuto↵ is
only approximate at finite cuto↵, and hence the di↵erent
choices of VD and VE can lead to di↵erent results.
The di↵erent local structures can lead to finite relative
P -wave contributions. These can be eliminated by
choosing VEP , which has a projection onto even-parity
waves (predominantly S waves). The usual nonlocal
regulator in momentum space does not couple S and P
waves.

In conclusion, we find for the first time that chiral in-
teractions can simultaneously fit light nuclei and low-
energy P -wave n-↵ scattering and provide reasonable es-
timates for the neutron matter equation of state. Other
commonly used phenomenological 3N models do not pro-
vide this capability. These chiral forces should be tested
in light p-shell nuclei, medium-mass nuclei, and isospin-
symmetric nuclear matter to gauge their ability to de-
scribe global properties of nuclear systems.

We also find that the ambiguities associated with
contact-operator choices can be significant when mov-
ing from light nuclei to neutron matter and possibly to
medium-mass nuclei, where the T = 3

2
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1. local EFT interactions, suitable for Quantum Monte Carlo calculations
   status: NN plus 3N up to N2LO

good description of all A ≤ 4 data. Some of the πN LECs
display large variations, but the χ2=Ndof (without model
error) for the πN data is within 2.28(4) for all of these
potentials. The subleading πN LECs become more positive
when NN scattering data at higher energies are included,
and c1, in particular, carries a larger (relative) statistical
uncertainty than the others. It is noteworthy that for a given
Tmax
Lab , and up to 1σ precision, the πN LECs exhibit Λ

independence. The NNN LECs, cD and cE, tend to depend
less on Tmax

Lab at larger values of Λ. However, they always
remain natural. It is also interesting to note that the tensor
contact CE1

is insensitive to Λ variations but strongly
dependent on the Tmax

Lab cut. It was shown in Fig. 6 that CE1

and c4 correlate strongly. This effect can already be
expected from the structure of the underlying expression
for the NNLO interaction.
To gauge the magnitude of model variations in heavier

nuclei, we computed the binding energies of 4He and 16O
by using the previously mentioned family of 42 NNLO
potentials. The resulting binding energies for 4He and 16O,
computed in the NCSM and CC, respectively, are shown in
Fig. 11. The NCSM calculations were carried out in a HO
model space with Nmax ¼ 20 and ℏω ¼ 36 MeV. The CC
calculations were carried out in the so-called Λ−CCSD(T)
approximation [7] in 15 major oscillator shells with
ℏω ¼ 22 MeV. The largest energy difference when going
from 13 to 15 oscillator shells was 3.6 MeV (observed
for Λ ¼ 600 MeV). From the observed convergence of the
correlation energy we estimate the uncertainty of excluded
higher rank excitation clusters to "5 MeV. For our
purposes, this provides well-enough converged results.
The NNN force was truncated at the normal-ordered
two-body level in the Hartree-Fock basis.

The Eð4HeÞ predictions vary within about a 2-MeV
range. For Eð16OÞ, this variation increases dramatically to
about 35 MeV. Irrespective of the discrepancy with the
measured value, the spread of the central values indicates
the presence of a surprisingly large systematic error when
extrapolating to heavier systems.
The statistical uncertainties remain small: tens of keV for

4He and a few hundred keV for 16O. These uncertainties are
obtained from the quadratic approximation with the com-
puted Jacobian and Hessian for 4He, while a brute-force
Monte Carlo simulation with 2.5 × 104 CC calculations
was performed for 16O. This massive set of CC calculations
employed the singles and doubles approximation (CCSD)
in nine major oscillator shells. We conclude that the
statistical uncertainties of the predictions for Eð4HeÞ and
Eð16OÞ at NNLO are much smaller than the variations due
to changing Λ or Tmax

Lab . However, this is only true for
simultaneously optimized potentials. For the separately
optimized NNLO potential (NNLOsep), the statistical
uncertainty of the Eð4HeÞ prediction is five times larger
than the observed variations due to changing Λ and Tmax

Lab .

