New paths to probing the nuclear equation of state via multimessenger signals from compact binary mergers involving NSs

Paschalidis, CERN, December 6, 2016

SUMMARY

- Black hole neutron star (BHNS) and neutron star- neutron star (NSNS) binaries are viable short gamma-ray burst (sGRB) progenitors
- Even one BHNS-generated gravitational wave (GW) signal coincident with a sGRB could potentially rule out a large number of (cold) nuclear equations of state (EOS) for M_{NS} < 2M_{sun}
- NSNS mergers form hypermassive NSs that generically undergo a one-arm (m=1) spiral instability; instability → signal!
- GWs generated by the m=1 instability can constrain the finite-temperature nuclear EOS for M_{NS} > 2M_{sun}
- Numerical relativity is crucial for GW science and constraining the NS EOS

Gravitational waves exist! GW150914

Gravitational waves exist! GW150914

• GW150914:

- Marked the birth of gravitational wave astronomy
- Confirmed general relativity (GR) in the dynamical, strong-field regime
- Best evidence for the existence of Bhs and binary BHBHs
- Numerical relativity is crucial for GW science
- Surprises await (LIGO was thought to be a NSNS detector)

Gravitational waves exist! GW150914

• GW150914:

- Marked the birth of gravitational wave astronomy
- Confirmed general relativity (GR) in the dynamical, strong-field regime
- Best evidence for the existence of Bhs and binary BHBHs
- Numerical relativity is crucial for GW science
- Surprises await (LIGO was thought to be a NSNS detector)
- In the next few years aLIGO/Virgo will routinely detect BHNS and NSNS
- BHNS and NSNS have are likely to be accompanied by a wealth of electromagnetic (EM) signals countepart to the GWs, such as kilonovae, short gamma-ray bursts etc. (see also Luciano's talks)
- Coincident detection of GW and EM signals will mark the onset of multimessenger astronomy

BHNS and NSNS binaries are viable sGRB progenitors

- Flashes of gamma rays of extra-galactic origin
- Instruments: BATSE, Swift, HETE-2, Fermi, Hubble, Liverpool & Faulkes...
- Timescales: $T_{90} \le 2s$; $< T_{90} > = 0.2s$;
- Gamma ray luminosities: 10⁵⁰ 10⁵² erg/s (10erg = 1 joule)
- Host galaxies: spirals & gas depleted ellipticals → (old stars) (Berger 2013)
- Popular model: relativistic jet (fireball); Γ ≥ 100 (Piran 2004)
- Plausible engine: BH + accretion disk (with twin relativistic jets)

- Flashes of gamma rays of extra-galactic origin
- Instruments: BATSE, Swift, HETE-2, Fermi, Hubble, Liverpool & Faulkes...
- Timescales: T₉₀ ≤ 2s; <T₉₀ > = 0.2s;
- Gamma ray luminosities: 10⁵⁰ 10⁵² erg/s (10erg = 1 joule)
- Host galaxies: spirals & gas depleted ellipticals → (old stars) (Berger 2013)
- Popular model: relativistic jet (fireball); Γ ≥ 100 (Piran 2004)
- Plausible engine: BH + accretion disk (with twin relativistic jets)
- Progenitor: NSNS? Eichler et al. 1989; BHNS? Paczynski 1991

- Flashes of gamma rays of extra-galactic origin
- Instruments: BATSE, Swift, HETE-2, Fermi, Hubble, Liverpool & Faulkes...
- Timescales: T₉₀ ≤ 2s; <T₉₀ > = 0.2s;
- Gamma ray luminosities: 10^{50} 10^{52} erg/s (10erg = 1 joule)
- Host galaxies: spirals & gas depleted ellipticals → (old stars) (Berger 2013)
- Popular model: relativistic jet (fireball); Γ ≥ 100 (Piran 2004)
- Plausible engine: BH + accretion disk (with twin relativistic jets)
- Progenitor: NSNS? Eichler et al. 1989; BHNS? Paczynski 1991
- Jet launching mechanism: magnetic fields or neutrinos

