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The nuclear many-body problem

Nuclear theory: from nuclei to nuclear matter
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Build reliable methods with predictive power 

Probe the limits of the nuclear landscape 

Constrain the EOS of neutron star matter
The phase diagram of hadronic matter

Radioactive beam facilities access 
this region at the extremes
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The need for 3-body nuclear forces
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What can we predict?

5

Many-Body approach 
+ 

Chiral EFT

Saturation point  
& uncertainties

PNM equation of state Symmetry energy  
& slope parameter

Finite-T & estimate of 
liquid-gas transition
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PAIRING IN HIGH-DENSITY NEUTRON MATTER . . . PHYSICAL REVIEW C 94, 025802 (2016)
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FIG. 12. The same as Fig. 9 for the pairing gaps in the 3PF 2

channel. Note the logarithmic scale on the z axis.

nonlocal regulator affects the integrated momentum variable
and has a 3NF cutoff !3NF = 500 MeV [64]. Off-diagonal
momentum matrix elements are obtained with the prescription
introduced in Ref. [61].

Three-neutron forces affect our calculations at two different
levels. First, the effective pairing interaction itself is modified.
At the singlet pairing level, one expects a repulsive effect that
will reduce the gap [21,61]. For triplet pairing, chiral N2LO
forces produce attractive components that, in general, enhance
the gap [64]. These aspects become particularly clear at the
BCS level where, in our treatment, the only difference between
NN and NN + 3NF calculations are the effective interaction
themselves.
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FIG. 13. Pairing gaps at the Fermi surface as a function of Fermi
momentum in the 1S0 (a) and 3PF 2 (b) channels. Results for different
approximations are presented for the chiral N3LO Idaho NN force in
the BCS (dotted lined) and BCS + SRC approximation (light circles).
Results including 3NF (2N + 3NF) are given in a solid (bold circles)
line for the BCS (BCS + SRC) approximation. See text for details.

The situation is illustrated in Fig. 13. At the BCS level,
the Fermi-surface gap with NN forces only (dotted line) for
the singlet [panel (a)] and triplet [panel (b)] channels is
the same that has been presented in Figs. 8 and 10, respectively.
The solid lines, in contrast, are obtained including 3NFs within
the BCS approach. For the singlet, one finds a decrease in
the maximum gap of about 0.2 MeV and a narrower gap.
Gap closure occurs around kF ≈ 1.5 fm−1 when 3NFs are
considered, instead of 1.6 fm−1. For the triplet, in contrast, the
gap increases at all densities. The maximum gap, in this case,
goes from 0.77 MeV (NN only) to 1.21 MeV (NN + 3NF),
reflecting the attractive nature of 3NFs in this channel.

In addition to the pairing interaction, 3NFs affect our calcu-
lations via the the double-convolution denominators. Changes
in spectral functions from the self-consistent calculations will
induce variations in gaps within the SRC approximation.
We find that 3NFs modify quasiparticle energy peaks more
than they modify the spectral functions widths [64]. These
considerations are density dependent, as expected. At the low
densities relevant for singlet pairing, 3NFs are less important
and the difference between NN and NN + 3NF calculations

025802-13
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Saturation point according to different Hamiltonians
Carbone (in preparation)
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From microscopic… to macroscopic: why N2LOsat saturates
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…start seeing the big 
picture: the self-energy

3NF effects as density 
increases 
N2LOsat more repulsive

..the macroscopic picture: 
total energy more repulsive

Carbone (in preparation)
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Predictions for the Symmetry Energy and slope L
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Carbone (in preparation)
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Triton beta-decay is experimentally precisely known 
Constraints on the cD coupling

Cutoff dependence on the current

Visible effect on the prediction of 
the saturation point  
Energy and density range: 
E=~[-11;-21]MeV; r=~[0.13-0.20]fm-3

