
‘Beyond’ General Relativity

Kostas Kokkotas
Daniela Doneva & Stoytcho Yazadjiev

Theoretical Astrophysics

Eberhard Karls University of  Tübingen

08.12.2016 CERN 1



08.12.2016 CERN 2

Zooming into a Neutron Star
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Static	Models Rotating	Models

supramassive

Neutron Stars: Mass vs Radius

𝑀"#$ ≃ (1.1962 + 0.0108)𝑀012

Breu-Rezzolla 2015

The holy grail of  NS astrophysics… is the determination of  the equation of  state 
(EOS) of  matter at supra-nuclear densities. 

The most direct way of  constraining the EOS is to measure simultaneously the 
neutron star mass and radius. 



Constraints on NS Radius 
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Main	methods	in	EM	spectrum:

ØThermonuclear	X-ray	bursts	(photospheric radius	expansion)
ØBurst	oscillations (rotationally	modulated	waveform)
ØFits	of	thermal	spectra	to	cooling	neutron	stars
ØkhZ QPOs	in	accretion	disks	around	neutron	stars
ØPericenter precession	in	relativistic	binaries	(double	pulsar	J0737)

Soon	also	via	observations	in	the	GW	spectrum

Main	methods	in	GW	spectrum:

• Tidal	effects on	waveform	during	inspiral phase	of	NS-NS	mergers

• Tidal	disruption in	BH-NS	mergers

• Post-merger	phase of	NS-NS	mergers	and	Oscillations	



Neutron Stars & “universal relations”
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Average Density

Compactness

Moment of  Inertia

Quadrupole Moment

Tidal Love Numbers

ρ ~ M / R3

z ~ M R

 I ∼ MR2

Q ~ R5Ω2

λ ~ I 2Q

η = M 3 / I

 I ∼ J /Ω

Need for relations between the “observables” and the 
“fundamentals” of  NS physics
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EOS	independent	relations	were	derived	by	Yagi	&	Yunes(2013)	for	non-magnetized	
stars	in	the	slow-rotation	and	small	tidal	deformation	approximations.

…	the	relations	proved	to	be	valid	(with	appropriate	normalizations)	even	for	fast	
rotating	and	magnetized stars

I-Love-Q relations

ü Yagi-Yunes Phys.	Reports	(arXiv:1608.02582)
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σ ≈ GM
R3

p-modes: main restoring force is the 
pressure (f-mode) (>1.5 kHz)

Inertial modes: (r-modes) main 
restoring force is the Coriolis force

Torsional modes (t-modes) (>20 Hz) shear 
deformations. Restoring force, the weak 
Coulomb force of  the crystal ions. 

w-modes: pure space-time modes (only in 
GR) (>5kHz) € 

σ ≈Ω

σ ≈ 1
R

GM
Rc2

⎛
⎝⎜

⎞
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σ ≈ vS

R
~ 16 ℓ Hz

…	and	many	more
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shear, g-, Alfven, interface, … modes

Oscillations & Instabilities



Famous Men Words

• EINSTEIN:
– I	would	feel	sorry	for	the	good	Lord.	The	theory	is	correct	

• CHANDRASEKHAR	(to	C.M.	Will)
– Why	do	you	spend	so	much	time	and	energy	testing	GR?	
We	know that	the	theory	is	right.	
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However,	there	is	growing	theoretical	and	experimental	evidence	that	
modifications	of	GR	at	small and	large energies	are	somehow	inevitable.	



NEUTRON STARS & 
ALTERNATIVE THEORIES OF GRAVITY
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Expect (and Prepare for) The Unexpected



Ø The	structure	of	compact	stars	depends	on	the	coupling	of	gravity	with	
matter in	strong-field	regions.	

Ø NSs	are	a	valuable	alternative	to	BHs	in	tests	of	strong-field	gravity,	
because	they	can	probe	(and	possibly	rule	out)	those	theories	that	are	
close	to	GR	in	vacuum,	but	differ	in	the	description	of	the	coupling	
between	matter	and	gravity.	
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ATG and Neutron Stars

The	enormous	gravitational	field	of	NSs,	the	high	density	of	matter	at	their	
cores	and	the	existence	of	pulsars	with	fast	spin	and	large	magnetic	fields	

make	them	ideal	laboratories	to	study	all	fundamental	interactions
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Alternative	theories	of	gravity:	
Motivation

Motivation	for	modifying	General	Relativity

Theory Observations

Theories	trying	to	unify	all	interactions:
Kaluza-Klein	theories,	higher	dimensional	
gravity,	etc.