V. OUTLOOK

The extended analysis of systematic uncertainties pre-
sented above suggests that large fluctuations are induced in
heavier nuclei (see Fig. 11). Furthermore, while predictions
for 4He are accurate over a rather wide range of regulator
parameters, the binding energy for 16O turns out to be
underestimated for the entire range used in this study. In
fact, there is no overlap between the theoretical predictions
and the experimental results, even though the former ones
have large error bars.
Based on our findings, we recommend that continued

efforts towards an ab initio framework based on χEFT
should involve additional work in, at least, three different
directions:
(1) Explore the alternative strategy of informing the

model about low-energy many-body observables.
(2) Diversify and extend the statistical analysis and

perform a sensitivity analysis of input data.
(3) Continue efforts towards higher orders of the chiral

expansion, and possibly revisit the power counting.
Let us comment briefly on these research directions. The
poor many-body scaling observed in Fig. 11 was prag-
matically accounted for in the construction of the so-called
NNLOsat potential presented in Ref. [35], where heavier
nuclei were also included in the fit. The accuracy of many-
body predictions was shown to be much improved, but the
uncertainty analysis is much more difficult within such a
strategy.
Second, to get a handle on possible bias in the statistical

analysis due to the choice of statistical technique, it is
important to apply different types of optimization and
uncertainty quantification methods. Various choices exist,

FIG. 11. Binding-energy predictions for (a) 4He and (b) 16O
with the different reoptimizations of NNLOsim. On the x axis
is the employed cutoff Λ. Vertically aligned red markers
correspond to different Tmax

Lab for the NN scattering data used
in the optimization. The experimental binding energies are
Eð4HeÞ ≈ −28.30 MeV, represented by a gray band in panel
(a), and Eð16OÞ≈−127.6MeV [98]. Statistical error bars on the
theoretical results are smaller than the marker size on this
energy scale.
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potentials, there were no signs of convergence in the
description of, e.g., np scattering data.
If the experimental database of πN scattering cross

sectionswas complete, then itwould be possible to separately
constrain,with zerovariances, the correspondingLECs.Only
this scenario would render it unnecessary to include the πN
scattering data in the simultaneous objective function.
Implicitly, this scenario also assumes a perfect theory, i.e.,
that the employed χEFT can account for the dynamics of
pionic interactions. Of course, reality lies somewhere in
between, and a simultaneous optimization approach is
preferable in the present situation. There exists ongoing
efforts where the πN sector of χEFT is extrapolated and fitted
separately in the unphysical kinematical region, where it
exhibits a stronger curvature with respect to the data [96].
Overall, the importance of applying simultaneous

optimization is most prominent at higher chiral orders
since the subleading πN LECs enter first at NNLO. In
fact, the separately optimized NNLOsep potential contains
a large systematic uncertainty by construction. We find
that the scaling factor for the NN scattering model error,
CNN , decreases from 1.6 to 1.0 mb1=2 when going from
NNLOsep to the simultaneously optimized NNLOsim.
This implies that the separate, or sequential, optimization
protocol introduces additional artificial systematic errors
not due to the chiral expansion but due to incorrectly fitted
LECs. This scenario is avoided in a simultaneous opti-
mization. The scaling factor for the πN scattering model
error, CπN, remains at 3.6 mb1=2 for both NNLOsep and
NNLOsim.

The size of the model error is determined such that the
overall scattering χ2=Ndof is unity, which means that it
depends on the observables entering the optimization. We
can explore the stability of our approach by reoptimizing
NNLOsim with respect to different truncations of the
input NN scattering data. To this end, we adjust the allowed
Tmax
lab between 125 and 290 MeV in six steps. It turns out

that our procedure for extracting the model error is very
stable. The resulting normalization constants CNN vary
between 1.0 mb1=2 and 1.3 mb1=2 as shown in Fig. 10(a).

FIG. 9. Comparison between selected NN and πN experimental data sets and theoretical calculations for chiral interactions at LO,
NLO, and NNLO. The bands indicate the total errors (statistical plus model errors). (a) np total cross section for the sequentially
optimized interactions with no clear signature of convergence with increasing chiral order. All other results are for the simultaneously
optimized interactions: LOsim, NLOsim, and NNLOsim. (b) np total cross section; (c) np differential cross section; (d) πN charge-
exchange, differential cross section; (e) πN elastic, differential cross section.

FIG. 10. Predictions for the different reoptimizations of NNLO-
sim. On the x axis is the maximum T lab for the NN scattering
data used in the optimization. (a) Model error amplitude (20)
reoptimized so that χ2=Ndof ¼ 1 for the respective data subset.
(b) Model prediction for the np total cross section at T lab ¼
300 MeV with error bars representing statistical and model
errors for the different reoptimizations.
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If the experimental database of πN scattering cross

sectionswas complete, then itwould be possible to separately
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this scenario would render it unnecessary to include the πN
scattering data in the simultaneous objective function.
Implicitly, this scenario also assumes a perfect theory, i.e.,
that the employed χEFT can account for the dynamics of
pionic interactions. Of course, reality lies somewhere in
between, and a simultaneous optimization approach is
preferable in the present situation. There exists ongoing
efforts where the πN sector of χEFT is extrapolated and fitted
separately in the unphysical kinematical region, where it
exhibits a stronger curvature with respect to the data [96].
Overall, the importance of applying simultaneous