Three-Nucleon Low-Energy Constants from the Consistency of Interactions and Currents
in Chiral Effective Field Theory
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Institute for Nuclear Theory, University of Washington, Box 351550, Seattle, Washington 98195, USA

Sofia Quaglioni and Petr Navrátil
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The chiral low-energy constants cD and cE are constrained by means of accurate ab initio calculations

of the A ¼ 3 binding energies and, for the first time, of the triton ! decay. We demonstrate that these low-

energy observables allow a robust determination of the two undetermined constants, a result of the

surprising fact that the determination of cD depends weakly on the short-range correlations in the wave

functions. These two- plus three-nucleon interactions, originating in chiral effective field theory and

constrained by properties of the A ¼ 2 system and the present determination of cD and cE, are successful
in predicting properties of the A ¼ 3 and 4 systems.

DOI: 10.1103/PhysRevLett.103.102502 PACS numbers: 21.30."x, 21.45.Ff, 23.40."s, 27.10.+h

The fundamental connection between nuclear forces and
the underlying theory of quantum chromodynamics (QCD)
remains one of the greatest contemporary theoretical chal-
lenges, due to the nonperturbative character of QCD in the
low-energy regime relevant to nuclear phenomena.
However, the past two decades of theoretical developments
provide us with a bridge to overcome this obstacle, in the
form of chiral perturbation theory ("PT) [1]. The "PT
Lagrangian, constructed by integrating out degrees of free-
dom of the order of!" # 1 GeV and higher (nucleons and

pions are thus the only explicit degrees of freedom), is an
effective Lagrangian of QCD at low energies. As such, it
retains all conjectured symmetry principles, particularly
the approximate chiral symmetry, of the underlying theory.
Furthermore, it can be organized in terms of a perturbative
expansion in positive powers of Q=!" where Q is the

generic momentum in the nuclear process or the pion
mass [1]. Though the subject of an ongoing debate about
its validity [2,3], the naive extension of this expansion to
nonperturbative phenomena provides a practical interface
with existing many-body techniques, and clearly holds a
significant value for the study of the properties of QCD at
low energy and its chiral symmetry.

The chiral symmetry dictates the operator structure of
each term of the effective Lagrangian, whereas the cou-
pling constants (not fixed by the symmetry) carry all the
information on the integrated-out degrees of freedom. A
theoretical evaluation of these coefficients, or low-energy
constants (LECs), is equivalent to solving QCD at low
energy. Recent lattice QCD calculations have allowed a
theoretical estimate of LECs of single- and two-nucleon
diagrams [4], while LECs of diagrams involving more than
two nucleons are out of the reach of current computational
resources. Alternatively, the undetermined constants can
be constrained by low-energy experiments.

The strength of "PT is that the chiral expansion is used
to derive both nuclear potentials and currents from the
same Lagrangian. Therefore, the electroweak currents in
nuclei (which determine reaction rates in processes involv-
ing external probes) and the strong interaction dynamics
(#N scattering, the NN interaction, the NNN interaction,
etc.) are all based on the same theoretical grounds and
rooted in the low-energy limits of QCD. In particular, "PT
predicts, along with theNN interaction at the leading order
(LO), a three-nucleon (NNN) interaction at the next-to-
next-to-leading order or N2LO [5,6], and even a four-
nucleon force at the fourth order (N3LO) [7]. At the
same time, the LO nuclear current consists of (the stan-
dard) single-nucleon terms, while two-body currents, also
known as meson-exchange currents (MEC), make their
first appearance at N2LO [8]. Up to N3LO both the NNN
potential and the current are fully constrained by the
parameters defining the NN interaction, with the exception
of two ‘‘new’’ LECs, cD and cE. The latter, cE, appears
only in the potential as the strength of the NNN contact
term [see Fig. 1(a)]. On the other hand, cD manifests itself
both in the contact term part of the NN-#-N three-nucleon
interaction of Fig. 1(a) and in the two-nucleon contact
vertex with an external probe of the exchange currents
[see Fig. 1(b)].

