AWAKE The Proton Driven Plasma Wakefield Acceleration Experiment

Edda Gschwendtner, CERN

Outline

- Motivation
- Plasma Wakefield Acceleration
- Plasma Wakefield Acceleration Experiments
- Outlook

Motivation: Increase Particle Energies

- Increasing particle energies probe smaller and smaller scales of matter
 - 1910: Rutherford: scattering of MeV scale alpha particles revealed structure of atom
 - **1950ies:** scattering of GeV scale electron revealed finite size of proton and neutron
 - **Early 1970ies:** scattering of tens of GeV electrons revealed internal structure of proton/neutron, ie quarks.

- Increasing energies makes particles of larger and larger mass accessible
 - GeV type masses in 1950ies, 60ies (Antiproton, Omega, hadron resonances...
 - Up to 10 GeV in 1970ies (J/Psi, Ypsilon...)
 - Up to ~100 GeV since 1980ies (W, Z, top, Higgs...)
- Discoveries went hand in hand with theoretical understanding of underlying laws of nature

→ Standard Model of particle physics

- Increasing particle energies probe earlier times in the evolution of the universe.
 - Temperatures at early universe were at levels of energies that are achieved by particle accelerators today
 - Understand the origin of the universe

Motivation: High Energy Accelerators

• Large list of unsolved problems:

• What is dark matter made of? What is the reason for the baryon-asymmetry in the universe? What is the nature of the cosmological constant? How does quantum gravity fit into the picture?

• Need particle accelerators with new energy frontier

➔ 30'000 accelerators worldwide!

Also application of accelerators outside particle physics in medicine, material science, biology, etc...

LHC

Circular Collider

FCC, Future Circular Collider

80 – 100 km diameter 100 TeV (pp) >350 GeV (e⁺e⁻)

20 T dipoles

Linear Colliders

CLIC

48 km length 3 TeV (e⁺e⁻)

Accelerating elements: Cavities: 100 MV/m

Conventional Acceleration Technology Radiofrequency Cavities

(invention of Gustav Ising 1924 and Rolf Wideroe 1927)

Conventional Accelerating Technology

Today's RF cavities or microwave technology:

- Very successfully used in all accelerators (hospitals, scientific labs,...) in the last 100 years.
- Typical gradients:
 - LHC: 5 MV/m
 - ILC: 35 MV/m
 - CLIC: 100 MV/m

However:

- accelerating fields are limited to <100 MV/m
 - In metallic structures, a too high field level leads to break down of surfaces, creating discharge.
 - Fields cannot be sustained, structures might be damaged.
- several tens of kilometers for future linear colliders

Saturation at Energy Frontier for Accelerators

➔ Project size and cost increase with energy

Motivation

New directions in science are launched by new tools much more often than by new concepts.

The effect of a concept-driven revolution is to explain old things in new ways.

The effect of a tool-driven revolution is to discover new things that have to be explained.

From Freeman Dyson 'Imagined Worlds'

Plasma Wakefield Acceleration

Wakefield excitation

Particle acceleration

Why is Plasma Interesting?

Plasma Wakefield Acceleration

Plasma is already ionized or "broken-down" and can sustain electric fields up to three orders of magnitude higher gradients → order of 100 GV/m.

Much shorter linear colliders

Cavities vs. Plasma

• ILC Cavity: 35 MV/m

1000 mm

• Plasma cell: 35 GV/m → 35 MV/mm!!

With this new technology: No magnets, no RF, no vacuum needed

Linear Colliders

Outline

- Motivation
- Plasma Wakefield Acceleration
- Plasma Wakefield Acceleration Experiments
- Outlook

Seminal Paper 1979, T. Tajima, J. Dawson

Use a plasma to convert the transverse space charge force of a beam driver into a longitudinal electrical field in the plasma

VOLUME 43, NUMBER 4

PHYSICAL REVIEW LETTERS

23 JULY 1979

Laser Electron Accelerator

T. Tajima and J. M. Dawson Department of Physics, University of California, Los Angeles, California 90024 (Received 9 March 1979)

An intense electromagnetic pulse can create a weak of plasma oscillations through the action of the nonlinear ponderomotive force. Electrons trapped in the wake can be accelerated to high energy. Existing glass lasers of power density 10^{18} W/cm² shone on plasmas of densities 10^{18} cm⁻³ can yield gigaelectronvolts of electron energy per centimeter of acceleration distance. This acceleration mechanism is demonstrated through computer simulation. Applications to accelerators and pulsers are examined.