Dark	energy	and	dark	matter	does	not	
fit	well	in	the	standard	GR	framework

Quantum	corrections	in	the	strong	field	
regime

The	strong	field	regime	of	gravity	is	
essentially	unconstrained

Studying	alternative	theories	of	gravity	can	give	us	a	deeper	insight	in	GR	itself



Lovelockʼs theorem 

Ø GR	emerges	as	the	unique	theory	of	gravity	under	specific	assumptions	
Ø In	4D	spacetimes the	only	divergence-free symmetric	rank-2	tensor	

constructed	solely	from	the	metric	gμν and	its	derivatives	up	to	second	
differential	order,	and	preserving	diffeomorphism	invariance,	is	the	
Einstein	tensor	plus	a	cosmological	term.	
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Lovelockʼs theorem suggests a natural route to Einsteinʼs equations

G g T8 , 2.1( )p+ L =mn mn mn

where G R Rg1
2

º -mn mn mn is the Einstein tensor and Tμν is the matter stress–energy tensor.
Indeed, the divergence-free nature of the Einstein tensor (that follows from the Bianchi
identities) implies that Tμν is also divergence free, ∇μT

μν = 0. This property is necessary for
geodesic motion and it guarantees the validity of the weak equivalence principle, i.e. the
universality of free fall (see [194, 195] for further discussion). If we assume that the equations
of motion for the gravitational field and the matter fields follow from a Lagrangian, the
arguments above single out the Einstein–Hilbert action

S x g R S g
1

16
d , , 2.2M

4 ( )⎡⎣ ⎤⎦òp
= - + Y mn

where Ψ collectively denotes the matter fields, which couple minimally to gμν, so that SM
reduces to the standard model action in a freely falling frame.

As it stands, Lovelockʼs theorem seems to leave little room for modifying the gravita-
tional theory (2.2). However, when analyzed in detail, the theorem contains a number of
nontrivial assumptions [196]. Giving up each of these assumptions provides a way to cir-
cumvent the theorem and gives rise to different classes of modified theories of gravity, as
illustrated in figure 1. Specifically, there are at least four inequivalent ways to circumvent
Lovelockʼs theorem:

(1) Additional fields.
Dynamical fields. The simplest and most beaten path to circumvent Lovelockʼs theorem
consists of adding extra degrees of freedom. This leaves more options to construct the
left-hand side of Einsteinʼs equations (2.1), including more than just the metric and
connection. Lifting this assumption paves the way for countless possibilities, where the
metric tensor gμν is coupled to extra fundamental (scalar, vector, tensor) fields. Similar
corrections arise from lifting the assumption of second differential order35. Because of
the coupling with extra dynamical fields, these theories usually violate the SEP [2]. It is
not straightforward to construct theories with extra fields nonminimally coupled to
gravity that avoid instabilities associated to the new degrees of freedom, as generically
predicted by Ostrogradskiʼs theorem [21]. Because such degrees of freedom remain
undetected to date, a major challenge for these theories has been to tame the behavior of
the extra fields, so as to evade current experimental constraints related to their existence
[2].
Nondynamical fields. Lovelockʼs theorem implicitly assumes that the matter stress–
energy tensor Tμν enters the field equations (2.1) linearly. By dropping this assumption, it
is possible to construct theories where the left-hand side of equation (2.1) is precisely the
Einstein tensor, whereas the right-hand side is a nonlinear combination of Tμν such that
its covariant divergence vanishes, i.e., that ∇μT

μν = 0 remains an identity [197]. These
theories satisfy the weak equivalence principle and are equivalent to GR in vacuum, but
differ from it in the coupling to matter. Due to such nonlinear couplings, they resolve
some of the curvature singularities that afflict fluid collapse and early time cosmology in
GR [198]. The only theories belonging to this class known to date are special classes of
theories which modify GR by adding only auxiliary (i.e. nondynamical) fields, the
prototypical example being the Palatini formulation of f ( )* gravity [11, 199]. Here

35 Indeed, higher-order equations can always be brought to second-order form by adding an arbitrary number of
(effective) extra fields. A representative example is metric f(R) gravity [11], see section 2.3.
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Einstein-Hilbert	action
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The main alternative theories (ATG)

1. Scalar-tensor theories and their generalizations. Including	
multiscalar and	Horndeski theories

2. F(R) theories

3. Theories whose action contains terms quadratic in curvature. 
Including	Einstein-dilaton-Gauss-Bonnet	(EdGB)	and	dynamical	Chern-
Simons	(dCS)	theories

4. Lorentz-violating theories. Including	Einstein-Aether,	Hořava and	n-
Dirac-Born-Infeld (n-DBI)	gravity.

5. Massive gravity theories

6. Theories involving non-dynamical fields. Including	the	Palatni
formulation	of	F(R)	gravity	and	Eddington-inspired	Born-Infeld (EiBI)	
gravity.

Berti etal (2015)
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Catalog of  ATG vs Lovelock

Berti etal (2015)
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Catalog of  NS properties in ATG

Berti etal (2015)



08.12.2016 CERN 16

Alternative	theories	of	gravity:	
Motivation

ü There	is	a	very	wide	range	of	alternative	theories	of	gravity	constructed	
from	different	generalizations/modifications	of	Einstein’s	theory.

