Associated Higgs Boson Production with a Top-Quark Pair at NNLL+NLO at the LHC

ANNA KULESZA UNIVERSITY OF MÜNSTER

in collaboration with L. Motyka, T. Stebel and V. Theeuwes

L Westfälische Wilhelms-Universität Münster

DFG Deutsche Forschungsgemeinschaft

TH INSTITUTE "LHC AND THE STANDARD MODEL: PHYSICS AND TOOLS", CEBN, 12.96.2917

ASSOCIATED HIGGS PRODUCTION WITH TOP QUARKS

Direct probe of the strength of the top-Yukawa coupling without making any assumptions 7 regarding its nature

$$V = -\frac{m^2}{2} |H|^2 + \lambda |H^4| \qquad 4\rho^2 \frac{d!}{d \ln m^2} @-3y_t^4 + 6/y_t^2 + 12/^2 + \dots$$

$$\int_{\substack{M_t = 173.3 \pm 0.8 \text{ GeV}(\text{gray})\\a_3(M_2) = 0.1184 \pm 0.0007(\text{rcd})\\M_h = 125.1 \pm 0.2 \text{ GeV}(\text{blue})}$$

$$\int_{\substack{M_t = 171.1 \text{ GeV}\\a_1(M_2) = 0.1165\\d_1(M_2) = 0.1165\\d_$$

ASSOCIATED HIGGS PRODUCTION WITH TOP QUARKS

- Direct probe of the strength of the top-Yukawa coupling without making any assumptions regarding its nature
- An example of a $2 \rightarrow 3$ process for which full NNLO results are not available yet
- ca. 10 % NLO QCD scale uncertainty @13-14 TeV
- One of the most eagerly awaited measurements at Run 2

[Buttazzo et al.'13]

TTH @ THE LHC

Both ATLAS and CMS observed 2σ excesses in Run 1 in the signal strength $\mu_i = \sigma_i / \sigma_{i,SM}$

TTH @ THE LHC

Both ATLAS and CMS observed 2σ excesses in Run 1 in the signal strength $\mu_i = \sigma_i / \sigma_{i,SM}$

- Run 2: sophisticated analysis methods (event categories, multi-variant analysis techniques) for many challenging final states:
 - multi-leptons + jets ($H \rightarrow WW/ZZ/\tau\tau$)
 - A leptons + multiple b-jets (H→ bb)
 - di-photons + leptons and/or b-jets $(H \rightarrow \gamma \gamma)$

μ	Multi-lepton	bb	үү
ATLAS	2.5 ^{+1.3} -1.1	2.1 ^{+1.0} -0.9	-0.25 ^{+1.26} -0.99
CMS	2.0 ^{+0.8} -0.7	-0.19 ^{+0.80} -0.81	1.9 ^{+1.5} -1.2

THEORY STATUS

- NLO QCD available since some time [Beenakker, Dittmaier, Krämer, Plumper, Spira, Zerwas '01-'02][Reina, Dawson'01][Reina, Dawson, Wackeroth'02][Dawson,Orr,Reina,Wackeroth'03] [Dawson, Jackson, Orr, Reina, Wackeroth'03]
 - ~ 20% correction to the total cross section
- NLO interfaced to parton showers in aMC@NLO [Frederix, Frixione, Hirschi, Maltoni, Pittau, Torrielli'11] and POWHEG-Box [Garzelli, Kardos, Papadopoulos, Trocsanyi'11] [Hartanto, Jäger, Reina, Wackeroth'15] as well as SHERPA [Gleisberg, Höche, Krauss, Schönherr, Schumann, Siegert, Winter]
 - improved description of distribution shapes
- NLO EW (+QCD) corrections [Frixione, Hirschi, Pagani, Shao, Zaro'14-'15][Zhang, Ma, Zhang, Chen, Guo'14]
 - percent level corrections
- Top and Higgs off-shell effects: NLO QCD and EW for W⁺ W⁻ bb H [Denner, Feger'15][Denner,Lang, Pellen, Uccirati'16]
 - small effects for total cross sections, NLO EW corrections can be important in distributions