cD cE cD
(a) (b)

FIG. 1. Contact and one-pion exchange plus contact
interaction (a), and contact MEC (b) terms of "PT.
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Understand new ways to fit the LECs
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Many-body methods comparison

Pure neutron matter

Remarkable agreement between 
several many-body methods and 

different Hamiltonians

Hebeler et al., Ann. Rev. Nucl. Part. Sci. 65, 457 (2015)
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Many-body perturbation theory
Self-consistent Green’s functions

Agreement up to 0.20 fm-3 with the use of 
different Hamiltonians 
Questionable validity of chiral EFT

Carbone, Rios, Polls, PRC  90, 054322 (2014)

Low-density neutron matter perturbative
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Pure neutron matter with 2N + 3N at N3LO
Improved 3NF matrix elements Hebeler et al. 2015  

Partial-wave based 3NF average Drischler 2014-2015 

Drischler, Carbone, Hebeler, Schwenk PRC94, 054307 (2016)
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Pure neutron matter

How perturbative is 
the potential: 
MBPT vs SCGF 
band shrinks

 N3LO 3NF shift in 
energy bands

many-body approximation uncertainty

chiral forces 
uncertainty
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Test the many-body convergence at full 2N+3N N3LO

EM N3LO500 EGM 450/500 EGM 450/700

understand the many-
body convergence 

test the chiral Hamiltonian 
convergence

0.16 fm-3
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NEUTRON MATTER FROM CHIRAL TWO- AND THREE- . . . PHYSICAL REVIEW C 94, 054307 (2016)

FIG. 2. The energy per particle at different orders of MBPT is shown, up to Hartree-Fock (EHF
tot /N ), second order (E(2)

tot /N ), and third order
(E(3)

tot /N ), respectively, in comparison to the energies obtained from the SCGF method (ESCGF/N ) at n0 (first row) and n0/2 (second row),
respectively. The N3LO NN potentials are given in each panel. Three-body effects are included at N2LO (blue) and at N3LO (red), respectively.
The dashed lines connecting the data points are in order to guide the eyes. The error bars are due to the ci and !3N variations. In this plot, the
third-order calculation does not include the additional many-body uncertainty (the light-blue band in Fig. 1).

T = 3,4 MeV in densities between 0.05 and 0.10 fm−3, and
have found no dependency on the extrapolation.

Combining the discussions on the size of the additional
many-body uncertainty and the comparison of MBPT vs.
SCGF we conclude from Fig. 1 that the perturbativeness
improves from EM 500 MeV to EGM 450/500 MeV to
EGM 450/700 MeV. It is remarkable that a third-order MBPT
calculation compares so well with the nonperturbative case
for these chiral NN potentials. We study the many-body
convergence as well as the effect of subleading 3N forces
in more details in the next section.

B. Many-body convergence

In Fig. 2 we address again the many-body convergence and
show order-by-order in MBPT the total energy per neutron at
n0 (first row) and n0/2 (second row), analogously to Fig. 1.
More specifically, we show the total energy in Hartree-Fock
approximation E

(HF)
tot /N (“HF”), second order (“2nd”), and

third order (“3rd”), E
(2)
tot /N and E

(3)
tot /N , respectively, in

comparison to the results obtained in the SCGF method,
ESCGF/N (“SCGF”). The uncertainties are obtained as in Fig. 1
through variations of the 3N parameters and the single-particle
energies. However, to study the many-body convergence the
third-order bands do not include here the additional many-body

uncertainty (the light-blue bands of Fig. 1). The blue (red) data
points correspond to N2LO (N3LO) 3N forces.