optimization is most prominent at higher chiral orders
since the subleading πN LECs enter first at NNLO. In
fact, the separately optimized NNLOsep potential contains
a large systematic uncertainty by construction. We find
that the scaling factor for the NN scattering model error,
CNN , decreases from 1.6 to 1.0 mb1=2 when going from
NNLOsep to the simultaneously optimized NNLOsim.
This implies that the separate, or sequential, optimization
protocol introduces additional artificial systematic errors
not due to the chiral expansion but due to incorrectly fitted
LECs. This scenario is avoided in a simultaneous opti-
mization. The scaling factor for the πN scattering model
error, CπN, remains at 3.6 mb1=2 for both NNLOsep and
NNLOsim.

The size of the model error is determined such that the
overall scattering χ2=Ndof is unity, which means that it
depends on the observables entering the optimization. We
can explore the stability of our approach by reoptimizing
NNLOsim with respect to different truncations of the
input NN scattering data. To this end, we adjust the allowed
Tmax
lab between 125 and 290 MeV in six steps. It turns out

that our procedure for extracting the model error is very
stable. The resulting normalization constants CNN vary
between 1.0 mb1=2 and 1.3 mb1=2 as shown in Fig. 10(a).

FIG. 9. Comparison between selected NN and πN experimental data sets and theoretical calculations for chiral interactions at LO,
NLO, and NNLO. The bands indicate the total errors (statistical plus model errors). (a) np total cross section for the sequentially
optimized interactions with no clear signature of convergence with increasing chiral order. All other results are for the simultaneously
optimized interactions: LOsim, NLOsim, and NNLOsim. (b) np total cross section; (c) np differential cross section; (d) πN charge-
exchange, differential cross section; (e) πN elastic, differential cross section.

FIG. 10. Predictions for the different reoptimizations of NNLO-
sim. On the x axis is the maximum T lab for the NN scattering
data used in the optimization. (a) Model error amplitude (20)
reoptimized so that χ2=Ndof ¼ 1 for the respective data subset.
(b) Model prediction for the np total cross section at T lab ¼
300 MeV with error bars representing statistical and model
errors for the different reoptimizations.
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FIG. 1. (Color online) Ground-state energy (negative of binding
energy) per nucleon (top), and residuals (differences between com-
puted and experimental values) of charge radii (bottom) for selected
nuclei computed with chiral interactions. In most cases, theory
predicts too-small radii and too-large binding energies. References:
a [40,41], b [24], c [23], d [22], e [42], f [43], g [44], h [45], i [46].
The red diamonds are NNLOsat results obtained in this work.

to low-energy observables (as opposed to the traditional
adjustment of two-nucleon forces to NN scattering data at
higher energies). Third, the impact of many-body effects
entering at higher orders (e.g., higher-rank forces) might be
reduced if heavier systems, in which those effects are stronger,
are included in the optimization.

Besides these theoretical arguments, there is also one
practical reason for a paradigm shift: predictive power and
large extrapolations do not go together. In traditional ap-
proaches, where interactions are optimized for A = 2,3,4,
small uncertainties in few-body systems (e.g., by forcing a
rather precise reproduction of the A = 2,3,4 sectors at a
rather low order in the chiral power counting) get magnified
tremendously in heavy nuclei; see, for example, Ref. [24].
Consequently, when aiming at reliable predictions for heavy
nuclei, it is advisable to use a model that performs well for
light- and medium-mass systems. In our approach, light nuclei
are reached by interpolation while medium-mass nuclei by a
modest extrapolation. In this context, it is worth noting that the
most accurate calculations for light nuclei with A ! 12 [59]
employ NNN forces adjusted to 17 states in nuclei with
A ! 8 [60]. Finally, we point out that nuclear saturation can
be viewed as an emergent phenomenon. Indeed, little in the
chiral EFT of nuclear forces suggest that nuclei are self-bound
systems with a central density (or Fermi momentum) that is
practically independent of mass number. This viewpoint makes
it prudent to include the emergent momentum scale into the
optimization, which is done in our case by the inclusion of
charge radii for 3H, 3,4He, 14C, and 16O. This is similar in spirit
to nuclear mean-field calculations [61] and nuclear density
functional theory [62,63] where masses and radii provide key
constraints on the parameters of the employed models.

Optimization protocol and model details. We seek to
minimize an objective function to determine the optimal set
of coupling constants of the chiral NN + NNN interaction
at NNLO. Our dataset of fit-observables includes the binding
energies and charge radii of 3H, 3,4He, 14C, and 16O, as well

TABLE I. Binding energies (in MeV) and charge radii (in fm)
for 3H, 3,4He, 14C, and 16,22,23,24,25O employed in the optimization of
NNLOsat.