STATUS: RESUMMATION

- **NLL+NLO resummation in the absolute threshold limit,** $\hat{s} \rightarrow M^2 = (m_t + m_{\bar{t}t} + m_H)^2$ obtained using direct QCD (Mellin space) approach [AK, Motyka, Stebel, Theeuwes'15]
- [™] "Approximated" NNLO based on the SCET approach to resummation in the invariant mass threshold limit $\hat{s} \rightarrow Q^2 = (p_t + p_{\bar{t}} + p_H)^2$ [Broggio, Ferroglia, Pecjak, Signer, Yang'15]

Status discussed in the LHC HXSWG YR4 (2016)

STATUS: RESUMMATION

- **NLL+NLO resummation in the absolute threshold limit,** $\hat{s} \rightarrow M^2 = (m_t + m_{\bar{t}t} + m_H)^2$ obtained using direct QCD (Mellin space) approach [AK, Motyka, Stebel, Theeuwes'15]
- [™] "Approximated" NNLO based on the SCET approach to resummation in the invariant mass threshold limit $\hat{s} \rightarrow Q^2 = (p_t + p_{\bar{t}} + p_H)^2$ [Broggio, Ferroglia, Pecjak, Signer, Yang'15]

Status discussed in the LHC HXSWG YR4 (2016)

- NLL+NLO resummation in the invariant mass threshold limit, direct QCD [AK, Motyka, Stebel, Theeuwes'16]
- NNLL+NLO resummation in the invariant mass threshold limit, hybrid SCET/Mellin space method [Broggio, Ferroglia, Pecjak, Yang'16]
- Here: NNLL+NLO resummation in the invariant mass threshold limit, direct QCD method

A. Kulesza, Associated ttbH production @ NNLL+NLO

GENERAL FORMALISM: $2 \rightarrow 2$ Dijets Example

[Contapanagos, Laenen, Sterman'96] [Kidonakis, Oderda, Sterman'98]

Factorization principle

$$\hat{S}_{ab \to kl} = H_{IJ} \otimes E_a \otimes E_b \otimes S_{JI} \otimes J_k \otimes J_l$$

realized via (valid near threshold)

$$W = W_a c_a + W_b c_b + W_s + W_k + W_l$$
total weight
individual weights for each of the
factorized functions, vanish at threshold

PIM: $c_a = c_b = 1$

1PI:
$$C_a = \frac{u}{t+u}$$
 $C_b = \frac{t}{t+u}$

GENERAL FORMALISM

$$\frac{d\sigma_{AB\to kl}}{d\Pi} = \sum_{a,b} \int dx_a dx_b \ f_{a/A}(x_a^2, \mu^2) f_{b/B}(x_b^2, \mu^2) \ \Omega_{ab\to kl}(w, \hat{\Pi}, \mu^2, \{m^2\})$$

$$\frac{d\sigma_{ab\to kl}}{d\hat{\Pi}} = H_{ab\to kl,IJ} \int dw_a \, dw_b \, dw_s \, dw_k \, dw_l \, \delta(W - c_a w_a - c_b w_b - w_s - w_k - w_l) \\ \psi_{a/a}(w_a, Q/\mu, \dots) \psi_{b/b}(w_b, Q/\mu, \dots) S_{ab\to kl,JI}(w_s, Q/\mu, \dots) J_k(w_k, Q/\mu, \dots) J_l(w_l, Q/\mu, \dots)$$