- Flashes of gamma rays of extra-galactic origin
- Instruments: BATSE, Swift, HETE-2, Fermi, Hubble, Liverpool & Faulkes...
- Timescales: T₉₀ ≤ 2s; <T₉₀ > = 0.2s;
- Gamma ray luminosities: 10^{50} 10^{52} erg/s (10erg = 1 joule)
- Host galaxies: spirals & gas depleted ellipticals → (old stars) (Berger 2013)
- Popular model: relativistic jet (fireball); Γ ≥ 100 (Piran 2004)
- Plausible engine: BH + accretion disk (with twin relativistic jets)
- Progenitor: NSNS? Eichler et al. 1989; BHNS? Paczynski 1991
- Jet launching mechanism: magnetic fields or neutrinos

Motivation for simulating BH-NS and NS-NS mergers as sGRB engines

- Engine behind short-hard Gamma Ray Bursts (sGRBs) is not known!
- NSNS and BHNS mergers: favored progenitors for sGRBs
- But,
- we do not know how these mergers may power sGRBs
- it has never been shown theoretically that mergers of compact binaries can launch highly relativistic jets (until recently no jets at all)!
- Through a complete computational/theoretical model of sGRB engines →
 Infer the progenitor parameters from sGRB → crosscheck with GWs

Motivation for simulating BH-NS and NS-NS mergers as sGRB engines

The theoretical challenge:

Demonstrate from first principles that BH-NS/NS-NS mergers can launch jets (similar to core collapse SN).

Motivation for simulating BH-NS and NS-NS mergers as sGRB engines

The theoretical challenge:

Demonstrate from first principles that BH-NS/NS-NS mergers can launch jets (similar to core collapse SN).

Simulations in full non-linear general relativity (GR), necessary to capture the dynamical inspiral, merger, disk formation and accretion onto the BH and to predict the gravitational wave signature → multimessenger astronomy!

 MHD studies in full GR find with initial dipole magnetic fields confined to the NS interiors:

Rezzolla et al. 2011

Kiuchi et al. 2015

Dionysopoulou & Rezzolla 2016

Kawamura et al. 2016

- Ruiz, Lang, Paschalidis, Shapiro, Ap. J. Lett. 824 (2016)
- Perform simulations with magnetized NSNS at reasonably high resolutions
- Initial data same as in Rezzolla et al (2011):
- Initial B field:
 - dipolar (interior + exterior), and interior only
 - Stronger than Rezzolla et al (2011), but still dynamically weak (320≤P_{gas/Pmag})
 - Strength motivated by expectations of post-merger B-field amplification due to KHI and MRI → ~ 10^{15.3-16} G (Price & Rosswog 2006, Zrake & MacFadyen 2013, Kiuchi et al. 2015)

NSNS mergers → incipient jets

Paschalidis, CERN, December 6, 2016

NSNS mergers → incipient jets

t/M = 665

Previous works with purely interior dipole magnetic fields (BH spin // L_{obr}):

- Chawla, Anderson, Besselman et al. (2010) → No jet
- Etienne, Liu, Paschalidis, Shapiro (2012) → No jet
- Etienne, Paschalidis, Shapiro (2012) → No jet
- Kiuchi, Sekiguchi, Kyotoku, Shibata, Taniguchi, Wada (2014) → No jet

BH-NS mergers → No jets?

An incipient jet emerges

Paschalidis, Ruiz, Shapiro Ap. J. Lett. 806 (2015)

An incipient jet emerges

- $\frac{B^2}{8\pi\rho c^2}$ ~ 100 ~ terminal Lorentz factor (Vlahakis & Konigl 2003)
- Disk lifetime: $t_{disk} \sim \frac{M_{disk}}{\dot{M}} \sim O(0.1\,s)$ consistent with short sGRB <T₉₀>
- Outgoing EM luminosity: $L_{EM} \sim 10^{51} \, erg/s$ ~ consistent with typical sGRB

- BHNS and NSNS mergers are viable sGRB engines!
- Delay time between peak GW amplitude and jet launching > 50 ms

Coincident detection of BHNS-generated GW signal and a sGRB can rule out a large number of (cold) nuclear EOS for $M_{NS} < 2M_{sun}$

Why is it difficult to create an accretion disk following merger of a quasicircular BH-NS?