Eg.s. Expt. [69] rch Expt. [65,66]

3H 8.52 8.482 1.78 1.7591(363)
3He 7.76 7.718 1.99 1.9661(30)
4He 28.43 28.296 1.70 1.6755(28)
14C 103.6 105.285 2.48 2.5025(87)
16O 124.4 127.619 2.71 2.6991(52)
22O 160.8 162.028(57)
24O 168.1 168.96(12)
25O 167.4 168.18(10)

as binding energies of 22,24,25O as summarized in Table I.
To obtain charge radii rch from computed point-proton radii
rpp we use the standard expression [64]: ⟨r2

ch⟩ = ⟨r2
pp⟩ +

⟨R2
p⟩ + N

Z
⟨R2

n⟩ + 3!2

4m2
pc2 , where 3!2

4m2
pc2 = 0.033 fm2 (Darwin–

Foldy correction), R2
n = −0.1149(27) fm2 [65], and Rp =

0.8775(51) fm [66]. In this work we ignore the spin-orbit
contribution to charge radii [67]. From the NN sector, the
objective function includes proton-proton and neutron-proton
scattering observables from the SM99 database [68] up to
35 MeV scattering energy in the laboratory system as well
as effective range parameters, and deuteron properties (see
Table II). The maximum scattering energy was chosen such
that an acceptable fit to both NN scattering data and many-
body observables could be achieved.

In the present optimization protocol, the NNLO chiral
force is tuned to low-energy observables. The comparison
with the high-precision chiral NN interaction N3 LOEM [49]
and experimental data presented in Table II demonstrates the
quality of NNLOsat at low energies.

The results for 3H and 3,4He (and 6Li) were computed
with the no-core shell model (NCSM) [6,10] accompanied
by infrared extrapolations [75]. The NNN force of NNLOsat
yields about 2 MeV of binding energy for 4He. Heavier nuclei

TABLE II. Low-energy NN data included in the optimization.
The scattering lengths a and effective ranges r are in units of fm. The
proton-proton observables with superscript C include the Coulomb
force. The deuteron binding energy (ED , in MeV), structure radius
(rD , in fm), and quadrupole moment (QD , in fm2) are calculated
without meson-exchange currents or relativistic corrections. The
computed d-state probability of the deuteron is 3.46%.

NNLOsat N3 LOEM [49] Expt. Ref.

aC
pp −7.8258 −7.8188 −7.8196(26) [70]

rC
pp 2.855 2.795 2.790(14) [70]

ann −18.929 −18.900 −18.9(4) [71]
rnn 2.911 2.838 2.75(11) [72]
anp −23.728 −23.732 −23.740(20) [73]
rnp 2.798 2.725 2.77(5) [73]
ED 2.22457 2.22458 2.224566 [69]
rD 1.978 1.975 1.97535(85) [74]
QD 0.270 0.275 0.2859(3) [73]
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FIG. 2. (Color online) Selected neutron-proton scattering phase-
shifts as a function of the laboratory scattering energy TLab. (Top)
NNLOsat prediction (solid lines) compared to the Nijmegen phase
shift analysis [95] (symbols) at low energies TLab < 35 MeV. Note
the two vertical scales. (Bottom) Neutron-proton scattering phase
shifts from NNLOsat (red diamonds) compared to the Nijmegen
phase shift analysis (black squares) and the NNLO potentials (green)
from Ref. [77].

dominated by about 90% of 1p-1h(p1/2 → d5/2) excitations,
at 6.34 MeV. The energy of the 3−

1 state is strongly correlated
with the charge radius of 16O, with smaller charge radii
leading to higher excitation energies. For 1p-1h excited states,
the excitation energy depends on the particle-hole gap and
therefore on one-nucleon separation energies of the A = 16
and A = 17 systems. The charge radius depends also on the
proton separation energy Sp. For 16O we find Sp = 10.69 MeV
and the neutron separation energy Sn(17O) = 4.0 MeV, in an
acceptable agreement with the experimental values of 12.12
and 4.14 MeV, respectively. For 17F we find Sp = 0.5 MeV, to
be compared with the experimental threshold at 0.6 MeV.

The inset of Fig. 4 shows that the 2−
1 state in 16O also comes

out well, suggesting a 1p-1h nature. However, the 1−
1 state is

about 1.5 MeV too high compared with experiment. This state
is dominated by 1p-1h excitations from the occupied p1/2 to
the unoccupied s1/2 orbitals. In 17O the 1/2+ state is computed
at an excitation energy of 2.2 MeV, which is about 1.4 MeV

FIG. 3. (Color online) Energies (in MeV) of selected excited
states for various nuclei using NNLOsat. For 6Li we also include
spectra from the NCSM (dotted lines), and isospin quantum numbers
are also given. The NCSM results were obtained with Nmax = 10 and
!! = 16 MeV. Parenthesis denote tentative spins assignments for
experimental levels. Data are from Refs. [100–103].

too high. This probably explains the discrepancy observed for
the 1− state in 16O.