For all six panels in Fig. 2 we observe similar overall
patterns: comparing order-by-order to the SCGF method we
observe that the second order adds always too much attraction
which then is compensated by the third-order repulsion.
However, the specific behavior is different for EM 500 MeV
and the two EGM potentials. In the case of EM 500 MeV the
large third order overcompensates the second-order repulsion.
In contrast, the third-order contribution is much smaller and
less repulsive for the EGM potentials as can be seen in Fig. 2
(second and third columns). In particular, this is pronounced
in the calculations based on EGM 450/700 MeV, which agree
remarkably well with the SCGF result.

As already discussed in the description of Fig. 1, including
N3LO 3N forces has only a small repulsive effect on the
energies based on EM 500 MeV, whereas the effect on
the EGM potentials is larger but attractive. This behavior
can be traced back to NN -3N mixing terms that enter the
calculation when including 3N forces beyond the HF level.
We also note that the values of the low-energy constants
CS and CT , which enter N3LO 3N contributions, differ for
all three potentials. However, the many-body convergence is
not altered by including contributions from subleading 3N
interactions.

054307-5

NEUTRON MATTER FROM CHIRAL TWO- AND THREE- . . . PHYSICAL REVIEW C 94, 054307 (2016)

FIG. 2. The energy per particle at different orders of MBPT is shown, up to Hartree-Fock (EHF
tot /N ), second order (E(2)

tot /N ), and third order
(E(3)

tot /N ), respectively, in comparison to the energies obtained from the SCGF method (ESCGF/N ) at n0 (first row) and n0/2 (second row),
respectively. The N3LO NN potentials are given in each panel. Three-body effects are included at N2LO (blue) and at N3LO (red), respectively.
The dashed lines connecting the data points are in order to guide the eyes. The error bars are due to the ci and !3N variations. In this plot, the
third-order calculation does not include the additional many-body uncertainty (the light-blue band in Fig. 1).

T = 3,4 MeV in densities between 0.05 and 0.10 fm−3, and
have found no dependency on the extrapolation.

Combining the discussions on the size of the additional
many-body uncertainty and the comparison of MBPT vs.
SCGF we conclude from Fig. 1 that the perturbativeness
improves from EM 500 MeV to EGM 450/500 MeV to
EGM 450/700 MeV. It is remarkable that a third-order MBPT
calculation compares so well with the nonperturbative case
for these chiral NN potentials. We study the many-body
convergence as well as the effect of subleading 3N forces
in more details in the next section.

B. Many-body convergence

In Fig. 2 we address again the many-body convergence and
show order-by-order in MBPT the total energy per neutron at
n0 (first row) and n0/2 (second row), analogously to Fig. 1.
More specifically, we show the total energy in Hartree-Fock
approximation E

(HF)
tot /N (“HF”), second order (“2nd”), and

third order (“3rd”), E
(2)
tot /N and E

(3)
tot /N , respectively, in

comparison to the results obtained in the SCGF method,
ESCGF/N (“SCGF”). The uncertainties are obtained as in Fig. 1
through variations of the 3N parameters and the single-particle
energies. However, to study the many-body convergence the
third-order bands do not include here the additional many-body

uncertainty (the light-blue bands of Fig. 1). The blue (red) data
points correspond to N2LO (N3LO) 3N forces.

For all six panels in Fig. 2 we observe similar overall
patterns: comparing order-by-order to the SCGF method we
observe that the second order adds always too much attraction
which then is compensated by the third-order repulsion.
However, the specific behavior is different for EM 500 MeV
and the two EGM potentials. In the case of EM 500 MeV the
large third order overcompensates the second-order repulsion.
In contrast, the third-order contribution is much smaller and
less repulsive for the EGM potentials as can be seen in Fig. 2
(second and third columns). In particular, this is pronounced
in the calculations based on EGM 450/700 MeV, which agree
remarkably well with the SCGF result.

As already discussed in the description of Fig. 1, including
N3LO 3N forces has only a small repulsive effect on the
energies based on EM 500 MeV, whereas the effect on
the EGM potentials is larger but attractive. This behavior
can be traced back to NN -3N mixing terms that enter the
calculation when including 3N forces beyond the HF level.
We also note that the values of the low-energy constants
CS and CT , which enter N3LO 3N contributions, differ for
all three potentials. However, the many-body convergence is
not altered by including contributions from subleading 3N
interactions.