Why is it difficult to create an accretion disk following merger of a quasicircular BH-NS?

 To have an appreciable disk, the NS must be tidally disrupted outside the (effective) innermost circular orbit (ISCO)

- Key parameters determining the interplay between ISCO and tidal disruption radius:
- q=M_{BH}/M_{NS} and NS compaction, C=GM_{NS}/R_{NS}c² → tidal disruption radius

- Key parameters determining the interplay between ISCO and tidal disruption radius:
- q=M_{BH}/M_{NS} and NS compaction, C=GM_{NS}/R_{NS}c² → tidal disruption radius

$$a_{tidal} = a_{g,NS} \Rightarrow r_{tidal} = 2\left(\frac{q}{10}\right)^{-2/3} \left(\frac{C}{0.2}\right)^{-1} r_{g,BH}, \qquad r_{g,BH} = \frac{GM_{BH}}{c^2}$$

- Key parameters determining the interplay between ISCO and tidal disruption radius:
- q=M_{BH}/M_{NS} and NS compaction, C=GM_{NS}/R_{NS}c² → tidal disruption radius

$$a_{tidal} = a_{g,NS} \Rightarrow r_{tidal} = 2\left(\frac{q}{10}\right)^{-2/3} \left(\frac{C}{0.2}\right)^{-1} r_{g,BH}, \qquad r_{g,BH} = \frac{GM_{BH}}{c^2}$$

BH spin \rightarrow ISCO $r_{g,BH} \le r_{ISCO} \le 6 r_{g,BH}$

- Key parameters determining the interplay between ISCO and tidal disruption radius:
- q=M_{BH}/M_{NS} and NS compaction, C=GM_{NS}/R_{NS}c² → tidal disruption radius

$$a_{tidal} = a_{g,NS} \Rightarrow r_{tidal} = 2\left(\frac{q}{10}\right)^{-2/3} \left(\frac{C}{0.2}\right)^{-1} r_{g,BH}, \qquad r_{g,BH} = \frac{GM_{BH}}{c^2}$$

- BH spin \rightarrow ISCO $r_{g,BH} \le r_{ISCO} \le 6 r_{g,BH}$
- For a given BH spin and mass ratio, there exists a critical compaction, such that following NS disruption no mass is left outside the BH to form a disk.

- Let us assume that we have a BHNS GW signal and an associated sGRB
- The inspiral GW signal will provide the NS mass, the BH mass and spin

- Let us assume that we have a BHNS GW signal and an associated sGRB
- The inspiral GW signal will provide the NS mass, the BH mass and spin
- Numerical relativity hydrodynamic simulations using the inferred binary parameters (plus their uncertainties) can be run for all plausible nuclear EOSs to determine which EOSs result in a disk-less BH remnant.
- EOSs forming such a remnant are ruled out by the existence of a sGRB!

- Let us assume that we have a BHNS GW signal and an associated sGRB
- The inspiral GW signal will provide the NS mass, the BH mass and spin
- Numerical relativity <u>hydrodynamic</u> simulations using the inferred binary parameters (plus their uncertainties) can be run for all plausible nuclear EOSs to determine which EOSs result in a <u>disk-less</u> BH remnant.
- EOSs forming such a remnant are ruled out by the existence of a sGRB!
- Equivalently, a large No. of numerical relativity hydrodynamic simulations adopting plausible EOSs can be run a priori to determine the critical compaction for a disk-less BH remnant for given binary parameters.