ü We	will	concentrate	on	the	most	natural	and	widely	used	generalizations:

Ø Scalar-tensor	theories	of	gravity
Ø 𝒇(𝑹) theories	of	gravity

ü They	are	in	agreement	with	all	the	observations	and	do	not	posses	any	
intrinsic	problems.

ü Widely	used	as	an	alternative	explanation	of	the	dark	energy	phenomena.

ü Scalar-tensor	theories	can	be	consider	as	an	Einstein	theory	of	gravity	but	
with	variable	gravitational	constant.
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Alternative theories of  gravity: 
Overview

Scalar-tensor	theories
• Essence: one	or	several	scalar	field	that	can	be	viewed	as	mediators	of	the	

gravitational	interaction	in	addition	to	the	spacetime metric

• Action:
Jordan	
frame	
Physical	one

Einstein	
frame
Much	simpler!

The	price	we	pay	for	simplicity:	
Explicit	coupling	between	the	
matter	and	the	scalar	field

ü Conformal	transformation	of	the	metric
ü Redefinition	of	the	scalar	field
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Alternative	theories	of	gravity:	
Overview

Field	equations	in	STT	(Einstein	frame)

These	equations	have	to	be	supplemented	with:

• Equation	for	hydrostatic	equilibrium	
• Equation	of	state	of	the	nuclear	matter

We	set	the	potential	
to	zero	𝑉 𝜑 = 0
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Equilibrium neutron star solutions:
Scalar-Tensor Theory

Scalar-tensor	theories	with	massless scalar	field

Coupling	function	𝛼 𝜑 = 9	;<=(>)
9	?

• The	coupling	function	can	be	expanded	as	𝜶 𝝋 = 𝜶𝟎 + 𝜷𝝋 + 	higher	order	terms
1. 𝜶 𝝋 = 𝜶𝟎

• Equivalent	to	the	Brans-Dicke	theory.	
• Differs	from	GR	in	the	weak	field	regime.	
• Neutron	stars	have	nontrivial	scalar	field	for	every	𝛼N ≠ 0

2. 𝜶 𝝋 = 𝜷𝝋 (𝛼N = 0)
• Equivalent	to	GR	in	the	weak	field	regime.
• Can	differ	significantly	when	strong	fields	are	considered.
• Nonuniqueness	of	the	neutron	star	solutions	can	exist	– one	solution	with	

trivial	scalar	field	and	one	or	several	others	with	nontrivial	scalar	field.
• Higher	order	terms in	𝛼 𝜑 lead	to	qualitatively	similar	results
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Equilibrium	neutron	star	solutions:
Scalar-Tensor	Theory
Observational	constraints
𝜶𝟎 < 𝟎. 𝟎𝟎𝟑𝟓	(𝐶𝑎𝑠𝑠𝑖𝑛𝑖) and	𝜷 > −𝟒. 𝟓

(Damour	&	Esposito-Farese	(1996,1998),	Will	(2006),	Freire	et	al	(2012),	Antoniadis	et	al	(2013))

Freire	et	al	(2012)

Scalarized	solutions	exist	only	for
Ø 𝛽 < −4.35 in	the	static	case	and	
Ø 𝛽 < −3.9 in	the	rapidly	rotating	case.
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Spontaneous	Scalarizarion is	possible	for	β<-4.35 (Damour+Esposito-Farese 1993)

introducing macroscopically (and observationally) significant modifications to 
the structure of the star52. 

The solutions with nontrivial scalar field are energetically more favorable than their GR 
counterpart (Harada 1997, Harada 1998, Sotani+Kokkotas 2004). 

The solutions become nonunique: for certain ranges of the parameter space: 
NS solutions in GR coexist with scalarized NSs. 

Equilibrium	neutron	star	solutions:
Scalar-Tensor	Theory
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Equilibrium neutron star solutions:
Scalar-Tensor Theory

• Slow	rotation	approximation was	also	considered	(Damour&Esposito-Farese	(1996),	
Sotani	(2012),	Pani &	Berti(2014)).

• Rapid	rotation – changes	the	picture	significantly	(Doneva ,	Yazadjiev,	Stergioulas,	KK	
(2013)

Coupling	function	𝜶 𝝋 = 𝜷𝝋

Ø Scalarization	possible	also	for	positive	𝜷
and	negative	trace	of	the	energy	
momentum	tensor.	Possible	for	stiff	EOS	
and	very	massive	stars,	not	fully	studied	
yet	(Mendes	(2015),	Mendes	&	Ortiz	(2016),	
Palenzuela &	Liebling	(2015)).