Figure 4 shows that the experimental charge-density of 16O
is well reproduced with NNLOsat, and our charge form factor
is, for momenta up to the second diffraction maximum, similar
in quality to what Mihaila and Heisenberg [11] achieved with
the Av18 + UIX potential. For the heavier isotopes 22,24O and
22,24F Fig. 3 shows good agreement between theory and experi-
ment for excited states. For 22F our computed spin assignments
agree with results from shell-model Hamiltonians [106] and
with recent ab initio results [89]. The binding energies for
14N, 22,24F are 103.7, 163, and 175.1 MeV, respectively, in
good agreement with data (104.7, 167.7, and 179.1 MeV). We
also computed the intrinsic charge (matter) radii of 22,24O and
obtained 2.72 fm (2.80 fm) and 2.76 fm (2.95 fm), respectively.
The matter radius of 22O agrees with the experimental result
from Ref. [91]. We note that the computed spectra in 18O is too

FIG. 4. (Color online) Charge density in 16O computed as in
Ref. [110] compared to the experimental charge density [111].
The inset compares computed low-lying negative-parity states with
experiment.
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Recent and current developments of novel nuclear interactions
3. fits of NN plus 3N forces to two-, few- and many-body observables
   status: NN plus 3N up to N2LO

4. fit of semilocal NN forces, development of novel way of estimating uncertainties
    status: NN up to N4LO, no 3NF yet
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FIG. 1. (Color online) Ground-state energy (negative of binding
energy) per nucleon (top), and residuals (differences between com-
puted and experimental values) of charge radii (bottom) for selected
nuclei computed with chiral interactions. In most cases, theory
predicts too-small radii and too-large binding energies. References:
a [40,41], b [24], c [23], d [22], e [42], f [43], g [44], h [45], i [46].
The red diamonds are NNLOsat results obtained in this work.

to low-energy observables (as opposed to the traditional
adjustment of two-nucleon forces to NN scattering data at
higher energies). Third, the impact of many-body effects
entering at higher orders (e.g., higher-rank forces) might be
reduced if heavier systems, in which those effects are stronger,
are included in the optimization.

Besides these theoretical arguments, there is also one
practical reason for a paradigm shift: predictive power and
large extrapolations do not go together. In traditional ap-
proaches, where interactions are optimized for A = 2,3,4,
small uncertainties in few-body systems (e.g., by forcing a
rather precise reproduction of the A = 2,3,4 sectors at a
rather low order in the chiral power counting) get magnified
tremendously in heavy nuclei; see, for example, Ref. [24].
Consequently, when aiming at reliable predictions for heavy
nuclei, it is advisable to use a model that performs well for
light- and medium-mass systems. In our approach, light nuclei
are reached by interpolation while medium-mass nuclei by a
modest extrapolation. In this context, it is worth noting that the
most accurate calculations for light nuclei with A ! 12 [59]
employ NNN forces adjusted to 17 states in nuclei with
A ! 8 [60]. Finally, we point out that nuclear saturation can
be viewed as an emergent phenomenon. Indeed, little in the
chiral EFT of nuclear forces suggest that nuclei are self-bound
systems with a central density (or Fermi momentum) that is
practically independent of mass number. This viewpoint makes
it prudent to include the emergent momentum scale into the
optimization, which is done in our case by the inclusion of
charge radii for 3H, 3,4He, 14C, and 16O. This is similar in spirit
to nuclear mean-field calculations [61] and nuclear density
functional theory [62,63] where masses and radii provide key
constraints on the parameters of the employed models.

Optimization protocol and model details. We seek to
minimize an objective function to determine the optimal set
of coupling constants of the chiral NN + NNN interaction
at NNLO. Our dataset of fit-observables includes the binding
energies and charge radii of 3H, 3,4He, 14C, and 16O, as well

TABLE I. Binding energies (in MeV) and charge radii (in fm)
for 3H, 3,4He, 14C, and 16,22,23,24,25O employed in the optimization of
NNLOsat.