 Foucart (2012) compiled the results from many numerical relativity BHNS simulations and derived a fitting formula for disk mass predictions

$$\frac{M_{disk}}{M_{NS}} = 0.415 \, q^{1/3} (1 - 2C) - 0.148 \, qC \frac{R_{ISCO}}{M_{BH}}$$

• Critical compaction for $M_{disk} = 0$

$$C_{NS,crit} = (2 + 2.14 q^{2/3} \frac{R_{ISCO}}{M_{BH}})^{-1}$$

 Foucart (2012) compiled the results from many numerical relativity BHNS simulations and derived a fitting formula for disk mass predictions

$$\frac{M_{disk}}{M_{NS}} = 0.415 \, q^{1/3} (1 - 2C) - 0.148 \, qC \frac{R_{ISCO}}{M_{BH}}$$

• Critical compaction for $M_{disk} = 0$

$$C_{NS,crit} = (2+2.14 q^{2/3} \frac{R_{ISCO}}{M_{BH}})^{-1}$$

Small q and large BH spin (small R_{ISCO}) increase the C_{NS.crit}

Advantages:

- Practically model independent
- Only two assumptions: I) GR, II) No disk → no sGRB
- Orbital parameters will be known from early inspiral no need for finite size effects
- Pure hydrodynamic simulations suffice: no need for complex physics, such as magnetic fields and neutrino transport

Disadvantage:

if true EOS is soft (small NS radii), detection of a simultaneous
 sGRB + GW BHNS signal may never be realized

Advantages:

- Practically model independent
- Only two assumptions: I) GR, II) No disk → no sGRB
- Orbital parameters will be known from early inspiral no need for finite size effects
- Pure hydrodynamic simulations suffice: no need for complex physics, such as magnetic fields and neutrino transport

Disadvantage:

- if true EOS is soft (small NS radii), detection of a simultaneous
 sGRB + GW BHNS signal may never be realized
- Pannarale & Ohm (2014) proposed a similar method, but assuming a finite, non-zero M_{thres} = 0.03M_{sun} for no sGRB → model dependent

NSNS mergers form hypermassive NSs that generically undergo a one-arm (m=1) instability

GWs generated by the m=1 instability can constrain the finite-temperature nuclear EOS for $M_{NS} > 2M_{sun}$

One-arm instability

- Shearing stellar instability (Corvino et al. 2010) → requires differential rotation
- Discovered by Centrella et al. (2001) in Newtonian hydrodynamic simulations of soft polytropic (Γ=1.3), differentially rotating stars

One-arm spiral instability

- Possible mechanism: (resonant excitation?) → corotation radius (Ou & Tohline 2006, Watts et al. 2003)
- Has been observed in Newtonian and GR core collapse simulations (Ott et al 2005, Ott et al. 2006, Kuroda et al. 2014)
- In over 15 years of NS-NS merger simulations, it has never been reported to occur in NS-NS mergers, until recently.

Eccentric NSNS mergers with NS spin

- Initial data (Paschalidis et al. 2015, East, Paschalidis et al. 2016 a, b):
 - adopt (phenom.) piecewise polytropic EOSs with a range of stiffness
 - Set two (1.35M_☉) stars 200km away, on a marginally unbound orbit determined by a periapse distance r_p
 - Perform hydrodynamics simulations in full general relativity

Eccentric NSNS mergers with spin 0.025

Significance

Why should we care about this instability?

Significance

- Why should we care about this instability?
- Instability → Signal!

Gravitational Waves: Characteristic strain at 10Mpc, rp=8M for 10ms

But, GW frequency and amplitude roughly constant with time, and hypermassive neutron star lifetime may be

$$J/J_{GW} = 1 - 3s$$

Thus, h_c may be amplified by 100.

