

Nuclear matter at zero and finite temperatures based on chiral forces

Arianna Carbone - TU Darmstadt TH Institute "Neutron Stars" - CERN - 6 December 2016

Nuclear theory: from nuclei to nuclear matter

The nuclear many-body problem

- Build reliable methods with predictive power
- Probe the limits of the nuclear landscape
- Constrain the EOS of neutron star matter

The phase diagram of hadronic matter

Radioactive beam facilities access this region at the extremes

Solving the nuclear many-body problem

Self-consistent Green's functions

Breakthrough: full formal extension to consistently include 3BFs

Carbone, Cipollone, Barbieri, Rios, Polls, PRC **88**, 054326 (2013)

Chiral Hamiltonian

nucleons and pions

theoretical uncertainties

The need for 3-body nuclear forces

3NF

SNM

Carbone, Rios, Polls, PRC 88, 044302 (2013) Carbone, Rios, Polls, PRC 90, 054322 (2014)

OPE

contact

TPE

What can we predict?

Finite-T & estimate of liquid-gas transition

PNM equation of state

Symmetry energy & slope parameter

Pairing gap in PNM

Symmetric nuclear matter

Saturation point according to different Hamiltonians

Some low-energy constants are fit to few-body properties

- N3LO EM500SRG, 3NFs fit to ³H BEs, ⁴He r_m
- N2LOopt (POUNDERS), 3NFs fit to ³H, ³He BEs
- N2LOsat (POUNDERS), NN+3N fit to ³H,^{3,4}He,
 ¹⁴C, ¹⁶O BEs,r_{ch}

2N N3LO EM500 (SRG L=2.0fm⁻¹)+ 3N N2LO (L=2.0fm⁻¹)

2N N3LO EM500 (SRG L=2.0fm⁻¹)+ 3N N2LO (L=2.5m⁻¹)

2N N3LO EM500 (SRG L=2.8fm⁻¹)+ 3N N2LO (L=2.0fm⁻¹)

2N N2LOsat + 3N N2LO

2N N2LOopt + 3N N2LO

N2LOsat (NN+3N): predicts saturation density

From microscopic... to macroscopic: why N2LOsat saturates

The microscopic picture: momentum distribution

N2LOsat high-momentum states

..the macroscopic picture: total energy more repulsive

- 3NF effects as density increases
- N2LOsat more repulsive

Carbone (in preparation)

...start seeing the big

Predictions for the Symmetry Energy and slope L

	SRG1	SRG2	SAT
Sv (MeV)	31.6	30.6	25.8
L (MeV)	49.3	48.7	37.4

N2LOsat small S/A and L

N2LOsat PNM energy too attractive

Necessity to check all infinite matter properties to judge the goodness of a potential

Carbone (in preparation)

Uncertainties due to fitting procedures

- Triton beta-decay is experimentally precisely known
- Constraints on the cD coupling

• Energy and density range: $E=\sim[-11;-21]$ MeV; $r=\sim[0.13-0.20]$ fm⁻³

Understand new ways to fit the LECs

Cutoff dependence on the current

Klos, Carbone, Hebeler, Menéndez, Schwenk (in preparation)

Many-body methods comparison

Remarkable agreement between several many-body methods and different Hamiltonians

Hebeler et al., Ann. Rev. Nucl. Part. Sci. 65, 457 (2015)

Low-density neutron matter perturbative

- Agreement up to 0.20 fm⁻³ with the use of different Hamiltonians
- Questionable validity of chiral EFT

Pure neutron matter

Pure neutron matter with 2N + 3N at N3LO

Improved 3NF matrix elements Hebeler et al. 2015 Partial-wave based 3NF average Drischler 2014-2015

many-body approximation uncertainty

Pure neutron matter

Test the many-body convergence at full 2N+3N N3LO

EM N3L0500

EGM 450/500

EGM 450/700

 test the chiral Hamiltonian convergence

How perturbative is the potential: smaller beyond of 3rd order

Drischler, Carbone, Hebeler, Schwenk PRC94, 054307 (2016)

