Neutron stars meet AdS/CFT

Niko Jokela

From quarks to gravitational waves:

Neutron stars as a laboratory for fundamental physics

CERN – 8 December 2016

Outline

- Introduction
 - Motivation
- 2 Proof of concept
 - Speed of sound and equation of state
 - Constructing quark-hybrid stars
 - Holographic model
- Breaking the sound barrier
 - Tension: massive stars ⊥ models
 - Bound from holography?
 - Counter example on bound
- Outlook
 - Holographic quark or nuclear matter
 - Other observables
 - More realistic holographic QCD model

Based on...collaborators...

- Holographic quark matter and neutron stars 1603.02943(PRL)
- Breaking the sound barrier in AdS/CFT 1609.03480(PRD)

Helsinki U.

Eemeli Annala, Jere Remes, Aleksi Vuorinen

Oviedo U.

Carlos Hoyos, David Rodríguez Fernández

École Normale Supérieure

Matti Järvinen

TU Vienna

Christian Ecker

1. Introduction

Matter in neutron stars

[Kurkela, Fraga, Schaffner-Bielich, Vuorinen 1402.6618]

Traditionally two choices

- Pheno models, eg. MIT bag model
- Controlled interpolation between two limits

No-man's land

Theoretical uncertainties welcome alternative approaches

Insights from string theory

The greenhouse effect

 Theoretical greenhouse where new ideas grow to be transplanted elsewhere

Recent idea

- Super-Yang-Mills is secrectly a theory of closed strings
- Low energy effective theory (strong coupling of SYM) is dual to a supersymmetric classical gravity theory in $AdS_5 \times S^5$

Duality

- Two theories containing very different dofs and interactions (w/ and w/o gravity) turn out to be the same
- Mapped to each other by a very complicated coordinate trafo
- Action related to expansion about a point

Example of a duality via bosonization

$$\int d^2x \bar{\psi}(i\partial \!\!\!/ - m_F)\psi - \frac{g}{2}(\bar{\psi}\gamma^\mu\psi)^2 = \int d^2x (\partial\phi)^2 + \frac{m}{\beta^2}(\cos\phi - 1)$$

if
$$\frac{\beta}{4\pi^2} = \frac{1}{1+\sigma\pi}$$
 (S-duality) + details w/ renormalization

Practical application: AdS/QCD

Quark-gluon plasma

- Surprising results from RHIC: QCP behaves more like an opaque strongly coupled fluid instead of hot gas
- The fluid has extremely low viscosity, hydro good approx
- Strongly coupled $\mathcal{N}=4$ SYM is not QCD but has similar universal features at RHIC regime
- Calculations in strongly coupled SYM are hard, but very easy in SUGRA
- SUGRA gives surprisingly good effective description for various aspects of heavy ion collisions!

Another practical application of AdS/CFT

Can holography be useful in studying quark/nuclear matter relevant for neutron stars?

2. Proof of concept

Equation of state

- ullet Fixed relation between P and arepsilon
- In a CFT $\langle T^{\mu}_{\ \mu} \rangle = -\varepsilon + 3P = 0 \rightarrow v_s^2 = \frac{\partial P}{\partial \varepsilon} = \frac{1}{3}$.
- Causality $v_s \le 1$ restricts EoS: $P \le \varepsilon$.

Break conformal symmetry

- Simplest generalization of $\mathcal{N}=4$ works!
- Add massive fundamentals

Conditions on quark matter

- Baryon chemical potential $\mu_B = \mu_u + \mu_d + \mu_s$ and $m_u = m_d = m_s$
- Chemical equilibrium under weak processes:

$$u
ightarrow d + \bar{e} + \nu_e$$
 , $d, s
ightarrow u + e + \bar{\nu}_e$

$$\mu_{u} = \mu_{d} - \mu_{e}$$
, $\mu_{d} = \mu_{s} = \mu_{u} + \mu_{e}$

- Leads to $\mu_u = (\mu_B 2\mu_e)/3$, $\mu_d = \mu_s = (\mu_B + \mu_e)/3$
- Assume charge neutrality $\mu_e = 0$:

$$\mu_{u} = \mu_{d} = \mu_{s} = \mu_{B}/3 \equiv \mu_{q}$$

• Quiescent neutron stars $T \sim 100 {\rm keV} \ll \mu_{\rm g} \sim 100 {\rm MeV}$

Field theory \leftrightarrow gravity dual

Field theory

- $\mathcal{N}=$ 4 Super-Yang-Mills at $N_c \to \infty, \lambda_{YM}=g_{YM}^2 N_c \gg 1$
- ullet $\mathcal{N}=2$ quenched massive flavor hypermultiplets $N_f\ll N_c$
- Global $U(N_f) \sim SU(N_f) \times \underbrace{U(1)_B}_{baryon}$ flavor symmetry
- Optional: finite T

Gravity dual

- Spacetime $AdS_5 \times S^5$
- Embed identical N_f probe D7-branes
- ullet Optional: Schwarzschild black hole in $AdS_5 imes S^5$