Gravitational Waves II: Characteristic strain at 10Mpc, 2H EOS q=0.9 for >10ms

Almost perfect monochromatic source

Correlation of GW 2,1 mode frequency with EOS

The stiffer the EOS, the lower the 2,1 GW mode frequency (f_{GW,21}) for a given total mass

Run multiple NSNS simulations varying total mass, and EOS to develop a fitting formula correlating the EOS with f_{GW,21} (much like I=2,m=2 mode see Roberto's & Luciano's talk)

Gravitational Waves: detectability

- A figure of merit for detectability is the GW signal-to-noise (SNR) ratio
- East et al. (2016)

$$SNR_{LIGO} \approx 5.6 \left(\frac{T_{m=1}}{400 \, ms}\right)^{1/2} \left(\frac{r}{10 \, Mpc}\right)^{-1} SNR_{ET} \approx 5.0 \left(\frac{T_{m=1}}{400 \, ms}\right)^{1/2} \left(\frac{r}{100 \, Mpc}\right)^{-1}$$

$$J/J_{GW}^{\cdot} = 1 - 3s$$

But magnetic fields, neutrinos play a role on these timescales

SUMMARY

- BHNS and NSNS binaries are viable sGRB progenitors
- Even one coincident detection of GW signal and a sGRB from a BHNS inspiral and merger can potentially rule out a large number of (cold) nuclear EOSa
- NSNS mergers form hypermassive NSs that generically undergo a m=1 instability and GWs generated can constrain the finite-temperature nuclear EOS
- Numerical relativity is crucial for GW science and constraining the NS EOS

sGRBs with determined redshifts lies at $r>460 \, Mpc = 1.42 \times 10^{22} \, km$

$$r > 460 \, Mpc = 1.42 \times 10^{22} \, km$$

The NSNS aLIGO horizon is

$$r_{NSNS} \lesssim 400 \, Mpc$$

The BHNS (M_{BH}=10M_{sun}, M_{NS}=1.4M_{sun}) aLIGO horizon is $r_{NSNS} \lesssim 900 \, \text{Mpc}$

$$r_{NSNS} \lesssim 900 \, Mpc$$

It is a matter of time until we detect GWs from a inspiralling and merging BHNS binary

• sGRBs with determined redshifts lies at $r>460\,\mathrm{Mpc}=1.42\times10^{22}\mathrm{km}$

$$r > 460 \, Mpc = 1.42 \times 10^{22} \, km$$

The NSNS aLIGO horizon is

$$r_{NSNS} \lesssim 400 \, Mpc$$

The BHNS (M_{BH} =10 M_{sun} , M_{NS} =1.4 M_{sun}) aLIGO horizon is $r_{NSNS} \lesssim 900 \, Mpc$

$$r_{NSNS} \lesssim 900 \, Mpc$$

- It is a matter of time until we detect GWs from a inspiralling and merging BHNS binary
- If sGRBs are indeed associated with BHNS mergers, then it is plausible that we will detect a GW BHNS inspiral signal accompanied by a sGRB.

What is a hypermassive neutron star (HMNS)?

 NSs can be non-rotating, uniformly rotating or differentially rotating. The amount of rotation determines how much mass the NS can support.

What is a hypermassive neutron star (HMNS)?

- NSs can be non-rotating, uniformly rotating or differentially rotating. The amount of rotation determines how much mass the NS can support.
- For a given equation of state:

The maximum mass that can be supported by a non-spinning NS is know as the Tolman-Oppenheimer-Volkoff (TOV or OV) limit denoted by M_{TOV}

The maximum mass that can be supported by a NS when allowing for maximal uniform rotation is know as the supramassive limit (M_{SUP})

What is a hypermassive neutron star (HMNS)?

- NSs can be non-rotating, uniformly rotating or differentially rotating. The amount of rotation determines how much mass the NS can support.
- For a given equation of state:

The maximum mass that can be supported by a non-spinning NS is know as the Tolman-Oppenheimer-Volkoff (TOV or OV) limit denoted by M_{TOV}

The maximum mass that can be supported by a NS when allowing for maximal uniform rotation is know as the supramassive limit (M_{SUP})

- A NS with mass M_{NS} satisfying M_{TOV} < M_{NS} < M_{SUP} is called supramassive
- A NS with mass M_{NS} satisfying M_{SUP} < M_{NS} is called hypermassive