Laplace transform:

$$\tilde{F}(N) = \mathop{\stackrel{\vee}{\mathbf{0}}}_{0}^{\mathbb{V}} dW \,\mathrm{e}^{-NW} F(W)$$

incoming collinear radiation

$$\begin{split} \tilde{\Omega}_{ab \to kl}(N,Q/\mu,...) &= H_{ab \to kl,IJ} \frac{\tilde{\psi}_{a/a}(c_aN,Q/\mu,...)\tilde{\psi}_{b/b}(c_bN,Q/\mu,...)}{\tilde{f}_{a/a}(c_aN,Q/\mu,...)\tilde{f}_{b/b}(c_bN,Q/\mu,...)} \\ & \tilde{S}_{ab \to kl,JI}(N,Q/\mu,...)J_k(N,Q/\mu,...)J_l(N,Q/\mu,...) \\ & \text{ soft wide-angle emission} \\ & \text{ outgoing collinear radiation} \end{split}$$

GENERAL FORMALISM FOR $2 \rightarrow 3$

- Factorization principle holds for any number of jets/particles in the final state [Kidonakis, Oderda, Sterman'98][Bonciani, Catani, Mangano, Nason'03] but adding one more particle/jet requires adjusting for
 - colour structure of the underlying hard scattering: affects hard H and soft S functions

$$\left(\mu\frac{\partial}{\partial\mu} + \beta(g)\frac{\partial}{\partial g}\right)S_{JI}^{(N)} = -\Gamma_{JK}^{\dagger}S(N)_{KI} - S(N)_{JL}\Gamma_{LI}$$

 \rightarrow soft anomalous dimension

more complicated kinematics: affects *H*, *S* (anomalous dimension) and the arguments of incoming jet functions (coefficients c_{α} , c_b)

$$pp \rightarrow Q\bar{Q}B$$

- Final state with only 2 massive colored particles
 - **7** no final state jets
 - color structure same as in the QQbar production

$$pp \rightarrow Q\bar{Q}B$$

- Final state with only 2 massive colored particles
 - no final state jets
 - color structure same as in the QQbar production

$$\begin{aligned} \frac{d\tilde{\hat{\sigma}}_{ij\to klB}^{(\text{res})}}{dQ^2} & (N,Q^2,\{m^2\},\mu_{\rm F}^2,\mu_{\rm R}^2) = \\ & = \text{Tr}\left[\mathbf{H}_{ij\to klB}(Q^2,\{m^2\},\mu_{\rm F}^2,\mu_{\rm R}^2)\mathbf{S}_{ij\to klB}(N+1,Q^2,\{m^2\},\mu_{\rm F}^2,\mu_{\rm R}^2)\right] \\ & \times \Delta^i(N+1,Q^2,\mu_{\rm F}^2,\mu_{\rm R}^2)\Delta^j(N+1,Q^2,\mu_{\rm F}^2,\mu_{\rm R}^2), \end{aligned}$$

$$pp \rightarrow Q\bar{Q}B$$

- Final state with only 2 massive colored particles
 - **7** no final state jets
 - color structure same as in the QQbar production
- Threshold definitions:
 - absolute threshold limit

$$w = b^{2} = 1 - \frac{(m_{3} + m_{4} + m_{5})^{2}}{\hat{s}} \qquad \hat{s} \to M^{2} = (m_{3} + m_{4} + m_{5})^{2}$$

invariant mass threshold limit ("Triple Invariant Mass kinematics", TIM)

$$w = 1 - \frac{(p_3 + p_4 + p_5)^2}{\hat{s}} \qquad \hat{s} \to Q^2 = (p_3 + p_4 + p_5)^2$$

1PI, 2PI kinematics...

A. Kulesza, Associated ttbH production @ NNLL+NLO

CERN TH Institute, 12.06.17

$$pp \rightarrow Q\bar{Q}B$$

- Final state with only 2 massive colored particles
 - no final state jets
 - color structure same as in the QQbar production
- Threshold definitions:
 - absolute threshold limit

simplest

$$w = b^{2} = 1 - \frac{(m_{3} + m_{4} + m_{5})^{2}}{\hat{s}} \qquad \hat{s} \to M^{2} = (m_{3} + m_{4} + m_{5})^{2}$$

invariant mass threshold limit ("Triple Invariant Mass kinematics", TIM)

$$w = 1 - \frac{(p_3 + p_4 + p_5)^2}{\hat{s}} \qquad \hat{s} \to Q^2 = (p_3 + p_4 + p_5)^2$$

7 1PI, 2 PI kinematics...