Ø Tensor-multi-scalar	theories	(Horbatsch	et	al	
(2015)) – new	interesting	phenomena,	still	
in	development.
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4.3. f(R) theories

In principle f(R) theories can be mapped to a specific form of the action in scalar–tensor
theory [11, 12], but this mapping involves subtleties and technicalities that justify a separate
discussion of NS solutions in metric f(R) gravity. In fact the literature on NS solutions in
metric f(R) gravity is quite extensive, and it contains several apparently controversial claims
[145, 147–149, 151, 544].

The recent interest in f(R) theories is due to their potential to explain cosmological
observations without introducing dark matter or dark energy. In terms of compact objects, this
means that one is usually interested in matching the stellar interior to a de Sitter metric with
an effective cosmological constant

R 4, 4.5eff dS ( )L =

where RdS is the curvature at the de Sitter point, and R RdS far from the star. The problem
involves two completely different density (or curvature) scales, because the central density of
a NS ( 10 g cm0

14 3r ~ - ) is enormously larger than the density associated to the cosmological
constant ( G8 10 g cm29 3( )r p= L ~L

- - ): 100
43r r ~L

- . In practice, only much larger
values ( 10 100

10 6r r ~ -L
- - ) can be used in numerical codes. This issue is not specific to

f(R) theories: it would also arise in GR with a positive cosmological constant if one tries to
match a NS interior with a de Sitter exterior. In fact, the large disparity in density (or
curvature) scales is not a problem if one assumes that the cosmological scale has no sensible
influence on local physics. In other words, one would expect local observables such as the NS
mass and radius to be insensitive to ρΛ/ρ0, as long as this ratio is small enough:

100
10r r ~L

- (say) would be practically indistinguishable from 100
43r r ~L

- , except for
giving an unrealistically large cosmological constant.

Calculations of NS structure in f(R) theory used different approaches, reaching different
conclusions on the very existence of relativistic compact stars. Here we try to clarify some
critical issues in the literature, pointing the reader to the original references for more details.

Figure 16. The NS mass as a function of the central energy density (left panel) and of
the radius (right panel) for static sequences of NSs (solid lines) and sequences of stars
rotating at the mass-shedding limit (dotted lines). The trivial solutions coincide with the
GR limit (β = β0 = 0). For β = β0 = −4.2 nontrivial solutions do not exist in the
nonrotating case. (From [121].)

Class. Quantum Grav. 32 (2015) 243001 Topical Review

79
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Equilibrium neutron star solutions:
Scalar-Tensor Theory

Moment	of	inertia	as	function	of	
angular	velocity

The	angular	velocity	as	a	function	of	the	angular	
momentum for	sequences	of	stars	rotating	at	

the	mass-shedding	limit.	
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Equilibrium neutron star solutions:
Scalar-Tensor Theory

Anisotropic	scalar-tensor	neutron	stars	(Silva	et	al	(2015)) – the	deviations	
from	GR	are	magnified	significantly	for	strong	degree	of	anisotropy



Scalar Tensor Theories 
with a massive scalar field

Ramazanoglu,	Pretorious Spontaneous	scalarization with	massive	field	(2016)
Yazadjiev,	Doneva &	Popchev Slowly	rotating	neutron	stars	in	scalar-tensor	
theories	with	a	massive	scalar	field	(2016)
Doneva &	Yazadjiev Rapidly	rotating	neutron	stars	with	a	massive	scalar	field	-
structure	and	universal	relations	(2016)

08.12.2016 CERN 26

Neutron stars, with a massive scalar field could, in principle, 
have rather different structure and properties compared to their 

counterparts in the massless case.
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Scalar-Tensor	Theory	
with	massive	scalar	field

Coupling	function	 𝑘(𝜑 = 9	;<=(>)
9	?

Two	types	of	coupling		functions	:

1)	Brans-Dicke coupling				𝑘 𝜑 = 𝛼N ⇔ 𝐴 𝜑 = exp(αN𝜑)

2)	Theory with	spontaneous	scalarization				𝑘 𝜑 = 𝛽𝜑	 ⇔ 𝐴 𝜑 = exp	(t
u
𝜑u),	

where	𝛽 < 0
ü Massive	scalar	field	with	a	potential	𝑽 𝝋 = 𝟏

𝟐
𝒎𝝋
𝟐𝝋𝟐
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Theoretical &	observational bounds	on	the	
parameters			

L.	Perivolaropoulos,	PRD	81,	047501	(2010);		J.	Alsing,	E.	Berti,	C.	M.	Will,	H.	Zaglauer,	PRD	85,	064041	(2012);	
M.	Hohmann,	L.	J¨arv,	P.	Kuusk,	E.	Randla,	PRD	88,	084054	(2013);	A.	Scharer,	R.	Ang´elil,	R.	Bondarescu,	P.	
Jetzer,	and	A.	Lundgren,	PRD	90,	123005	(2014);	L.	Jarv,	P.	Kuusk,	M.	Saal,	and	O.	Vilson,	PRD	91,	024041	(2015)	

The recent astrophysical and cosmological observations have severely constrained the
basic parameters of the scalar-tensor theories with a massless scalar field leaving a
narrow window for new physics beyond general relativity.