054307-5

many-body truncation 
attractive 2nd order 
repulsive 3rd order

How perturbative is the potential: smaller beyond of 3rd order

EM N3LO500 EGM 450/500 EGM 450/700

Drischler, Carbone, Hebeler, Schwenk PRC94, 054307 (2016)

Pure neutron matter

Arianna Carbone – Nuclear matter at zero and finite temperatures based on chiral forces – 6th December 2016

3N N2LO 
3N N3LO



The pairing gap in neutron matter 

13

Pure neutron matter
PAIRING IN HIGH-DENSITY NEUTRON MATTER . . . PHYSICAL REVIEW C 94, 025802 (2016)

0
2

4
6

8 1.4
1.6

1.8
2.0

2.2

10-3

10-2

10-1

100

P
ai

rin
g 

ga
p,

 ∆
 [M

eV
]

(c) N3LO

Momentum, k [fm -1]
k F

 [fm
-1 ]

P
ai

rin
g 

ga
p,

 ∆
 [M

eV
]

0
2

4
6

8 1.4
1.6

1.8
2.0

2.2

10-3

10-2

10-1

100

P
ai

rin
g 

ga
p,

 ∆
 [M

eV
]

(b) Av18

k F
 [fm

-1 ]

P
ai

rin
g 

ga
p,

 ∆
 [M

eV
]

0
2

4
6

8 1.4
1.6

1.8
2.0

2.2

10-3

10-2

10-1

100

P
ai

rin
g 

ga
p,

 ∆
 [M

eV
]

(a) CDBonn

k F
 [fm

-1 ]

P
ai

rin
g 

ga
p,

 ∆
 [M

eV
]

FIG. 12. The same as Fig. 9 for the pairing gaps in the 3PF 2

channel. Note the logarithmic scale on the z axis.

nonlocal regulator affects the integrated momentum variable
and has a 3NF cutoff !3NF = 500 MeV [64]. Off-diagonal
momentum matrix elements are obtained with the prescription
introduced in Ref. [61].

Three-neutron forces affect our calculations at two different
levels. First, the effective pairing interaction itself is modified.
At the singlet pairing level, one expects a repulsive effect that
will reduce the gap [21,61]. For triplet pairing, chiral N2LO
forces produce attractive components that, in general, enhance
the gap [64]. These aspects become particularly clear at the
BCS level where, in our treatment, the only difference between
NN and NN + 3NF calculations are the effective interaction
themselves.
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FIG. 13. Pairing gaps at the Fermi surface as a function of Fermi
momentum in the 1S0 (a) and 3PF 2 (b) channels. Results for different
approximations are presented for the chiral N3LO Idaho NN force in
the BCS (dotted lined) and BCS + SRC approximation (light circles).
Results including 3NF (2N + 3NF) are given in a solid (bold circles)
line for the BCS (BCS + SRC) approximation. See text for details.

The situation is illustrated in Fig. 13. At the BCS level,
the Fermi-surface gap with NN forces only (dotted line) for
the singlet [panel (a)] and triplet [panel (b)] channels is
the same that has been presented in Figs. 8 and 10, respectively.
The solid lines, in contrast, are obtained including 3NFs within
the BCS approach. For the singlet, one finds a decrease in
the maximum gap of about 0.2 MeV and a narrower gap.
Gap closure occurs around kF ≈ 1.5 fm−1 when 3NFs are
considered, instead of 1.6 fm−1. For the triplet, in contrast, the
gap increases at all densities. The maximum gap, in this case,
goes from 0.77 MeV (NN only) to 1.21 MeV (NN + 3NF),
reflecting the attractive nature of 3NFs in this channel.