Eg.s. Expt. [69] rch Expt. [65,66]

3H 8.52 8.482 1.78 1.7591(363)
3He 7.76 7.718 1.99 1.9661(30)
4He 28.43 28.296 1.70 1.6755(28)
14C 103.6 105.285 2.48 2.5025(87)
16O 124.4 127.619 2.71 2.6991(52)
22O 160.8 162.028(57)
24O 168.1 168.96(12)
25O 167.4 168.18(10)

as binding energies of 22,24,25O as summarized in Table I.
To obtain charge radii rch from computed point-proton radii
rpp we use the standard expression [64]: ⟨r2

ch⟩ = ⟨r2
pp⟩ +

⟨R2
p⟩ + N

Z
⟨R2

n⟩ + 3!2

4m2
pc2 , where 3!2

4m2
pc2 = 0.033 fm2 (Darwin–

Foldy correction), R2
n = −0.1149(27) fm2 [65], and Rp =

0.8775(51) fm [66]. In this work we ignore the spin-orbit
contribution to charge radii [67]. From the NN sector, the
objective function includes proton-proton and neutron-proton
scattering observables from the SM99 database [68] up to
35 MeV scattering energy in the laboratory system as well
as effective range parameters, and deuteron properties (see
Table II). The maximum scattering energy was chosen such
that an acceptable fit to both NN scattering data and many-
body observables could be achieved.

In the present optimization protocol, the NNLO chiral
force is tuned to low-energy observables. The comparison
with the high-precision chiral NN interaction N3 LOEM [49]
and experimental data presented in Table II demonstrates the
quality of NNLOsat at low energies.

The results for 3H and 3,4He (and 6Li) were computed
with the no-core shell model (NCSM) [6,10] accompanied
by infrared extrapolations [75]. The NNN force of NNLOsat
yields about 2 MeV of binding energy for 4He. Heavier nuclei

TABLE II. Low-energy NN data included in the optimization.
The scattering lengths a and effective ranges r are in units of fm. The
proton-proton observables with superscript C include the Coulomb
force. The deuteron binding energy (ED , in MeV), structure radius
(rD , in fm), and quadrupole moment (QD , in fm2) are calculated
without meson-exchange currents or relativistic corrections. The
computed d-state probability of the deuteron is 3.46%.

NNLOsat N3 LOEM [49] Expt. Ref.

aC
pp −7.8258 −7.8188 −7.8196(26) [70]

rC
pp 2.855 2.795 2.790(14) [70]

ann −18.929 −18.900 −18.9(4) [71]
rnn 2.911 2.838 2.75(11) [72]
anp −23.728 −23.732 −23.740(20) [73]
rnp 2.798 2.725 2.77(5) [73]
ED 2.22457 2.22458 2.224566 [69]
rD 1.978 1.975 1.97535(85) [74]
QD 0.270 0.275 0.2859(3) [73]
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FIG. 2. (Color online) Selected neutron-proton scattering phase-
shifts as a function of the laboratory scattering energy TLab. (Top)
NNLOsat prediction (solid lines) compared to the Nijmegen phase
shift analysis [95] (symbols) at low energies TLab < 35 MeV. Note
the two vertical scales. (Bottom) Neutron-proton scattering phase
shifts from NNLOsat (red diamonds) compared to the Nijmegen
phase shift analysis (black squares) and the NNLO potentials (green)
from Ref. [77].

dominated by about 90% of 1p-1h(p1/2 → d5/2) excitations,
at 6.34 MeV. The energy of the 3−

1 state is strongly correlated
with the charge radius of 16O, with smaller charge radii
leading to higher excitation energies. For 1p-1h excited states,
the excitation energy depends on the particle-hole gap and
therefore on one-nucleon separation energies of the A = 16
and A = 17 systems. The charge radius depends also on the
proton separation energy Sp. For 16O we find Sp = 10.69 MeV
and the neutron separation energy Sn(17O) = 4.0 MeV, in an
acceptable agreement with the experimental values of 12.12
and 4.14 MeV, respectively. For 17F we find Sp = 0.5 MeV, to
be compared with the experimental threshold at 0.6 MeV.

The inset of Fig. 4 shows that the 2−
1 state in 16O also comes

out well, suggesting a 1p-1h nature. However, the 1−
1 state is

about 1.5 MeV too high compared with experiment. This state
is dominated by 1p-1h excitations from the occupied p1/2 to
the unoccupied s1/2 orbitals. In 17O the 1/2+ state is computed
at an excitation energy of 2.2 MeV, which is about 1.4 MeV

FIG. 3. (Color online) Energies (in MeV) of selected excited
states for various nuclei using NNLOsat. For 6Li we also include
spectra from the NCSM (dotted lines), and isospin quantum numbers
are also given. The NCSM results were obtained with Nmax = 10 and
!! = 16 MeV. Parenthesis denote tentative spins assignments for
experimental levels. Data are from Refs. [100–103].

too high. This probably explains the discrepancy observed for
the 1− state in 16O.