The scalar field mass𝒎𝝋		leads to a finite range of the scalar field of the order of its
Compton wavelength 𝝀𝝋 = 𝟐𝝅/𝒎𝝋.
Ø The presence of the scalar field will be suppressed outside the compact objects at

distances 𝐷 > 𝜆> .
Ø This means in turn that all observations of compact objects involving distances

greater than 𝜆?	cannot put constraints, or at least stringent constraints, on the
scalar tensor theories.

The	situation		changes	drastically	if	we	consider	a	massive	scalar	field.
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Theoretical & observational bounds on the 
parameters   

Ø For massive Brans-Dicke theory with 𝑚> ≥ 2×10�u�𝐺𝑒𝑉	(𝑜𝑟	𝜆> ≤ 10��𝑚)
the Solar System observations cannot put constraints on the Brans-Dicke
parameter 𝛼N and all values of 𝛼N (𝜔�� > −3/2) are observationally
allowed.

Ø The massive gravitational scalar suppresses also the dipole radiation and the
compact binaries cannot constrain severely the Brans-Dicke parameter if their
orbit radius is significantly greater than 𝜆>.

Ø The mass of the scalar field can effectively suppress the scalar gravitational
waves and reconcile the scalar-tensor theories with the binary neutron star
observations for a much larger range of 𝜷.

Ø If the Compton wavelength of the scalar field 𝝀𝝋 is much smaller than the
separation of the two stars in the binary system the emitted scalar gravitational
radiation will be negligible.

Scalar-tensor theory with 𝒌 𝝋 = 𝜷𝝋

Massive Brans-Dicke theory 



08.12.2016 CERN 30

Neutron stars in massive Brans-Dicke theory 

= 2𝜋	𝑅N/𝜆>

Brans-Dicke coupling				𝑘 𝜑 = 𝛼N ⇔ 𝐴 𝜑 = exp(αN𝜑)

The	allowed	range	for	𝑚> is 𝟏𝟎�𝟏𝟔	𝒆𝑽	 ≤ 𝒎𝝋 ≤ 𝟏𝟎�𝟗	𝒆𝑽
…	normalized	𝟕𝒙𝟏𝟎�𝟕 ≤ 𝒎𝝋 ≤ 𝟕
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STT of  gravity - observations

Brans-Dicke coupling				𝑘 𝜑 = 𝛼N ⇔ 𝐴 𝜑 = exp(αN𝜑)
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STT of  gravity - observations

Theory with	spontaneous	scalarization	

			𝑘 𝜑 = 𝛽𝜑	 ⇔ 𝐴 𝜑 = exp	
𝛽
2 𝜑

u , 𝛽 < 0
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STT	of	gravity	- observations

Theory with	spontaneous	scalarization

			𝑘 𝜑 = 𝛽𝜑	 ⇔ 𝐴 𝜑 = exp	
𝛽
2 𝜑

u , 𝛽 < 0



08.12.2016 CERN 34

Conclusions	(massive	field)

ü In scalar-tensor theories with a massless scalar field neutron stars differ
almost marginally from GR if one considers coupling parameters that are
in agreement with the present observations.

ü The inclusion of scalar field mass changes the picture dramatically. It
suppresses the scalar field at length scale of the order of the Compton
wavelength which helps us reconcile the theory with the observations for a
much broader range of the coupling parameters.

ü The structure and the properties of the neutron stars in massive STT can
differ drastically from the pure GR solutions if sufficiently large masses of
the scalar field are considered.



𝒇 𝑹 theories	of	gravity
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Alternative theories of  gravity: 
𝒇 𝑹 theories

Ø Motivation:	widely	used	as	an	alternative	explanation	of	the	accelerated	
expansion	of	the	universe

Ø Studied mainly	at cosmological	scales,	but	every	theory	of	gravity	should	
pass	via	the	observations	at	astrophysical	scale	too

Ø Action:

Ø Free	of	tachyonic	instabilities	and	the	appearance	of	ghosts	when:

Ø Mathematical	treatment of	the	problem:	𝑓(𝑅) theories	are	mathematically	
equivalent	to	a	particular	class	of	massive	scalar-tensor	theories.		
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Alternative	theories	of	gravity:	
Overview

𝒇 𝑹 theories
• Example:	𝑅u gravity	(𝑓 𝑅 = 𝑅 + 𝑎𝑅u)

= Φ = 𝑓′(𝑅) =
1
8𝑎 Φ − 1 u 		⇒	𝑚� =

1
6𝑎�
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Equilibrium	neutron	star	solutions:
𝒇 𝑹 theories	of	gravity

Ø We	will	concentrate	on	the	𝑹𝟐 gravity (𝑓 𝑅 = 𝑅 + 𝑎	𝑅u)	case,	that	is	
expected	to	give	the	dominant	contribution	at	astrophysical	scales.