In addition to the pairing interaction, 3NFs affect our calcu-
lations via the the double-convolution denominators. Changes
in spectral functions from the self-consistent calculations will
induce variations in gaps within the SRC approximation.
We find that 3NFs modify quasiparticle energy peaks more
than they modify the spectral functions widths [64]. These
considerations are density dependent, as expected. At the low
densities relevant for singlet pairing, 3NFs are less important
and the difference between NN and NN + 3NF calculations
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Free energy and pressure at varying temperature
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Saturation Energy vs Critical Temperature
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Interesting linear correlation between saturation energy and critical temperature
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FIG. 4: The coexistence line for 5 Hamiltonians

error associated to the chiral Hamiltonian, as presented
in Fig. 1. On one side, one can see that the hamiltonian
which gave the more attractive free-energy and pressure,
leads to a coexistence line which covers a bigger area in
the phase diagram plot. On the other hand, the poten-
tial which resulted the more repulsive, in terms of free-
energy and pressure, leads to the smallest region in the
T-⇢ plane. These two limits are provided respectively
by the N3LO

SRG�1

, the most softened 2N potential, and
the N2LO

opt

, the most repulsive one. All other poten-
tials give a coexistence line which lies in between these
two limits. It is interesting to see that the N3LO

SRG�3

and N2LO
sat

coexistence lines cross, as it was also ob-
served in the pressures plotted in Fig. 1. For one tem-
perature, this crossing leads to higher pressures for the
N2LO

sat

with respect to the N3LO
SRG�3

potential, and
consequently a lower density in the liquid phase of the
coexistence line is encountered for N2LO

sat

with respect
to the N3LO

SRG�3

for a specific T. The spread in the es-
timation of the critical temperature provides a feeling of
the error associated with the chiral EFT Hamiltonians.

In Fig. 5 we present an estimation of the error asso-
ciated to the many-body approximation. As presented
in Fig. 2, this is obtained by comparing calculations ob-
tained within the SCGF to the ones obtained with the
BHF approach. As previously stated, the BHF approach
is not thermodynamically consistent, consequently the
values of the chemical potential obtained microscopically
do not correspond to the macroscopic thermodynamic
quantity. One overcomes this by obtaining the chemical
potential and the pressure from the free-energy density
using a suitable parametrization to overcome numerical
errors in the derivatives. Once the values for pressure and
chemical potentials are encountered, one follows with the
same procedure already discussed to obtain the phase di-
agram of symmetric nuclear matter. Fig. 5 shows how the
calculation with the BHF provides a shift of the entire
band, obtained with the five Hamiltonians as in Fig. 4, to-
wards higher temperatures. This is because, as observed
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FIG. 5: Many-body approximation comparison, SCGF
vs BHF

TABLE II: Table of critical density ⇢c and temperature
Tc, saturation density ⇢

0

and energy E
0

/N , and
e↵ective mass at saturation m⇤/m, for each of the 5

Hamiltonian considered in Table I, and plotted in Fig. 6
using the SCGF method.

SCGF ⇢c [fm�3] Tc [MeV] ⇢
0

[fm�3] E0
N [MeV] m⇤

m
N3LO

SRG�1

0.05 14.8 0.19 -16.3 0.85
N3LO

SRG�2

0.05 14.2 0.18 -15.7 0.81
N3LO

SRG�3

0.04 12.4 0.15 -13.7 0.90
NNLO

opt

0.04 9.4 0.12 -9.9 0.90
NNLO

sat

0.04 13.1 0.16 -14.6 0.90

in Fig. 2, all results for free-energy and pressure resulted
more attractive with the BHF, and this in turn provides
higher critical temperatures. This error provides an es-
timate of the importance of the hole-hole e↵ect in the
in-medium propagation of states.
It is interesting to see that a linear relation is encoun-

tered for the saturation energy at T=0 with respect to
the critical temperature obtained for each di↵erent chiral
Hamiltonian of Table I. This is shown in Fig. 6, where
the saturation energies are taken from Ref.[]. This is a
somewhat intuitive relation which could have been ex-
tracted by looking at Fig. of Ref.[] and Fig. 4. In fact
one sees that the more attractive the saturation energy,
the higher the critical temperature.