Figure 4 shows that the experimental charge-density of 16O
is well reproduced with NNLOsat, and our charge form factor
is, for momenta up to the second diffraction maximum, similar
in quality to what Mihaila and Heisenberg [11] achieved with
the Av18 + UIX potential. For the heavier isotopes 22,24O and
22,24F Fig. 3 shows good agreement between theory and experi-
ment for excited states. For 22F our computed spin assignments
agree with results from shell-model Hamiltonians [106] and
with recent ab initio results [89]. The binding energies for
14N, 22,24F are 103.7, 163, and 175.1 MeV, respectively, in
good agreement with data (104.7, 167.7, and 179.1 MeV). We
also computed the intrinsic charge (matter) radii of 22,24O and
obtained 2.72 fm (2.80 fm) and 2.76 fm (2.95 fm), respectively.
The matter radius of 22O agrees with the experimental result
from Ref. [91]. We note that the computed spectra in 18O is too

FIG. 4. (Color online) Charge density in 16O computed as in
Ref. [110] compared to the experimental charge density [111].
The inset compares computed low-lying negative-parity states with
experiment.
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FIG. 1. Chiral expansion of the 3H Eg.s. based on the NN potentials of Refs. [15,16] for the regulator R = 1.0 fm and using Q = Mπ/"b.
Panel (a) shows incomplete results based on NN forces only, with uncertainties being estimated via Eqs. (5) and (6). Panel (b) shows incomplete
results based on NN forces only, with uncertainties being estimated via Eqs. (5) and (6) for chiral order i = 0,2 and via Eqs. (7) and (8) for
i ! 3. Panel (c) shows the projected results assuming that the LECs in the N2LO 3NF are tuned to reproduce the 3H Eg.s. and using Eqs. (5)
and (6) to specify the uncertainty.

long-range part of the NN potential is regularized in position
space by multiplying with the function

f

(
r

R

)
=

[
1 − exp

(
− r2

R2

)]6

, (1)

with the cutoff R chosen in the range 0.8–1.2 fm.
In this paper we, for the first time, apply these novel chiral

NN forces beyond the two-nucleon system and demonstrate
their suitability for modern ab initio few- and many-body
methods. By applying the new method for error analysis, we
present unambiguous evidence for missing 3NF effects and
demonstrate that the size of the required 3NF contributions
agrees well with expectations based on Weinberg’s power
counting. We also estimate the theoretical accuracy for various
observables achievable at N4LO and identify the energy region
in elastic Nd scattering that is best suited for testing the chiral
3NF.

II. UNCERTAINTY QUANTIFICATION

We first describe our procedure for estimating the the-
oretical uncertainty. Let X(p) be some observable with p
referring to the corresponding momentum scale and X(i)(p),
i = 0,2,3, . . ., a prediction at order Qi in the chiral expansion.

We further define the order-Qi corrections to X(p) via

#X(2) ≡ X(2) − X(0), #X(i) ≡ X(i) − X(i−1), i ! 3, (2)

so that the chiral expansion for X takes the form

X(i) = X(0) + #X(2) + · · · + #X(i). (3)

Generally, the size of the corrections is expected to be

#X(i) = O(QiX(0)). (4)

In Ref. [16], the validity of this estimate was confirmed
for the total neutron-proton cross section. In Refs. [15,16],
quantitative estimates of the theoretical uncertainty δX(i) of the
chiral EFT prediction X(i) were made by using the expected
and actual sizes of higher-order contributions. Specifically, the
following procedure was employed:

δX(0) = Q2|X(0)|,
δX(i) = max

2"j"i
(Qi+1|X(0)|, Qi+1−j |#X(j )|), (5)

where i ! 2 and Q = max(p/"b, Mπ/"b) with "b =
600, 500, and 400 MeV for the regulator choices of R =
0.8–1.0, 1.1, and 1.2 fm, respectively. The sizes of actual
higher-order calculations provide additional information on

TABLE I. Ground-state energies Eg.s. of 3H and 4He (in MeV) and the point-proton radius rp of 4He (in fm) calculated by using the
improved NN chiral potentials of Refs. [15,16] up to N4LO for the cutoff R = 1.0 fm in comparison with empirical information. The quoted
uncertainties for the theoretical predictions are estimated via Eqs. (5) and (6) for chiral order i = 0,2 and via Eqs. (7) and (8) for i ! 3.