Ø Pertubative	approach,	assuming	that	𝒂 is	a	small	number,	(Cooney,	DeDeo,	
Psaltis	(2010)) widely	used	in	the	past,	but	recently	it	was	shown	to	be	
“misleading” (Yazadjiev,	Doneva,	KK,	Staykov	(2014))

Ø Observational	constraints – the	most	severe	coming	from	the	Gravity	
Probe	B	experiments	𝑎 < 2.5×10� (or	𝑎 < 5×10��𝑚u in	physical	units).

Ø The	scalar-tensor	representation of	𝑓(𝑅) theories	is	commonly	employed.

Ø The	field	equation	for	the	Ricci	scalar	curvature	(or	equivalently	the	scalar	
field)	is	stiff	which	poses	a	computational	difficulty.
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Yazadjiev,	Doneva,	Kokkotas,	Staykov (2014) f (R) = R + aR2
• The	differences	between	the	R2	and	GR	are	comparable	with	the	uncertainties	in	the	

nuclear	matter	equations	of	state.	
• The	current	observations	of	the	NS	masses	and	radii	alone	can	not	put	constraints	on	

the	value	of	the	parameters	a,	unless	the	EoS is	better	constrained	in	the	future.	

NSs in f(R)-gravity: Static Models

See	also:	Capozziello,	De	Laurentis,	Farinelli, Odintsov (2015)
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Equilibrium	neutron	star	solutions
• Non-perturbative	approach:	reported	in	Babichev&Langlois(2010),	Jaime	et	al		(2011),

and	the	first	detailed	study	of	realistic	NS	models	was	done	in	Yazadjiev,	Doneva,	
Kokkotas,	Staykov	(2014)

• Rotating	models are	also	studied	(Staykov,	Doneva,	Yazadjiev,	Kokkotas (2014),	Yazadjiev,	
Doneva,	Kokkotas (2015))

• Non-negligible	deviation for	the	allowed	values	of	𝒂.	The	moment	of	inertia is	
very	sensitive	and	can	be	used	to	set	constraints	on	the	parameters.



NSs in f(R)-gravity: Fast Rotation
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Mass vs Radius diagrams for two realistic EOSf (R) = R + aR2

Difficult	to	set	constraints	on	the	f	(R)	theories	using	measurement	of	the	neutron	
star	M	and	R alone,	until	the	EOS	can	be	determined	with	smaller	uncertainty.	



NSs in f(R)-gravity: Fast Rotation
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Yazadjiev,	Doneva,	Kokkotas		(2015)
f (R) = R + aR2

ü The	differences	in	the	neutron	star	moment	of	inertia	on	the	other	hand	can	be	much	more	
dramatic.	BEYOND	THE	UNCERTAINTY	DUE	TO	THE	EOS

ü Large	deviations	can	be	potentially	measured	by	the	forthcoming	observations	of	the	NS	
moment	of	inertia	[Lattimer-Schutz	2005,	Kramer-Wex 2009]	that	can	lead	to	a	direct	test	of	
the	R2 gravity.	



Dilatonic Einstein-Gauss-Bonnet Theory 

• The	theory	is	motivated	from	string	theory.	
• String	theory	predicts	the	presence	of	higher	curvature	terms	in	the	

action	as	well	as	further	fields.	
• In	the	low	energy	effective	action	obtained	from	heterotic	string	theory	

contains	as	basic	ingredients	a	Gauss-Bonnet	(GB)	term	and	a	dilaton field	
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FIG. 2: (a) The physically relevant domain is shown for the mass-radius relation for α = 0, 1 and 2 for the EOS
FPS. For a given α the left boundary curve represents the sequence of static solutions, while the right boundary curve
represents the sequence of neutron stars rotating at the Kepler limit. Both are connected by the secular instability line.
The mass M is given in units of the solar mass M⊙ and the equatorial radius Re in units of kilometers. (b) Same as (a)
for the EOS DI-II.