Collective plasma accelerators have recently received considerable theoretical and experimental investigation. Earlier Fermi¹ and McMillan² considered cosmic-ray particle acceleration by moving magnetic fields¹ or electromagnetic waves.² In terms of the realizable laboratory technology for collective accelerators, present-day electron beams³ yield electric fields of ~10⁷ V/cm and power densities of 10¹³ W/cm².

the wavelength of the plasma waves in the wake:

$$L_t = \lambda_w / 2 = \pi c / \omega_p \,. \tag{2}$$

An alternative way of exciting the plasmon is to inject two laser beams with slightly different frequencies (with frequency difference $\Delta \omega \sim \omega_p$) so that the beat distance of the packet becomes $2\pi c/\omega_p$. The mechanism for generating the wakes can be simply seen by the following approximate

Since Then...

Monoenergetic beams of relativistic electrons from intense laser-plasma interactions

P. D. Mangles¹, C. B. Marphy^{1,7}, I. Najmashin¹, A. G. B. Thomas¹,
 J. C. Gallor¹, A. E. Dangar¹, E. J. Bindl¹, P. S. Fodor¹, J. G. Gallacher¹,
 C. J. Stecher¹, B. A. Jerosarpath¹, K. J. Langley¹, W. B. Hor¹,
 A. Borray¹, F. S. Thong¹, B. Helly¹, B. B. Wallm¹, B. K. Danbelsteit¹,

¹The Hardisei Laboratory, Imperial College London, London (1977 332, UK Control Loure Society, Bacherjord Appleton Laboratory, Ociber, Dalost, Osco, (2021 000), OK Upparented of Physics, Missensity of Schulledysle, Gauges: Of (1962, UK)

⁴Department of Physics and Astronomy, UCLA, Les Augúles, Galifornia 59886, 1334

High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding

E.E. R. Kedder, ". Co. To(b', J. van Tillerro,", E. Esaron, G. B. Schroeder, B. Bedre Ker', C. Mieter', J. Cary," & W. P. Lennano,

¹Learner, Beileley Netroud Laboutery, 1 Quinten Road, Berleity, Galifernia 90700, USA ¹Debreity of California, Berleiter, California 90720, USA

¹Stehendre Understeher Bindher-en, Pacebar 333, 5000 MB Bindheren, die Necherlande ¹Schr-K Gerpreuten, 3621 Angebier Are, Sate A., Beckler, Colomois 80303, USA

University of Calmada Boulder, Colorado #8989, USA

A laser-plasma accelerator producing monoenergetic ron beams

COMILLAS

i a plus.com

dores de particulas co.

T. Elized', A. Publice", S. Kisolov', S. Gootlenks', S. Lefstver', cases', F. Barge' & V. Malks'

w d'Epistper Appliquée, Roile Polytochengue, MNELA, CARE, U SUMI Ablatisan, Penner e Theoretiche Physik, L. Treinmille Manne Universitat Disamilitet? indiang Generativ or de Physipare Throngport Appliquée, CLAMMAN Re-de-Proton, phrs-in-Chiltol, Fanner

g wakefields to create smaller rators

to to be and the full called the state of a state of a large to the state of the st

Plasma Wakefield

Quasi-neutrality: the overall charge of a plasma is about zero.

Collective effects: Charged particles must be close enough together that each particle influences many nearby charged particles.

Electrostatic interactions dominate over collisions or ordinary gas kinetics.

What is a plasma wakefield?

Fields created by collective motion of plasma particles are called plasma wakefields.

How to Create a Plasma Wakefield?

What we want:

Longitudinal electric field to accelerate charged particles.

Using plasma to convert **the transverse electric field** of the drive bunch into a **longitudinal electric field in the plasma**. The more energy is available, the longer (distance-wise) these plasma wakefields can be driven.

Charged particle bunches carry almost purely transverse Electric Fields.

How to Create a Plasma Wakefield?

How to Create a Plasma Wakefield?