A. Kulesza, Associated ttbH production @ NNLL+NLO

CERN TH Institute, 12.06.17

ONE-LOOP SOFT ANOMALOUS DIMENSION

$$\begin{split} \Gamma_{q\bar{q} \to klB} &= \frac{\alpha_s}{\pi} \left[\begin{array}{c} -C_F(L_{\beta,kl}+1) & \frac{C_F}{C_A} \Omega_3 \\ 2\Omega_3 & \frac{1}{2} (C_A - 2C_F) (L_{\beta,kl}+1) + C_A \Lambda_3 + (8C_F - 3C_A) \Omega_3 \end{array} \right] \\ \\ L_{\beta,kl} &= \frac{\kappa^2 + \beta_{kl}^2}{2\kappa\beta_{kl}} \left(\log\left(\frac{\kappa - \beta_{kl}}{\kappa + \beta_{kl}}\right) + i\pi \right) \\ \beta_{kl} &= \sqrt{1 - \frac{(m_k + m_l)^2}{s_{kl}}} \\ T_i(m) &= \frac{1}{2} \left(\ln((m^2 - \hat{t}_i)^2 / (m^2 \hat{s})) - 1 + i\pi \right) \\ U_i(m) &= \frac{1}{2} \left(\ln((m^2 - \hat{u}_i)^2 / (m^2 \hat{s})) - 1 + i\pi \right) \end{array} \right] \\ \end{split}$$

Reduces to the 2->2 case in the limit $p_B \rightarrow 0$, $m_B \rightarrow 0$

ONE-LOOP SOFT ANOMALOUS DIMENSION

$$\begin{split} \Gamma_{q\bar{q}\to klB} &= \frac{\alpha_s}{\pi} \left[\begin{array}{c} -C_F(L_{\beta,kl}+1) & \frac{C_F}{C_A}\Omega_3 \\ 2\Omega_3 & \frac{1}{2}(C_A - 2C_F)(L_{\beta,kl}+1) + C_A\Lambda_3 + (8C_F - 3C_A)\Omega_3 \end{array} \right] \\ & L_{\beta,kl} &= \frac{\kappa^2 + \beta_{kl}^2}{2\kappa\beta_{kl}} \left(\log\left(\frac{\kappa - \beta_{kl}}{\kappa + \beta_{kl}}\right) + i\pi \right) \\ & \beta_{kl} &= \sqrt{1 - \frac{(m_k + m_l)^2}{s_{kl}}} \\ T_i(m) &= \frac{1}{2} \left(\ln((m^2 - \hat{t}_i)^2 / (m^2\hat{s})) - 1 + i\pi \right) \\ & U_i(m) &= \frac{1}{2} \left(\ln((m^2 - \hat{u}_i)^2 / (m^2\hat{s})) - 1 + i\pi \right) \end{array} \right] \\ \end{split}$$

Reduces to the 2->2 case in the limit $p_B \rightarrow 0$, $m_B \rightarrow 0$

Absolute threshold limit: non-diagonal terms vanish Coefficients $D^{(1)}_{ab \rightarrow kl B,l}$ governing soft emission same as for the QQbar process: soft emission at absolute threshold driven only by the color structure

ABSOLUTE THRESHOLD RESUMMATION FOR QQB

Absolute threshold limit

$$\hat{s} \rightarrow M^2 = (m_t + m_{\bar{t}} + m_H)^2$$
$$b = \sqrt{1 - M^2 / \hat{s}} \rightarrow 0$$

but:

- ► LO cross section suppressed in the limit β→0 as β⁴ due to massive 3-particle phase-space
- Absolute threshold scale *M* away from the region contributing the most

nevertheless:

 Well defined class of corrections which can be resummed [AK, Motyka, Stebel, Theeuwes'15]

ONE-LOOP SOFT ANOMALOUS DIMENSION

$$\begin{split} \Gamma_{q\bar{q}\to klB} &= \frac{\alpha_s}{\pi} \left[\begin{array}{c} -C_F(L_{\beta,kl}+1) & \frac{C_F}{C_A}\Omega_3 \\ 2\Omega_3 & \frac{1}{2}(C_A - 2C_F)(L_{\beta,kl}+1) + C_A\Lambda_3 + (8C_F - 3C_A)\Omega_3 \end{array} \right] \\ & C_{\beta,kl} &= \frac{\kappa^2 + \beta_{kl}^2}{2\kappa\beta_{kl}} \left(\log\left(\frac{\kappa - \beta_{kl}}{\kappa + \beta_{kl}}\right) + i\pi \right) \\ & \beta_{kl} &= \sqrt{1 - \frac{(m_k + m_l)^2}{s_{kl}}} \\ T_i(m) &= \frac{1}{2} \left(\ln((m^2 - \hat{t}_i)^2 / (m^2\hat{s})) - 1 + i\pi \right) \\ & U_i(m) &= \frac{1}{2} \left(\ln((m^2 - \hat{u}_i)^2 / (m^2\hat{s})) - 1 + i\pi \right) \\ \end{array}$$

Reduces to the 2->2 case in the limit $p_B \rightarrow 0$, $m_B \rightarrow 0$

Absolute threshold limit: non-diagonal terms vanish Coefficients $D^{(1)}_{ab \rightarrow kl B,l}$ governing soft emission same as for the QQbar process: soft emission at absolute threshold driven only by the color structure

Invariant mass threshold: non-diagonal elements present

INVARIANT MASS KINEMATICS

$$\hat{s} \rightarrow Q^2 = (p_3 + p_4 + p_5)^2$$

Problem: hard and soft functions are now (and in general) matrices in colour space

$$\begin{aligned} \frac{d\hat{\sigma}_{ij \to klB}^{(\text{res})}}{dQ^2}(N) &= Tr \left[\mathbf{H}_{ij \to klB} \, \bar{\mathbf{U}}_{ij \to klB}(N) \, \tilde{\mathbf{S}}_{ij \to kl} \, \mathbf{U}_{ij \to klB}(N) \right] \, \Delta^i(N+1) \Delta^j(N+1) \\ \mathbf{U}_{ij \to klB}(N) &= \mathbf{P} \exp \left[\int_{\mu}^{Q/\bar{N}} \frac{dq}{q} \Gamma_{ij \to klB}\left(\alpha_s\left(q^2\right)\right) \right] \\ \end{aligned}$$
Diagonalization procedure
[Kidonakis, Oderda, Sterman'98]
Har = \mathbf{R}^{-1} \mathbf{\Gamma}^{(i)} \mathbf{R} \\ \mathbf{H}_{\mathbf{R}} &= \mathbf{R}^{-1} \mathbf{H} \left(\mathbf{R}^{-1}\right)^{\dagger} \\ \mathbf{S}_R &= \mathbf{R}^{\dagger} \tilde{\mathbf{S}} \mathbf{R} \\ \end{aligned}
leads to, at NLL:

$$\tilde{S}_{ij \to kl, R, IJ}(N) = \tilde{S}_{ij \to kl, R, IJ} \exp \left[\int_{\mu}^{Q/N} \frac{dq}{q} \left\{ \lambda_{R, I}^*\left(\alpha_s\left(q^2\right)\right) + \lambda_{R, J}\left(\alpha_s\left(q^2\right)\right) \right\} \right] \end{aligned}$$

where λ 's are eigenvalues of the one-loop soft-anomalous dimension matrix A. Kulesza, Associated ttbH production @ NNLL+NLO CERN TH Institute, 12.06.17