momentum, equatorial radius, etc as functions of δ and extrapolate to δ = 0.
Both boundary curves are connected by the secular instability line, which forms the remaining upper part of

the boundary of the physically relevant domain, and extends from the maximum of the static sequence to the
Kepler sequence. Here, analogous to the static sequence, the neutron stars become unstable at the maximal
value of the mass for a fixed value of the angular momentum [69].
In Fig. 2, where the mass-radius relation is shown for these three boundary curves, the dots represent the

calculated values for rotating dEGB neutron stars with maximum mass along the secular instability line and at
the Kepler limit. The solid curves for α = 1 and 2 interpolate between these points and also include the static
sequence. We recall, that for α = 0 we used the more efficient rns code.
The mass-radius dependence on the boundary is then as follows: (i) For the static neutron stars the mass

increases with decreasing radius up to the stability limit. (ii) Along the secular instability line the mass increases
with increasing radius until (at the global maximum of the mass in this domain) the Kepler limit is reached.
(iii) For the neutron stars at the Kepler limit, the mass then decreases with increasing radius.
This qualitative behaviour is common to neutron stars in GR and in dEGB theory. We observe as a general

feature of the dEGB neutron stars that their physically relevant domain decreases as the GB coupling α increases.
Thus, the maximum masses are smaller for larger values of α while the minimum radii are larger. For small
masses and large radii the Kepler limit is (almost) independent of α (as long as it exists).
Comparing these domains for the two EOSs we conclude that analogous to GR also for dEGB theory neutron

stars are larger and more massive for EOS DI-II than for EOS FPS.

D. Mass-Radius Relation and Mass-Energy Density Relation

Having determined the limits where the secular instability and the mass shedding set in, we now discuss the
mass-radius relation in more detail. To this end we exhibit in Fig. 3, the mass-radius relation of sequences of
neutron stars with fixed angular velocity Ω. We note, that the values of Ω in the figure are given in dimensionless
units. Ω = 0.01 there corresponds to a frequency of f = 323 Hz. For comparison we recall that the fastest
rotating pulsar has a frequency of ν = 716 Hz [70].
The mass-radius relation of rotating neutron stars in GR has been recently readdressed in [71], where besides

the static and the Keplerian sequence also sequences of neutron stars rotating at fixed angular velocity have
been constructed numerically, varying the frequency from f = 50 Hz to f = 716 Hz for several EOSs. While the
f = 50 Hz sequence basically agrees with the static sequence, small deviations start to arise as the frequency
is increased, and the equatorial radius increases slightly with increasing frequency. This is expected since the

Kleihaus,	Kunz,	Mojica,	Zagermann 2016



Hondersky gravity
The	most	general	extension	of	Einstein’s	theory	of	general	relativity	with	a	

single	scalar	degree	of	freedom	and	second-order	field	equations.	
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Babichev and	Charmousis (2014)
Babichev,	Charmousis,	Lehebel (2016)
Babichev etal (2016)
Barausse and	Yagi		(2015)
Cisterna	et	al.	(2015)
Maselli et	al.	(2016a,	2016b)
…



Post-TOV approximation
The	gravity	theory	degeneracy	problem:	
Exists	even	if	we	do	know	the	correct	equation	of	state
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Glampedakis, Pappas, Silva, Berti (2015,	2016)

The	logic	underpinning	the	formalism	
is	that	by	parametrizing	the	deviation	
of	the	stellar	structure	equations	from	
their	GR	counterparts,	thus	producing	
a	set	of	post-TOV	equations.	



Post-TOV approximation

Post-TOV	equations:	describe	smooth	modifications	of	he	TOV	
equations,	parametrized	by	the	post-TOV	parameters
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where

Glampedakis, Pappas, Silva, Berti (2015,	2016)



Astrophysical Implications
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Astrophysical	Implications
• Final	goal – test	the	strong	field	regime	of	gravity	via	neutron	star	

observations	and	impose	constraints	on	the	alternative	theories	

• Obstacles:
Ø Accuracy	of	observations
Ø Accurate	models	of	the	observed	phenomena
Ø EOS	uncertainty

• Ways	out:
Ø Deviation	from	GR	stronger	than	the	EOS	uncertainty	for	the	

allowed	range	of	parameters
Ø EOS	independent	relations
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Astrophysical Implications
Possible approaches for testing alternative theories of  gravity

Ø Direct	observation	of	the	mass	and	radius.

Ø Observations	of	the	moment	of	inertia:	applicable	for	example	for	𝑓 𝑅 theories	
Staykov	at	al	(2014) and	Eddington	inspired	gravity	Pani,	Cardoso,	Delsate	(2011)

Ø Quasiperiodic	oscillations	DeDeo&Psaltis (2004),	Doneva etal (2014),	Staykov,	Doneva,	Yazadjiev	(2015)

Ø The	redshift	of	surface	spectral	lines	in	X-rays	and	𝛾-rays	DeDeo&Psaltis(2003)

Ø Gravitational	wave	emission	of	oscillating	neutron	stars

Ø Neutron	star	mergers

Ø Universal	relations
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Astrophysical Implications
Universal	relations

• EOS	independent	relations between	the	properties,	including	the	oscillation	
spectrum,	of	neutron	stars.	Normally	a	proper	normalization	of	the	quantities	is	
required.

• Very	convenient	way	to	circumvent	the	EOS	uncertainty.