Principle of Plasma Wakefield Acceleration

- Laser drive beam
 - ➔ Ponderomotive force
- Charged particle drive beam
 - → Transverse space charge field
 - Reverses sign for negatively (blow-out) or positively (suck-in) charged beam

- Plasma wave/wake excited by relativistic particle bunch
- Plasma e⁻ are expelled by space charge force
- Plasma e⁻ rush back on axis
- Ultra-relativistic driver ultra-relativistic wake → no dephasing
- Acceleration physics identical for LWFA, PWFA

Where to Place the Witness Beam (Surfer)?

Wakefields

• The plasma oscillation leads to a longitudinal accelerating field. The maximum accelerating field (wave-breaking field) is:

$$e E_{WB} = 96 \frac{V}{m} \sqrt{\frac{n_{pe}}{cm^{-3}}}$$

Example: $n_{pe} = 7x10^{14} \text{ cm}^{-3}$ (AWAKE) $\rightarrow eE_{WB} = 2.5 \text{ GV/m}$ Example: $n_{pe} = 7x10^{17} \text{ cm}^{-3} \rightarrow eE_{WB} = 80 \text{ GV/m}$

Record Acceleration: 42 GeV

SLAC Experiment, I. Blumenfeld et al, Nature 455, p 741 (2007)

- Gaussian electron beam with 42 GeV, 3nC @ 10 Hz, σ_{x} = 10 μm , 50 fs
- Reached accelerating gradient of 50 GeV/m
- Accelerated electrons from 42 GeV to 85 GeV in 85 cm.

Building Accelerators Based on PWA

Lasers: ~40 J/pulse Electron drive beam: 30 J/bunch Proton drive beam: SPS 19kJ/pulse, LHC 300kJ/bunch

- To reach TeV scale with electron/laser driven PWA: need several stages, and challenging wrt to relative timing, tolerances, matching, etc...
 - effective gradient reduced because of long sections between accelerating elements....

- Proton drivers: large energy content in proton bunches → interesting for plasma wakefield accelerators → to reach high energies of a witness beam possible in few stages.
- But: need short bunches \rightarrow self-modulation instability

Self-Modulation Instability

- In order to create plasma wakefields efficiently, the drive bunch length has to be in the order of the plasma wavelength.
- CERN SPS proton bunch: very long!
- Longitudinal beam size ($\sigma_z = 12 \text{ cm}$) is much longer than plasma wavelength ($\lambda = 1 \text{ mm}$)

Self-Modulation Instability of the proton beam

Modulate long bunch to produce a series of 'micro-bunches' in a plasma with a spacing of plasma wavelength λ_p.
 → Strong self-modulation effect of proton beam due to transverse wakefield in plasma
 → Resonantly drives the longitudinal wakefield

Outline

- Motivation
- Plasma Wakefield Acceleration
- Plasma Wakefield Acceleration Experiments
- Outlook

Beam-Driven Wakefield Acceleration: Landscape

Facility	Where	Drive (D) beam	Witness (W) beam	Start	End	Goal
AWAKE	CERN, Geneva, Switzerland	400 GeV protons	Externally injected electron beam (PHIN 15 MeV)	2016	2020+	 Use for future high energy e-/e+ collider. Study Self-Modulation Instability (SMI). Accelerate externally injected electrons. Demonstrate scalability of acceleration scheme.
SLAC-FACET	SLAC, Stanford, USA	20 GeV electrons and positrons	Two-bunch formed with mask (e ⁻ /e ⁺ and e ⁻ -e ⁺ bunches)	2012	Sept 2016	 Acceleration of witness bunch with high quality and efficiency Acceleration of positrons FACET II preparation, starting 2018
DESY-Zeuthen	PITZ, DESY, Zeuthen, Germany	20 MeV electron beam	No witness (W) beam, only D beam from RF-gun.	2015	~2017	- Study Self-Modulation Instability (SMI)
DESY-FLASH Forward	DESY, Hamburg, Germany	X-ray FEL type electron beam 1 GeV	D + W in FEL bunch. Or independent W-bunch (LWFA).	2016	2020+	 Application (mostly) for x-ray FEL Energy-doubling of Flash-beam energy Upgrade-stage: use 2 GeV FEL D beam
Brookhaven ATF	BNL, Brookhaven, USA	60 MeV electrons	Several bunches, D+W formed with mask.	On going		 Study quasi-nonlinear PWFA regime. Study PWFA driven by multiple bunches Visualisation with optical techniques
SPARC Lab	Frascati, Italy	150 MeV	Several bunches	On going		 Multi-purpose user facility: includes laser- and beam-driven plasma wakefield experiments

AWAKE at CERN

- Advanced Proton Driven Plasma Wakefield Acceleration Experiment
 - Final Goal: Design high quality & high energy electron accelerator based on acquired knowledge.
- Proof-of-Principle Accelerator R&D experiment at CERN
- Approved in August 2013
- ea First beam end 2016

AWAKE Experimental Program, 2016/17

Phase 1: Understand the physics of self-modulation instability processes in plasma.