One-arm instability vs EOS

 East, Paschalidis & Pretorius (2016) focusing on eccentric mergers consider 6 equations of state with fixed total mass at 2.7Msun, and spins 0.05, 0.075, rp=8M

```
M_{TOV} = 2.06 M_{\odot}
                               → Forms BH → No one-arm instability
BEOS
          M_{TOV} = 2.12 M_{\odot}
HB EOS
                               → Toroidal HMNSs → Develop m=1 inst.
          M_{TOV} = 2.25 M_{\odot}
H EOS
                                → Ellipsoidal HMNSs → Develop m=1 inst.
          M_{TOV} = 2.83 M_{\odot}
2H EOS
                                → Ellipsoidal HMNSs → "Develop" m=1 inst.
          M_{TOV} = 2.06 M_{\odot}
Γ=3, k<sub>4</sub>
                                → Double core HMNSs → Develop m=1 inst.
          M_{TOV} = 2.22 M_{\odot}
\Gamma = 3, k_3
                                → Double core HMNSs → Develop m=1 inst.
```

One-arm instability vs EOS

 East, Paschalidis & Pretorius (2016) focusing on eccentric mergers consider 6 equations of state with fixed total mass at 2.7Msun, and spins 0.05, 0.075, rp=8M

```
M_{TOV} = 2.06 \, M_{\odot}
                               → Forms BH → No one-arm instability
BEOS
          M_{TOV} = 2.12 M_{\odot}
HB EOS
                               → Toroidal HMNSs → Develop m=1 inst.
          M_{TOV} = 2.25 M_{\odot}
H EOS
                                → Ellipsoidal HMNSs → Develop m=1 inst.
          M_{TOV} = 2.83 M_{\odot}
2H EOS
                                → Ellipsoidal HMNSs → "Develop" m=1 inst.
          M_{TOV} = 2.06 M_{\odot}
Γ=3, k<sub>4</sub>
                                → Double core HMNSs → Develop m=1 inst.
          M_{TOV} = 2.22 M_{\odot}
                                → Double core HMNSs → Develop m=1 inst.
\Gamma=3, k_3
```

- m=1 instability does not depend on the background about which it develops
- m=1 instability should be generic in nature.

Eccentric NS-NS mergers (azimuthal modes)

In all cases where the instability appears

$$J_{merger}/M^2 \approx 0.9 - 1.0$$

- This is precisely the regime of interest for quasi-circular NSNS mergers!
- Does the instability arise in quasi-circular NSNS mergers?

One-arm instability in quasicircular mergers

D. Radice et al. (2016) → hydro simulations in full GR with piecewise polytropic EOS (MS1b) and equal-mass, irrotational NSNS

One-arm instability in quasicircular mergers

- Lehner et al. (2016) → hydro simulations in full GR with realistic EOS (MS1b) treating equal-mass and unequal mass, irrotational NSNS
- They find that the one-arm instability operates for realistic EOSs and that the larger the binary mass ratio the easier the m=1 density mode dominates following merger.

Gravitational Waves: detectability

- A figure of merit for detectability is the GW signal-to-noise (SNR) ratio
- East et al. (2016)

$$SNR_{LIGO} \approx 2.8 \left(\frac{T_{m=1}}{100 \, ms}\right)^{1/2} \left(\frac{r}{10 \, Mpc}\right)^{-1} SNR_{ET} \approx 2.5 \left(\frac{T_{m=1}}{100 \, ms}\right)^{1/2} \left(\frac{r}{100 \, Mpc}\right)^{-1}$$

$$SNR_{ET} \approx 2.5 \left(\frac{T_{m=1}}{100 \, ms}\right)^{1/2} \left(\frac{r}{100 \, Mpc}\right)^{-1}$$

