

PDFs in an event generator

Torbjörn Sjöstrand

Department of Astronomy and Theoretical Physics Lund University Sölvegatan 14A, SE-223 62 Lund, Sweden

LHC and the Standard Model: Physics and Tools, CERN, 16 June 2017

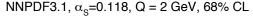
Some Comments and Actions

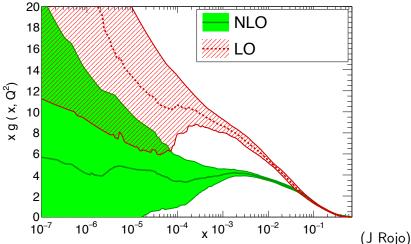
Torbjörn Sjöstrand, CERN and Lund University

- NLO PDF's are great for high-Q² precision tests, but ill suited for much of the bread-and-butter physics generators have to contend with, because of
 - \star (gluon) positivity, or at least strange behaviour at small Q^2 ,
 - * not matched to LO ME's + parton showers.

Why MB/UE physics prefer LO PDFs

Torbjörn Sjöstrand


Dept. of Astronomy and Theoretical Physics, Lund University


Original date: 24 Aug 2012 Last changed: 24 Aug 2014

From hard to soft scales

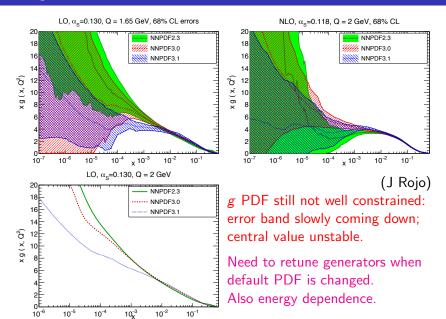
- $LO_{ME} \otimes NLO_{PDF} = NLO_{ME} \otimes LO_{PDF} = LO$.
- NLO MEs typically give positive $\ln(1/x)$ corrections, compensated by negative $\ln(1/x)$ corrections to NLO PDFs, driving PDFs small or even negative at small x and Q.
- No big issue for hard processes: large x and Q.
- Nonperturbative hadronization at/below scales $Q_0 \approx 1$ GeV. Must fill gap between $Q_{\rm hard}$ and Q_0 e.g. for jet substructure.
- Parton showers: traditional way to fill gap.
 Still almost always LL (NLL start to appear).
- ISR (& sometimes FSR) depend on PDFs down to Q_0 . (Backwards evolution of $a \to bc$ contains PDF ratio $x'f_a(x',Q)/xf_b(x,Q)$.)
- Need PDFs down to Q=1 GeV and $x=10^{-8}$ at the LHC \Rightarrow NLO $\ln(1/x)$ terms important.

The gluon PDF at low Q: LO vs. NLO

g members are positive, NLO 68% envelope goes negative!

Apologies: have not studied other PDF sets.

Multiparton interactions


Divergent $p_{\perp} \rightarrow 0$ QCD $2 \rightarrow 2$ cross section dominated by t-channel g exchange. Needs regularization, e.g.

$$\frac{\mathrm{d}\sigma}{\mathrm{d}p_\perp^2} \propto \frac{\alpha_\mathrm{s}^2(p_\perp^2)}{p_\perp^4} \to \frac{\alpha_\mathrm{s}^2(p_{\perp 0}^2 + p_\perp^2)}{(p_{\perp 0}^2 + p_\perp^2)^2}$$

with $p_{\perp 0} \approx 2.5 - 3$ GeV at LHC energies.

- Typical hard process has ~ 10 MPIs, with $\langle p_{\perp} \rangle \approx p_{\perp 0}$.
- ullet Will use PDFs down to and even below $Q=p_{\perp}=1$ GeV and $x=4p_{\perp}^2/s\approx 10^{-8};$ phenomenology sensitive down to ~ 2 GeV and $\sim 10^{-7}.$
- NLO QCD MEs unstable at $p_{\perp} = 2 \text{ GeV } (?) \Rightarrow \text{out.}$
- What is most physically meaningful at 1 2 GeV, $LO_{ME} \otimes LO_{PDF}$ or $LO_{ME} \otimes NLO_{PDF}$?
- My assumption: LO_{PDF} .

The gluon PDF at low Q: time evolution

What to do?

Some arguments why assume $xg(x,Q_0) \propto x^{-\epsilon}$, $\epsilon \approx 0.10$:

- **1** HERA $F_2(x, Q_0) \propto x^{-\epsilon}$ probes g indirectly via sea.
- ullet Expect $\sigma_{
 m pp}(s) \propto x g(x,Q_0)$ for $x \propto 1/s
 ightarrow 0$ (Regge-Gribov).
- **3** MPI models with eikonalized minijet production gives similar relationship between $\sigma_{pp}(s)$ and $xg(x, Q_0)$.

Catches: Q_0 small but unspecified; normalization only from F_2 .

PDF fits: small changes at (medium) high x can have large impact at small x by momentum conservation.

Time to revive LO* philosophy: do not respect momentum sum rule but let each x range take what is appropriate locally? (Applies to Q_0 ansatz, not evolution.)

PYTHIA options and outlook

- PYTHIA allows one "hard" PDF for MEs, possibly NLO, and another "soft" PDF for ISR/MPI, preferably LO.
- PYTHIA only has LO ME internally, so NLO PDFs possible but not guaranteed more accurate.
- \bullet External (LHEF) $\rm NLO_{\rm ME} \otimes \rm NLO_{\rm PDF}$ hard-process input fine.
- If strong request, e.g. for match & merge, could transition smoothly from "hard" NLO to "soft" LO PDF:

$$f_i(x,Q) = h(Q)f_i^{\text{hard}}(x,Q) + (1-h(Q))f_i^{\text{soft}}(x,Q)$$

Especially trivial if both use same (x, Q) grid.

- Do not forget low-(x, Q) needs!
- Retunes necessary, but not always trivial. Example: $\mathrm{d} n_{\mathrm{charged}}/\mathrm{d} \eta$ at large η reflects low-x shape.