- Extending resummation in this kinematics to NNLL requires:
 - Knowledge of the two-loop soft anomalous dimension
 - Amended treatment of the path-ordered exponential to account for it
 - Knowledge of the one-loop hard-matching coefficient

- Extending resummation in this kinematics to NNLL requires:
 - Knowledge of the two-loop soft anomalous dimension
 - Amended treatment of the path-ordered exponential to account for it
 - **7** Knowledge of the one-loop hard function H_{μ}

$$\mathbf{\Gamma}_{ij\to klB} = \left[\left(\frac{\alpha_s}{\pi} \right) \mathbf{\Gamma}^{(1)} + \left(\frac{\alpha_s}{\pi} \right)^2 \mathbf{\Gamma}^{(2)} + \dots \right]$$

✓ Soft anomalous dimensions known at two loops for any number of legs [Mert-Aybat, Dixon, Sterman'06] [Becher, Neubert'09] [Mitov, Sterman, Sung'09-'10] [Ferroglia, Neubert, Pecjak, Yang'09] [Beneke, Falgari, Schwinn'09], [Czakon, Mitov, Sterman'09] [Kidonakis'10]

- Extending resummation in this kinematics to NNLL requires:
 - Knowledge of the two-loop soft anomalous dimension
 - Amended treatment of the path-ordered exponential to account for it
 - **7** Knowledge of the one-loop hard function H_{μ}

$$\mathbf{U}_{ij\to klB}\left(N\right) = \operatorname{Pexp}\left[\int_{\mu}^{Q/\bar{N}} \frac{dq}{q} \mathbf{\Gamma}_{ij\to klB}\left(\alpha_{s}\left(q^{2}\right)\right)\right] \qquad \mathbf{\Gamma}_{ij\to klB} = \left[\left(\frac{\alpha_{s}}{\pi}\right)\mathbf{\Gamma}^{(1)} + \left(\frac{\alpha_{s}}{\pi}\right)^{2}\mathbf{\Gamma}^{(2)} + \dots\right]$$

Perturbative expansion [Buchalla, Buras, Lautenbacher'96] [Ahrens, Neubert, Pecjak, Yang'10]

$$\mathbf{U}_{R}(N,Q^{2},\{m^{2}\},\mu_{\mathrm{F}}^{2},\mu_{\mathrm{R}}^{2}) = \left(\mathbf{1} + \frac{\alpha_{\mathrm{s}}\left(Q^{2}/\bar{N}^{2}\right)}{\pi}\mathbf{K}\right) \left[\left(\frac{\alpha_{\mathrm{s}}\left(\mu_{\mathrm{F}}^{2}\right)}{\alpha_{\mathrm{s}}\left(Q^{2}/\bar{N}^{2}\right)}\right)^{\frac{\overline{\chi}(1)}{2\pi b_{0}}}\right]_{D} \left(\mathbf{1} - \frac{\alpha_{\mathrm{s}}\left(\mu_{\mathrm{F}}^{2}\right)}{\pi}\mathbf{K}\right)$$

$$K_{IJ} = \delta_{IJ} \lambda_I^{(1)} \frac{b_1}{2b_0^2} - \frac{\left(\Gamma_R^{(2)}\right)_{IJ}}{2\pi b_0 + \lambda_I^{(1)} - \lambda_J^{(1)}} \qquad \qquad \overrightarrow{\lambda}^{(1)} = \left\{\lambda_1^{(1)}, \dots, \lambda_D^{(1)}\right\}$$