IV. CONLCUSIONS

• summary of things presented in the paper

• considerations on findings presented in the paper

• possible outlooks of these calculations
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Thermal effects for astrophysical applications
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FIG. 12. The same as Fig. 9 for the pairing gaps in the 3PF 2

channel. Note the logarithmic scale on the z axis.

nonlocal regulator affects the integrated momentum variable
and has a 3NF cutoff !3NF = 500 MeV [64]. Off-diagonal
momentum matrix elements are obtained with the prescription
introduced in Ref. [61].

Three-neutron forces affect our calculations at two different
levels. First, the effective pairing interaction itself is modified.
At the singlet pairing level, one expects a repulsive effect that
will reduce the gap [21,61]. For triplet pairing, chiral N2LO
forces produce attractive components that, in general, enhance
the gap [64]. These aspects become particularly clear at the
BCS level where, in our treatment, the only difference between
NN and NN + 3NF calculations are the effective interaction
themselves.
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FIG. 13. Pairing gaps at the Fermi surface as a function of Fermi
momentum in the 1S0 (a) and 3PF 2 (b) channels. Results for different
approximations are presented for the chiral N3LO Idaho NN force in
the BCS (dotted lined) and BCS + SRC approximation (light circles).
Results including 3NF (2N + 3NF) are given in a solid (bold circles)
line for the BCS (BCS + SRC) approximation. See text for details.

The situation is illustrated in Fig. 13. At the BCS level,
the Fermi-surface gap with NN forces only (dotted line) for
the singlet [panel (a)] and triplet [panel (b)] channels is
the same that has been presented in Figs. 8 and 10, respectively.
The solid lines, in contrast, are obtained including 3NFs within
the BCS approach. For the singlet, one finds a decrease in
the maximum gap of about 0.2 MeV and a narrower gap.
Gap closure occurs around kF ≈ 1.5 fm−1 when 3NFs are
considered, instead of 1.6 fm−1. For the triplet, in contrast, the
gap increases at all densities. The maximum gap, in this case,
goes from 0.77 MeV (NN only) to 1.21 MeV (NN + 3NF),
reflecting the attractive nature of 3NFs in this channel.

In addition to the pairing interaction, 3NFs affect our calcu-
lations via the the double-convolution denominators. Changes
in spectral functions from the self-consistent calculations will
induce variations in gaps within the SRC approximation.
We find that 3NFs modify quasiparticle energy peaks more
than they modify the spectral functions widths [64]. These
considerations are density dependent, as expected. At the low
densities relevant for singlet pairing, 3NFs are less important
and the difference between NN and NN + 3NF calculations
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FIG. 12. The same as Fig. 9 for the pairing gaps in the 3PF 2

channel. Note the logarithmic scale on the z axis.

nonlocal regulator affects the integrated momentum variable
and has a 3NF cutoff !3NF = 500 MeV [64]. Off-diagonal
momentum matrix elements are obtained with the prescription
introduced in Ref. [61].

Three-neutron forces affect our calculations at two different
levels. First, the effective pairing interaction itself is modified.
At the singlet pairing level, one expects a repulsive effect that
will reduce the gap [21,61]. For triplet pairing, chiral N2LO
forces produce attractive components that, in general, enhance
the gap [64]. These aspects become particularly clear at the
BCS level where, in our treatment, the only difference between
NN and NN + 3NF calculations are the effective interaction
themselves.
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FIG. 13. Pairing gaps at the Fermi surface as a function of Fermi
momentum in the 1S0 (a) and 3PF 2 (b) channels. Results for different
approximations are presented for the chiral N3LO Idaho NN force in
the BCS (dotted lined) and BCS + SRC approximation (light circles).
Results including 3NF (2N + 3NF) are given in a solid (bold circles)
line for the BCS (BCS + SRC) approximation. See text for details.