Radice et al. (2016)

$$SNR_{LIGO} \approx 2.0 \left(\frac{T_{m=1}}{100 \, ms}\right)^{1/2} \left(\frac{r}{10 \, Mpc}\right)^{-1} SNR_{ET} \approx 2.0 \left(\frac{T_{m=1}}{100 \, ms}\right)^{1/2} \left(\frac{r}{100 \, Mpc}\right)^{-1}$$

$$SNR_{ET} \approx 2.0 \left(\frac{T_{m=1}}{100 \, ms} \right)^{1/2} \left(\frac{r}{100 \, Mpc} \right)^{-1}$$

Gravitational Waves: detectability

- A figure of merit for detectability is the GW signal-to-noise (SNR) ratio
- East et al. (2016)

$$SNR_{LIGO} \approx 2.8 \left(\frac{T_{m=1}}{100 \, ms}\right)^{1/2} \left(\frac{r}{10 \, Mpc}\right)^{-1} SNR_{ET} \approx 2.5 \left(\frac{T_{m=1}}{100 \, ms}\right)^{1/2} \left(\frac{r}{100 \, Mpc}\right)^{-1}$$

Radice et al. (2016)

$$SNR_{LIGO} \approx 2.0 \left(\frac{T_{m=1}}{100 \, ms}\right)^{1/2} \left(\frac{r}{10 \, Mpc}\right)^{-1} SNR_{ET} \approx 2.0 \left(\frac{T_{m=1}}{100 \, ms}\right)^{1/2} \left(\frac{r}{100 \, Mpc}\right)^{-1}$$

Lehner et al. (2016)

$$SNR_{LIGO} \approx 6.0 \left(\frac{T_{m=1}}{100 \, ms}\right)^{1/2} \left(\frac{r}{10 \, Mpc}\right)^{-1} SNR_{ET} \approx 6.0 \left(\frac{T_{m=1}}{100 \, ms}\right)^{1/2} \left(\frac{r}{100 \, Mpc}\right)^{-1}$$

Eccentric NSNS mergers (azimuthal modes)

 Volume azimuthal mode decomposition of the rest-mass density in a center-of-mass frame

$$C_m = \int \rho e^{im\varphi} d^3x$$

• If axisymmetric $C_m = 0, m > 0$

Eccentric NSNS mergers (azimuthal modes)

Equations:

Equations.
$$G_{\mu\nu}=8\,\pi\,T_{\mu\nu} \qquad \text{Einstein}$$

$$\nabla_{\alpha}(T^{\alpha\beta}+R^{\alpha\beta})=0$$

$$\nabla_{\alpha}R^{\alpha\beta}=-G^{\alpha} \qquad \text{energy-momentum \& radiation}$$

$$\nabla_{\mu}F^{\mu\nu}=-J^{\nu} \qquad \text{8 PDEs}$$

$$\nabla^{*}F^{\mu\nu}=0 \qquad \text{Maxwell}$$

• Equations:

• Equations:

$$G_{\mu\nu}=8\pi T_{\mu\nu}$$

$$\nabla_{\alpha}(T^{\alpha\beta}+R^{\alpha\beta})=0$$

$$\nabla_{\alpha}R^{\alpha\beta} = -G^{\alpha}$$

$$\nabla_{\mu}F^{\mu
u} = -J^{
u}$$

$$\nabla_{\mu}^{*}F^{\mu\nu}=0$$

$$\nabla_{\alpha}(\rho_0 u^{\alpha}) = 0$$

Need to solve a total of > 27 coupled non-linear PDEs in 3+1 dimensions!

Numerical relativity: unique challenges

- Black hole singularities → blow ups both in MHD and gravity sectors
- Coordinates: meaningless, only gauge invariant quantities are meaningful

 → extracting physics not trivial

Single BH accretion → jets!

For ~15 years fixed-spacetime GRMHD accretion flows

 → jets

What is the problem with BH-NS?

Single BH accretion → jets!

- For ~15 years fixed-spacetime GRMHD accretion flows

 → jets
- What is the problem with BH-NS?

Fixed-spacetime GRMHD accretion does NOT always launch jets

What is the problem?