Equation of State

Pressure:^a

[Karch-O'Bannon 0709.0570]

$$P = \frac{N_f N_c}{4\gamma^3 \lambda_{YM}} (\mu_q^2 - m^2)^2 + \mathcal{O}(\mu_q^3 T) , \ \gamma \approx 1.4$$

EoS:

$$\varepsilon = \mu_q \frac{\partial P}{\partial \mu_q} - P = 3P + m^2 \sqrt{\frac{N_f N_c}{4\gamma^3 \lambda_{YM}}} \sqrt{P}$$

Speed of sound:

$$v_s^2 = \frac{\partial P}{\partial \varepsilon} = \frac{1 - \left(\frac{m}{\mu_q}\right)^2}{3 - \left(\frac{m}{\mu_q}\right)^2} < \frac{1}{3}$$

^aAt finite temperature and/or magnetic field, the EoS is obtained numerically from ODE.

Extrapolation to QCD

- $N_c = N_f = 3$
- Stefan-Boltzmann limit $(\mu_q \to \infty)$

$$P \sim rac{N_f N_c}{12\pi^2} \mu_q^4$$

This fixes

$$\lambda_{YM} = \frac{3\pi^2}{\gamma^3} \approx 10.74$$

• $P(\mu_q = m) = 0 \to m \sim m_p/3$:

$$m \approx 308.55 \text{ MeV}$$

Equation of State

$$\varepsilon = 3P + \frac{\sqrt{2}}{2\pi} (308.55 \text{ MeV})^2 \sqrt{P}$$

Comparison to nuclear matter models

[soft,intermediate,stiff EoS curves from Hebeler-Lattimer-Pethick-Schwenk 1303.4662]

Hybrid construction

- High μ_q use holographic EoS for quark matter and match with CET at low μ_q
- ullet Results in a very strong 1st order phase transition $(n_{\mathrm{crit}}, \Delta Q)$:

$$(6.9n_s, (331 \text{MeV})^4), (3.8n_s, (265 \text{MeV})^4), (2.4n_s, (229 \text{MeV})^4)$$

Solutions from TOV

Conclusion from extrapolation

- Upper bound on most massive stars
- Naively: no stable star with pure quark matter at the core

3. Breaking the sound barrier

Bound on speed limits and neutron stars

Massive stars are in tension with models

- Largest mass of stable neutron star depends on EoS
- Observations find up to $\sim 2 M_{\odot}$
- Requires a stiff EoS
- Upper bound of speed of sound strongly disfavored

[Bedaque-Steiner 1408.5116]

Shedding light via AdS/CFT

Can the bound be violated in holographic models?

Trivial breaking

"Trivial breaking"

- UV is not CFT. Several D-brane examples.
 [NJ et al. + many others]
- Non-relativistic Lifshitz scaling $(t \to \lambda^z t, x^i \to \lambda x^i)$, EoS $P = \frac{z}{3}\varepsilon$, stiffer than CFT, sound dispersion: [Hoyos-O'Bannon-Wu 1007.0590]

$$\omega^2 = \frac{z}{3}\,C_z \rho^{2(z-1)/3} k^2$$
 , $1 \le z < 2$ no sound for z > 2

• QCD at finite isospin $\mu_I > m_\pi o {\sf pion\ condensate} \ {\sf [Son-Stephanov\ hep-ph/0005225]}$

$$v_s^2 = \frac{\mu_I^2 - m_\pi^2}{\mu_I^2 + 3m_\pi^2} \to 1 \; , \; m_\pi/\mu_I \to 0$$

Conjecture: universal bound

Holographic models always below conformal bound

Conjecture: universal bound

Holographic models always below conformal bound.

Family of examples

- Scalar field coupled to gravity at low temperature and density
- Stable: no homogeneous condensate
- SUGRA example: R-charged black hole

Quark matter at the core

- Finite magnetic field and temperature
- Mixed phases
 - Consider isospin chemical potential
 - Surface tension in bubble phases
- Neutron star phenomenology with stiffer holographic EoS

Strongly coupled nuclear matter

- Large-N_c makes baryonic matter hard to study
- Solitons in D3-D7

[Ammon-Jensen-Kim-Laia-O'Bannon 1208.3197]

- or in Sakai-Sugimoto [Bergman-Lippert-Lifschytz 0708.0326,Li-Schmitt-Wang 1505.04886,...]
- However, alternative large- N_c limit recently available! [Hoyos-Itsios-Vasilakis 1611.07029]

Other quantities easily obtainable using AdS/CFT

- Correlation functions, emissivities
- Thermo-electric conductivities
- Shear, bulk viscosities
- Love parameter, I-Love-Q universality

Stringy, quantum (gravity) corrections to dual SUGRA

- N-corrections: practically impossible
- λ -corrections: doable in certain cases
- N_f/N_c -corrections: done, but not yet in QCD-like scenarios

More realistic holographic QCD model

- Top-down: pick a top-down model closer to QCD at the UV (eg. Klebanov-Strassler)
- Bottom-up holographic QCD in the Veneziano limit
 [Alho-Järvinen-Kajantie-Rosen-Tuominen 1312.5199]
 - Try to follow principles from string theory as closely as possible
 - Fix model by hand and tune potentials to match QCD physics and data