The situation is illustrated in Fig. 13. At the BCS level,
the Fermi-surface gap with NN forces only (dotted line) for
the singlet [panel (a)] and triplet [panel (b)] channels is
the same that has been presented in Figs. 8 and 10, respectively.
The solid lines, in contrast, are obtained including 3NFs within
the BCS approach. For the singlet, one finds a decrease in
the maximum gap of about 0.2 MeV and a narrower gap.
Gap closure occurs around kF ≈ 1.5 fm−1 when 3NFs are
considered, instead of 1.6 fm−1. For the triplet, in contrast, the
gap increases at all densities. The maximum gap, in this case,
goes from 0.77 MeV (NN only) to 1.21 MeV (NN + 3NF),
reflecting the attractive nature of 3NFs in this channel.

In addition to the pairing interaction, 3NFs affect our calcu-
lations via the the double-convolution denominators. Changes
in spectral functions from the self-consistent calculations will
induce variations in gaps within the SRC approximation.
We find that 3NFs modify quasiparticle energy peaks more
than they modify the spectral functions widths [64]. These
considerations are density dependent, as expected. At the low
densities relevant for singlet pairing, 3NFs are less important
and the difference between NN and NN + 3NF calculations
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FIG. 12. The same as Fig. 9 for the pairing gaps in the 3PF 2

channel. Note the logarithmic scale on the z axis.

nonlocal regulator affects the integrated momentum variable
and has a 3NF cutoff !3NF = 500 MeV [64]. Off-diagonal
momentum matrix elements are obtained with the prescription
introduced in Ref. [61].

Three-neutron forces affect our calculations at two different
levels. First, the effective pairing interaction itself is modified.
At the singlet pairing level, one expects a repulsive effect that
will reduce the gap [21,61]. For triplet pairing, chiral N2LO
forces produce attractive components that, in general, enhance
the gap [64]. These aspects become particularly clear at the
BCS level where, in our treatment, the only difference between
NN and NN + 3NF calculations are the effective interaction
themselves.
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FIG. 13. Pairing gaps at the Fermi surface as a function of Fermi
momentum in the 1S0 (a) and 3PF 2 (b) channels. Results for different
approximations are presented for the chiral N3LO Idaho NN force in
the BCS (dotted lined) and BCS + SRC approximation (light circles).
Results including 3NF (2N + 3NF) are given in a solid (bold circles)
line for the BCS (BCS + SRC) approximation. See text for details.

The situation is illustrated in Fig. 13. At the BCS level,
the Fermi-surface gap with NN forces only (dotted line) for
the singlet [panel (a)] and triplet [panel (b)] channels is
the same that has been presented in Figs. 8 and 10, respectively.
The solid lines, in contrast, are obtained including 3NFs within
the BCS approach. For the singlet, one finds a decrease in
the maximum gap of about 0.2 MeV and a narrower gap.
Gap closure occurs around kF ≈ 1.5 fm−1 when 3NFs are
considered, instead of 1.6 fm−1. For the triplet, in contrast, the
gap increases at all densities. The maximum gap, in this case,
goes from 0.77 MeV (NN only) to 1.21 MeV (NN + 3NF),
reflecting the attractive nature of 3NFs in this channel.

In addition to the pairing interaction, 3NFs affect our calcu-
lations via the the double-convolution denominators. Changes
in spectral functions from the self-consistent calculations will
induce variations in gaps within the SRC approximation.
We find that 3NFs modify quasiparticle energy peaks more
than they modify the spectral functions widths [64]. These
considerations are density dependent, as expected. At the low
densities relevant for singlet pairing, 3NFs are less important
and the difference between NN and NN + 3NF calculations
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