LO NLO N2LO N3LO N4LO Empirical

Eg.s. (3H) −11.3(3.7) −8.36(83) −8.26(20) −7.53(5) −7.63(1) −8.48
Eg.s. (4He) −45.5(21.7) −28.6(4.8) −28.1(1.2) −23.75(28) −24.27(6) −28.30
rp (4He) 1.064(499) 1.389(174) 1.405(41) 1.563(9) 1.547(2) 1.462(6)
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FIG. 3. Predictions for the differential cross section and nucleon
Ay in elastic Nd scattering based on the NN potentials of Refs. [15,16]
for R = 1.0 fm without including the 3NF. Theoretical uncertainties
are estimated via Eqs. (5) and (6) for chiral order i = 2 and via
Eqs. (7) and (8) for i ! 3. The bands of increasing width show the
estimated theoretical uncertainty at N4LO (red), N3LO (blue), N2LO
(green), and NLO (yellow). The dotted (dashed) lines show the results
based on the CD Bonn NN potential [20] (CD Bonn NN potential in
combination with the Tucson–Melbourne 3NF [21]). For references
to proton-deuteron data (symbols), see Ref. [5].

only, while using Eqs. (5) and (6) amounts to overestimating
the actual error. The N3LO (N4LO) results for the 3H Eg.s. are
expected to be accurate at the level of ∼50 keV (∼10 keV)
for the regulator choices of R = 0.8, 0.9, and 1.0 fm. Note
that the size of the inferred 3NF contribution agrees well
with the uncertainty at NLO, which reflects the estimated
impact of the N2LO contributions to the Hamiltonian. This
is fully in line with expectations based on the Weinberg
power counting [1,2]. We further emphasize that the sizable
underbinding of the triton with the NN potentials at N3LO
and N4LO is not limited to the employed regulator choice of
R = 1.0 fm. We find Eg.s. = −7.47 . . . − 7.56 MeV (Eg.s. =
−7.48 . . . − 7.63 MeV) for the variation of the regulator in the
range R = 0.8 . . . 1.2 fm at N3LO (N4LO).

We now turn to Nd scattering observables, which are
calculated by solving the Faddeev equation in the partial-wave

FIG. 4. Predictions for the tensor analyzing powers Ayy and Axx

in elastic Nd scattering based on the NN potentials of Refs. [15,16]
for R = 1.0 fm without including the 3NF. For notations see Fig. 3.

basis. We take into account all partial waves up to the
total angular momentum jmax = 5 in two-nucleon subsystems.
Isospin-breaking effects are taken into account in the standard
way as described in Ref. [18]. Our predictions for the Nd
total cross section are visualized in Fig. 2, see also Table II.
Similar to the 3H Eg.s., one observes a significant discrepancy
between the theoretical predictions based on the NN forces
only and data, which provides clear evidence for missing 3NF
contributions. The size of the discrepancy agrees within 1.5
times the estimated size of N2LO corrections shown by the
NLO error bars. Interestingly, the discrepancy at the lowest
energy of 10 MeV is much smaller than the estimated size of
N2LO contributions. Given that the cross section at low energy
is governed by the S-wave spin-doublet and spin-quartet Nd
scattering lengths, this observation can be naturally explained.
Indeed, the spin-quartet scattering length is almost an order of
magnitude larger than that of the spin-doublet and much less
sensitive to the 3NF as a consequence of the Pauli principle.

Our predictions for Nd differential cross section and
analyzing powers Ay(N),Ayy , and Axx are shown in Figs. 3 and
4. At the lowest energy of 10 MeV, there is little apparent need
for 3NF effects except for Ay . Interestingly, the fine-tuning
nature of this observable is clearly reflected in large theoretical
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Contributions of individual topologies in 3H (nonlocal)

KH, Krebs, Epelbaum, Golak, Skibinski,
PRC 91, 044001 (2015)

• contributions of individual contributions depend sensitively on details

• N3LO contributions not suppressed compared to N2LO

• perturbativeness of 3NF strongly depends on NN interaction 
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PRELIMINARY

PRELIMINARY

PRELIMINARY

Contributions of individual topologies in 3H (semi-local)

• contributions of individual 
  topologies very similar for all
  cutoffs R at N3LO

• N3LO contributions significantly
   suppressed compared to N2LO

• 3NF behave perturbatively



Summary
• presently-used nuclear interactions show deficiencies for heavier nuclei

• remarkable agreement between different many-body methods for a given low-
resolutions Hamiltonian

• currently active efforts to develop improved NN interactions

• results for matter and nuclei depend sensitively on regularization scheme of 
NN and 3N interactions, upper density limit for nuclear matter calculations?

• power counting: contributions of N3LO 3NF topologies in 3H:
✦ not suppressed for non-local NN+3N interactions
✦ suppressed for semi-local NN+3N interactions

Outlook and open questions
• understanding of chiral power counting for different regularization schemes

• fitting of LECs in chiral EFT interactions

• explore novel NN+3N interactions for structure of medium-mass nuclei, 
heavy nuclei and nuclear matter and few-body reactions