AWAKE Experimental Program 2017/18

- **Phase 1:** Understand **the physics of self-modulation instability** processes in plasma.
- Phase 2: Probe the accelerating wakefields with externally injected electrons.

→ start Q4 2017

- Demonstrate GeV scale gradients with proton driven wakefields

"How fast get our surfers?"

AWAKE Proton Beam Line

Parameter	Protons
Momentum [MeV/c]	400 000
Momentum spread [%]	±0.035
Particles per bunch	$3 \cdot 10^{11}$
Charge per bunch [nC]	48
Bunch length [mm]	120 (0.4 ns)
Norm. emittance [mm·mrad]	3.5
Repetition rate [Hz]	0.033
1σ spot size at focal point [μ m]	200 ± 20
β -function at focal point [m]	5
Dispersion at focal point [m]	0

Laser and Laser Line

- Laser beam line to plasma cell
 - $\lambda = 780 \text{ nm}$
 - t pulse = 100-120 fs
 - E = 450 mJ

The AWAKE Plasma Cell

- 10 m long, 4 cm diameter,
- Rubidium vapor, field ionization threshold ~10¹² W/cm²
- Density adjustable from 10¹⁴ − 10¹⁵ cm⁻³ → 7x 10¹⁴ cm⁻³
 - Requirement: uniformity better than 0.2%
- Fluid-heated system (~220 deg)

AWAKE Self-Modulation Instability Measurements

Self-Modulation Instability: 1st Measurements!!!

"What happens to our boat in the lake and which waves does it produce?"

Image of proton beam measured with OTR and a streak camera

K. Rieger, MPP

2016/2017

This Means:

Electron Source and Electron Beam Line

"How fast get our surfers?"

Klystron system

Electron beam line tunnel

PHIN electron source

Electron spectrometer to measure the accelerated electrons

8.5 ton, 1.2 T, 1.3 Tm, L=1.6 m, W=1.3 m

AWAKE Time Line

	2013	2014	2015	2016		2017		2018	2019	2020	2021	202 2ff	
Proton and laser beam-line	Installation Study, Design, Procurement, Component preparation Modification, Civil Engineering and installation					Run 1	Da	taking	Long Shu 24 ma	utdown 2 onths	Data taking Run 2		
Experim-ental area	Study, Design, Procurement,	Study, Design, Procurement, Component preparation											
e ⁻ source and beam-line	Studie	es, design	Fabrica	tion		Installation	Commissioning	Phase 2					

Outline

- Motivation
- Plasma Wakefield Acceleration
- Plasma Wakefield Acceleration Experiments
- Outlook

What is the Future of the PWA Technology?

Short term perspective (< 10 years):

 Applications in medicine, radiobiology, material science Compact FEL, Compact X-ray source are rather close: generating light sources for fine-scale imaging, producing radioactive isotopes for medical use, creating gamma ray and THz radiation for material testing.

Long term perspective (>20 years):

• High energy physics applications depend on progress in multistage design, acceleration of positrons, laser technology, beam quality...

Photon Science XFEL

Kilometer-scale X-ray FEL Linac Coherent Light Source Photon Beam Lines

XFEL Photon Science

Visualization by T. Taiima. 2010

Possible Application of Wakefield Acceleration Technology Physics with an Electron-Proton or Electron-Ion Collider, LHeC-like

Create ~50 GeV electron beam within 50–100 m of plasma driven by SPS protons, But luminosity < 10³⁰ cm⁻² s⁻¹.

VHEeP: A. Caldwell and M. Wing, Eur. Phys. J. C 76 (2016) 463

One proton beam used for acceleration of **electrons to 3 TeV** to then collide with other **proton beam at 7 TeV.**

Many encouraging result in plasma wakefield acceleration technology.

The future is bright!

Plasma wakefield acceleration is an exciting and growing field with a huge potential.