• Attracted	particular	attraction	with	the	paper	of	Yagi&Yunes	(2013)

• The	focus	is	on	the	I-Love-Q	relations but	many	other	universal	relations	exist	
(Lattimer&Schutz(2005),Yagi	et	al	(2014), AlGendy&Morsink(2014),	Breu&Rezzolla(2016))

• General	idea for	testing	the	strong	field regime	of	gravity:	if	the	two	parameters	
that	enter	in	a	universal	relation	are	measured	independently,	then	a	possible	
deviation	from	the	GR	EOS	independent	relations	can	be	measured.
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Astrophysical	Implications
• I-Love-Q	relations:	appreciable	deviations	from	

GR	only	for	some	alternative	theories	of	gravity	
(dynamical	Chern-Simons	gravity Yagi&Yunes(2013),	𝒇(𝑹)
gravity	Doneva,	Yazadjiev,	Kokkotas	(2015),	massive	STT
Yazadjie,Doneva arXiv:1607.03299)

• Most	of	the	studied	alternative	theories	of	
gravity	give	only	marginal	deviations	from	GR	(eg.	
Sham,	Lin,	Leung(2014);	Kleinhaus,	Kunz,	Mojica	(2014),	Pani,	
Berti	(2014),	Pappas,	Sotiriou	(2015)).

• Unnormalized	relations STILL	differ	significantly	
from	GR.	Solution:
Ø Different	normalization
Ø Different	universal	relation

• Strong	point:	these	relations	are	also	theory	
independent	up	to	a	good	extend	that	might	have	
different	application.

Example	𝑹𝟐	theories:
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Astrophysical Implications
Dynamical	scalarization	– NS	mergers

Even	if	the	two	NS	are	not	scalarized	when	separated,	in	close	binary	system	
they	develop	strong	scalar	field.

Coupling	function	𝜶 𝝋 = 𝜷𝝋
The	observational	signature	of	the	

scalarized	merging	neutron	stars	

has	been	studied	in	Barause	et	al	
(2013),	Palenzuela	et	al	(2014),	Shibata	et	al	

(2014),	Sampson	(2014),	Taniguchi	et	al	

(2015).
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Astrophysical	Implications
Neutron	star	oscillations

Ø The	study	was	initiated with	the	work	of	Sotani &	Kokkotas (2004,2005)	for	f-,	p-
and	w-modes	in	STT.

Ø The	main	idea	is	to	constrain	the	deviations	from	GR	using	the	emitted	
gravitational	wave	signal	or	in	some	cases	electromagnetic	signal,	related	
to	neutron	star	oscillations	

Ø Several	alternative	theories	studied	until	now	– STT Sotani&Kokkotas (2004,	
2005),	Silva	et	al	(2014),	TeVeS	Sotani	(2010,	2011,	2009),	𝒇(𝑹) Staykov	et	al	(2015),	
Einstein-Gauss-Bonnet-dilaton	gravity Blázquez-Salcedo	et	al	(2016)

Ø Fundamental	f-modes,	torsionalmodes,	w-modes and	others	are	studied.	
In	many	cases	the	Cowling	approximation	is	employed.



Stellar Oscillations in STT
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Sotani-Kokkotas (2004,2005)



Asteroseismology in ATG
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• The	maximum	deviation	between	the	f-mode	frequencies	in	GR	and	R2 gravity	is	up	to	
10% and	depends	on	the	value	of	the	R2 gravity	parameter	a.	

• Alternative	normalizations	show	nicer	relations

η = M 3 / I

Asteroseismology	relations	in	𝑹𝟐 theories
• f-mode oscillation	frequencies,	nonrotating	case
• Quite	EOS	independent with	suitable	choice	of	normalization



Asteroseismology: but in GR
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 Mσ i
unst = (0.56 − 0.94ℓ)+ (0.08 − 0.19ℓ)MΩ +1.2(ℓ+1)η[ ]

The l =  2 f-mode oscillation frequencies 
as functions of  the parameter η

η = M 3 / I

Doneva-Kokkotas	2015
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Asteroseismology: but in GR
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The	normalized	damping	time where

as	a	function	of	the	normalized	oscillation		frequencyMσ for	l	=	m	=		2	&	l	=	m	=		4 f-
modes.
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Doneva-KK	2015

η = M 3 / I



Dilatonic Einstein-Gauss-Bonnet Theory
Axial w-modes 
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Blazquez-Salcedo,	Gonzalez-Romero,	Kunz,	Mojica,	Navarro-Lerida	(2016)	



08.12.2016 CERN 59

Conclusions

ü Neutron stars in alternative theories of  gravity can have 
significantly different properties compared to their general 
relativistic counterparts.

ü Rotation can magnify the deviations and lead to new 
observational consequences.

ü A further study of  the astrophysical implications is required in 
order to check what are the most promising astrophysical 
implications.

ü Further info: Berti et al (2015), Yagi & Yunes (2016)



Thank	you
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