eigenvalues of $\Gamma^{(1)}$

1441 -

A. Kulesza, Associated ttbH production @ NNLL+NLO

CERN TH Institute, 12.06.17

- Extending resummation in this kinematics to NNLL requires:
 - Knowledge of the two-loop soft anomalous dimension
 - Amended treatment of the path-ordered exponential to account for it
 - **7** Knowledge of the one-loop hard function H_{μ}
 - needs access to colour structure of virtual corrections
 - currently approximated by introducing an overall one-loop hard coefficient $C^{(1)}$ with virtual contributions to $C^{(1)}$ extracted numerically using publicly available POWHEG implementation [Hartanto, Jäger, Reina, Wackeroth'15]

$$\begin{aligned} \frac{d\tilde{\sigma}_{ij\to klB}^{(\text{NNLL})}}{dQ^2} & (N, Q^2, \{m^2\}, \mu_{\text{F}}^2, \mu_{\text{R}}^2) = \left(1 + \frac{\alpha_{\text{s}}(\mu_{\text{R}}^2)}{\pi} \mathcal{C}_{ij\to klB}^{(1)}(Q^2, \{m^2\}, \mu_{\text{F}}^2, \mu_{\text{R}}^2)\right) \\ & \times \text{Tr} \left[\sigma_R^{(0)}(Q^2, \{m^2\}, \mu_{\text{R}}^2) \,\bar{\mathbf{U}}_R(N+1, Q^2, \{m^2\}, Q^2, \mu_{\text{R}}^2) \,\tilde{\mathbf{S}}_R^{(0)} \\ & \times \,\mathbf{U}_R(N+1, Q^2, \{m^2\}, Q^2, \mu_{\text{R}}^2)\right] \Delta^i(N+1, Q^2, \mu_{\text{F}}^2, \mu_{\text{R}}^2) \Delta^j(N+1, Q^2, \mu_{\text{F}}^2, \mu_{\text{R}}^2) \end{aligned}$$

RESUMMATION-IMPROVED NNLL+NLO TOTAL CROSS SECTION

NNLL resummed expression has to be matched with the full NLO result

$$\begin{split} \sigma_{h_{1}h_{2}\rightarrow kl}^{(\text{match})}(\rho,\{m^{2}\},\mu^{2}) &= \sum_{i,j=q,\bar{q},g} \int_{C_{\text{MP}}-i\infty}^{C_{\text{MP}}+i\infty} \frac{dN}{2\pi i} \,\rho^{-N} \,f_{i/h_{1}}^{(N+1)}(\mu^{2}) \,f_{j/h_{2}}^{(N+1)}(\mu^{2}) \\ &\times \left[\left. \hat{\sigma}_{ij\rightarrow kl}^{(\text{res},N)}(\{m^{2}\},\mu^{2}) \,- \,\hat{\sigma}_{ij\rightarrow kl}^{(\text{res},N)}(\{m^{2}\},\mu^{2}) \right|_{_{NLO}} \,\right] \\ &+ \left. \sigma_{h_{1}h_{2}\rightarrow kl}^{\text{NLO}}(\rho,\{m^{2}\},\mu^{2}), \right. \end{split}$$

Inverse Mellin transform evaluated using a contour in the complex N space according to 'Minimal Prescription' [Catani, Mangano, Nason Trentadue'96]

NUMERICAL RESULTS

- NLO cross sections evaluated with aMC@NLO [Alwall, Frederix, Frixione, Hirschi, Maltoni, Mattelaer, Shao, Stelzer, Torrielli, Zaro]
- Mellin transform of the hard function, including leading order terms, taken numerically
- Pdfs: PDF4LHC15_100 sets
- Total cross sections obtained by integrating $d\sigma/dQ^2$ resummed in the invariant mass kinematics over Q
- Results for two central scale choices: $\mu_F = \mu_R = \mu_0 = Q$, $\mu_F = \mu_R = \mu_0 = m_t + m_H/2$, covering a span of relevant scales
- Theory error due to scale variation calculated using the 7-point method, based on the minimum and maximum values of results for $(\mu_F / \mu_{0,\mu_R} / \mu_0) = (0.5, 0.5), (0.5, 1), (1, 0.5), (1, 1), (1, 2), (2, 1), (2, 2)$