The pairing gap in neutron matter

BCS NN SRC NN

BCS NN+3NF SRC NN+3NF

2.0

2.5

¹S₀

(a)

³PF₂

(b)

2.5

0.5

0

Beyond BCS: correlations strongly reduce gap

- effect of 3NFs:
 - 1S0: weaker, attractive, lower densities
 - 3PF2: stronger, repulsive, higher densities

Pairing gap, △ [MeV] .0 0.01

0.0

0.5

Pairing gap, ∆ [MeV] 2 1.5

- 1S0 max 2.3 MeV, closes at ~1.5 fm-1
- 3NFs repulsive, pairing smaller

- No closure for 3PF2 gap with 3N
- limits of applicability of chiral forces

Ding et al., PRC94, 025802 (2016)

Drischler et al., arXiv:1610.05213v1 (2016)

1.0

1.5

Fermi momentum, k_F [fm⁻¹]

Free energy and pressure at varying temperature

2N N3LO EM500 (SRG L=2.0fm⁻¹)+ 3N N2LO (L=2.0fm⁻¹) 2N N3LO EM500 (SRG L=2.0fm⁻¹)+ 3N N2LO (L=2.5m⁻¹)

2N N3LO EM500 (SRG L=2.8fm⁻¹)+ 3N N2LO (L=2.0fm⁻¹)

2N N2LOsat + 3N N2LO

2N N2LOopt + 3N N2LO

- similar behaviour to zero T energy
- N2LOopt most repulsive
- less difference between other potentials
- liquid-gas phase transition

Carbone, Rios, Polls (in preparation)

increasing temperature

The liquid-gas phase transition and critical point

NN N2LOsat+3N N2LO

Carbone, Rios, Polls (in preparation)

- Coexistence line: equilibrium between a gas and a liquid phase
- Predicted critical temperature ~ T=~[13-15] MeV (experimental ~[15-20] MeV)
- Previous consistent results from Wellenhofer et al., PRC 89,064009 (2014)

Saturation Energy vs Critical Temperature

SCGF	$\rho_c [\mathrm{fm}^{-3}]$	$T_c [MeV]$	$\rho_0 [\mathrm{fm}^{-3}]$	$\frac{E_0}{N}$ [MeV]	$\frac{m^*}{m}$
$\overline{\mathrm{N3LO}_{\mathrm{SRG-1}}}$	0.05	14.8	0.19	-16.3	0.85
$N3LO_{SRG-2}$	0.05	14.2	0.18	-15.7	0.81
$N3LO_{SRG-3}$	0.04	12.4	0.15	-13.7	0.90
$\mathrm{NNLO}_{\mathrm{opt}}$	0.04	9.4	0.12	-9.9	0.90
$NNLO_{sat}$	0.04	13.1	0.16	-14.6	0.90

Carbone, Rios, Polls (in preparation)

Interesting linear correlation between saturation energy and critical temperature

Thermal effects for astrophysical applications

Pressure calculated as: Pcold+Pthermal

$$P_{\rm th} = (\Gamma_{\rm th} - 1)\rho E_{\rm th}$$

Thermal index considered constant

- Pth decreases after certain density
- Eth decreases monotonically
- Index increases then decreases after saturation density
- dependence on the effective mass derivative

What can we predict?

Density, ρ [fm⁻³]

0,24

08 0,16 0,2 Density, ρ [fm⁻³]

Summary and Impact of results

Saturation point & uncertainties

Nuclear matter reliably predicted based on chiral EFT

Thermal effects in the EOS

Influence supernova simulations and the GW signal

Finite-T & estimate of liquid-gas transition

Understand the finite-T EOS for asymmetric matter

Many-Body theory

Chiral EFT

PNM equation of state

PNM EOS from ab-initio can constrain energy density functionals

Symmetry energy & slope parameter

Fundamental quantities to understand neutron-rich environments

Pairing gap in PNM

Explain rapid cooling in pulsars

Summary and Impact of results