THE ASTROPHYSICAL JOURNAL, 678:1180-1199, 2008 May 10 © 2008. The American Astronomical Society. All rights reserved. Printed in U.S.A.

THE INFLUENCE OF MAGNETIC FIELD GEOMETRY ON THE EVOLUTION OF BLACK HOLE ACCRETION FLOWS: SIMILAR DISKS, DRASTICALLY DIFFERENT JETS

Kris Beckwith and John F. Hawley

Astronomy Department, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325; krb3u@virginia.edu, jh8h@virginia.edu

AND

Julian H. Krolik

Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218; jhk@pha.jhu.edu Received 2007 September 24; accepted 2008 January 10

What is the problem?

THE ASTROPHYSICAL JOURNAL, 678:1180-1199, 2008 May 10 © 2008. The American Astronomical Society. All rights reserved. Printed in U.S.A.

THE INFLUENCE OF MAGNETIC FIELD GEOMETRY ON THE EVOLUTION OF BLACK HOLE ACCRETION FLOWS: SIMILAR DISKS, DRASTICALLY DIFFERENT JETS

Kris Beckwith and John F. Hawley
Astronomy Department, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325; krb3u@virginia.edu, jh8h@virginia.edu

AND

JULIAN H. KROLIK

Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218; jhk@pha.jhu.edu Received 2007 September 24; accepted 2008 January 10

- Initially toroidal B-fields (confined in the disk) → no jets
- Accretion of a net poloidal magnetic flux is essential to support of strong jets

What is the problem?

THE ASTROPHYSICAL JOURNAL, 678:1180-1199, 2008 May 10
© 2008. The American Astronomical Society. All rights reserved. Printed in U.S.A.

THE INFLUENCE OF MAGNETIC FIELD GEOMETRY ON THE EVOLUTION OF BLACK HOLE ACCRETION FLOWS: SIMILAR DISKS, DRASTICALLY DIFFERENT JETS

Kris Beckwith and John F. Hawley
Astronomy Department, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325; krb3u@virginia.edu, jh8h@virginia.edu

AND

JULIAN H. KROLIK
Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218; jhk@pha.jhu.edu
Received 2007 September 24; accepted 2008 January 10

- Initially toroidal B-fields (confined in the disk) → no jets
- Accretion of a net poloidal magnetic flux is essential to support of strong jets
- The conclusions apply to B-fields initially confined in the disk

 How can we get a consistent, large scale, vertical field in a BH-NS merger, since the interior B-field inevitably becomes predominantly toroidal?

What special initial B-field configuration prior to tidal disruption → jets?

- How can we get a consistent, large scale, vertical field in a BH-NS merger, since the interior B-field inevitably becomes predominantly toroidal?
- What special initial B-field configuration prior to tidal disruption → jets?
- Recall: pulsars suggest that NSs are likely endowed with dipole B-fields extending from the stellar interior out to the exterior.
- Could an initial dipole field give rise to conditions that favor jet formation?

A common result of all mag. BHNS simulations until Fall 2014 (Etienne, Liu Paschalidis, Shapiro (2012), Etienne, Paschalidis, Shapiro (2013):

 Same outcome in recent very high resolution MHD simulations in full general relativity by Kiuchi et al 2015

BH–NS → no jets!!!!!????????

- Seed interior+exterior B-field
- Problem: How to evolve exterior force-free (B-field energy density dominated) with ideal MHD code?
- Solution: Mimic force-free exterior at t=0, by considering B-field pressure dominated

- Perform simulations with a NS initially endowed with a dynamically weak dipolar magnetic field $P_{gas}/P_{mag} \ge 20$ (VP et al 2014)
- Metric and fluid initial data: q=3:1; a/M=0.75; n=1 polytropic NS

NS: expected to have a low-density force-free (B-energy-density-dominated) exterior magnetosphere.

Set initial exterior atmospheric rest-mass density such that

$$\beta = \frac{P_{gas}}{P_{mag}} = 0.1, 0.05, 0.01$$