NLO vs. NLL

- *qg* channel quite significant numerically, especially in the context of the scale dependence
 → appears first at NLO, i.e. suppressed w.r.t. other channels, no resummation performed for it
- ✓ NLL_{INLO} agrees well with NLO w/o qg channel → approximation of hard-matching coefficient by the colour-channel weighted average works well

INVARIANT MASS DISTRIBUTION

- NNLL+NLO distributions for the two scale choices very close, NLO results differ visibly → K_{NNLL} factors also different
- NNLL+NLO error band slightly narrower than NLO (7-point method)

INVARIANT MASS DISTRIBUTION

- NNLL+NLO distributions for the two scale choices very close, NLO results differ visibly → K_{NNLL} factors also different
- NNLL+NLO error band slightly narrower than NLO (7-point method)

TOTAL CROSS SECTION

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	VLL[fb]	NLO+NNL	NLO+NLL with C [fb]	NLO+NLL[fb]	NLO [fb]	μ_0	\sqrt{S} [TeV]
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.0% .3%	$496^{+8.0\%}_{-7.3\%}$	$487^{+8.4\%}_{-8.5\%}$	$439^{+9.8\%}_{-9.2\%}$	$418^{+11.9\%}_{-11.7\%}$	${Q}$	13
M/2 $A00+5.9%$ $504+8.1%$ $504+4.8%$ $500+5.6%$.4% .8%	$496^{+6.49}_{-6.89}$	$498^{+6.1\%}_{-7.2\%}$	$477^{+8.6\%}_{-8.0\%}$	$468^{+9.8\%}_{-10.7\%}$	Q/2	
$101/2$ $439_{-9.3\%}$ $304_{-7.8\%}$ $304_{-6.1\%}$ $300_{-6.6\%}$.6% .6%	$500^{+5.6\%}_{-6.6\%}$	$504_{-6.1\%}^{+4.8\%}$	$504_{-7.8\%}^{+8.1\%}$	$499^{+5.9\%}_{-9.3\%}$	M/2	

Compared to NLO, remarkable stability of NLO+NNLL

 $\sigma_{\rm NLO+NNLL} = 497^{+7.7\%+3.0\%}_{-7.6\%-3.0\%} ~{\rm fb}, \label{eq:scalar}$

- Stability improves with increasing accuracy of resummation
- Reduction of the theory scale error
- "Best" NNLL+NLO prediction in agreement with NLO at $\mu_0 = M/2$
- Significant effect from the hard matching coefficient

SCALE DEPENDENCE OF THE TOTAL CROSS SECTION

- For $\mu_0 = Q$, decrease in scale dependence with increasing accuracy. NLO+NNLL scale dependence in the $\mu_0/2 2\mu_0$ range of order 1%.
- For $\mu_0 = M/2$, mostly similar behaviour. The rise at the small scale due to (unresummed) contributions from the qg channel

SCALE DEPENDENCE OF THE TOTAL CROSS SECTION

A. Kulesza, Associated ttbH production @ NNLL+NLO

7

 $\mu_{\rm F}$ dependence modified by the hard-matching coefficient

CERN TH Institute, 12.06.17

SUMMARY

- Applications of threshold resummation techniques to the class of 2->3 processes expected to lead to interesting phenomenology and improved precision of the predictions
- Current knowledge makes it feasible to develop such applications of the standard resummation approach at NNLL accuracy, at least in the invariant mass and absolute threshold kinematics
- Application: NNLL+NLO predictions for the process $pp \rightarrow t\bar{t}H$ calculated in the 3-particle invariant mass kinematics
- Remarkable stability of the NNLL+NLO differential and total cross sections w.r.t. scale variation; improving stability with growing accuracy
- Reduction (albeit small using the 7-point method) of the theory error due to scale variation