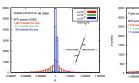
Les Houches 2017 SM N^xLO, NLO (multi-legs+EW) WG TH and EXP summary

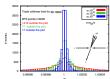
Stefan Kallweit

LHC and the Standard Model: Physics and Tools CERN, Switzerland, June 12-July 7, 2017

- NNLO IR subtraction schemes
- Methods to provide results from NNLO calculations
- NLO EW automation
- Amplitudes and ingredients of higher-order calculations
- Wishlist
- Scale choices in inclusive jet production
- NLO ME+PS vs. fixed order in inclusive jet production
- 8 Non-perturbative effects in inclusive jet production
- QCD resummation studies on TeV Z's
- Uncertainties in cross-section ratios

Different NNLO IR subtraction schemes are on the market and have been (partially) implemented into public programs:


- Antenna subtraction (NNLOJET) [talk by J. Pires]
- Sector-improved residue subtraction (ToP++, ...)
- Iterative subtraction [talk by R. Röntsch]
- q_T subtraction/slicing (HqT, DYNNLO, 2γ NNLO, MATRIX, ...)
- N-jettiness subtraction/slicing (MCFM, GENEVA, ...) [talk by F. Tackmann]
- Projection to Born/structure function approach
- Colorful subtraction


Different approaches lead to (dis-)advantages of the respective methods:

- Restriction to special process classes/kinematics
- Dependence on cut parameters in slicing approaches
- More or less staightforward automation

- Implementation in NNLOJET program
- Applied to $pp \rightarrow jj/Hj/Zj$ production (also: $pp \rightarrow H/W/Z$, $ep \rightarrow jj$)
- (Nearly) local subtraction method with analytic IR pole cancellation
- No additional building blocks needed for higher multiplicities (massless quarks)
- Many subtraction terms needed, bookkeeping complicated
- Colour-ordered amplitudes needed (not easily available from public tools)

Antenna subtraction at work

Double unresolved emission

- Generate phase space trajectories that approach singular region of the phase space
- · Infrared behaviour of subtraction term mimics the behaviour of the matrix element

$$R = \frac{d\sigma_{NNLO}^R}{d\sigma_{NNLO}^S} \xrightarrow{l_g, k_g \to 0} 1$$

- . local method with phase space averaging → good control on the numerical accuracy of the final result, RR, RV, VV separately finite
- analytic IR pole cancellation at NNLO → good control on the correctness of the pole cancellation

Pros and cons

Antenna subtraction

- · double precision
- universal method works for general jet multiplicity → no additional building blocks needed
- pp→jj,Hj,Zj @ NNLO
- subtraction terms for a fixed colour structure reusable
- involves many mappings/subtraction terms as expected for a local method → needs caching system to store mappings

Stefan Kallweit (CERN)

Italk by J. Piresl

Iterative subtraction

- Extension of FKS to NNLO by adding sectors to separate singularities
- Simplified implementation focussed on gauge-invariant matrix elements
- Local; process independent; clear origin of singularities
- Explicit pole cancellation; 4-dimensional matrix elements sufficient
- Numerical pole cancellation; intermediately not Lorentz invariant
- Some work required for extension to colored final states and masses

[talk by R. Röntsch]

⊌KIT

Soft and collinear singularities

BUT: we are dealing with gauge-invariant matrix elements (as opposed to individual Feynman diagrams):

- Can regulate soft and collinear singularities independently.
- Order energies E₄ > E₅: either double soft (\$\mathbb{S}\$) or gluon 5 soft.
- · Regulate soft singularities:

$$\begin{split} \left\langle F_{LM}(1,2,4,5) \right\rangle &= \left\langle \mathscr{S}F_{LM}(1,2,4,5) \right\rangle + \left\langle S_5(I-\mathscr{S})F_{LM}(1,2,4,5) \right\rangle \\ &+ \left\langle (I-S_5)(I-\mathscr{S})F_{LM}(1,2,4,5) \right\rangle. \end{split}$$

then regulate collinear singularities in each term

SKIT

Combining partitions

Rename the resolved gluon 4 in the first term and combine:

$$\begin{split} \left\langle \left[I - \mathbf{S}\right] \left[I - S_{0}\right] \left[C_{41} (g_{d}|\mathbf{u}^{14,23} + C_{51}|dg_{d}|\mathbf{u}^{15,24} F_{LM}(1,2,4,5)\right) \right. \\ &= \left. - \frac{(\alpha_{d}|\mathbf{s}^{-\epsilon})}{\epsilon} \int\limits_{0}^{1} \frac{\mathrm{d}z}{(1-z)^{1+2\epsilon}} \left\langle \tilde{u}_{2|1}^{15,24} \left(\tilde{\mathcal{D}}_{qq}^{1c,2}(z) \left[I - S_{4}\right] F_{LM}(z\cdot1,2,4) + \right. \\ &\left. \theta(z_{4} - z) 2C_{F} \left[I - S_{4}\right] F_{LM}(1,2,4) + \theta(z_{4} - z) \tilde{\mathcal{D}}_{qq}^{(c)}(z) S_{4} F_{LM}(z\cdot1,2,4) \right) \right\rangle. \end{split}$$

Similar simplifications on combining terms from **double** & **triple** collinear partitions.

Les Houches 6 June 2017 Raoul Röntsch (KIT) A Primer on Iterative Subtraction at NNLO 10 Les Houches

Raoul Röntsch (KIT) A Primer on Iterative Subtraction at NNLO

Stefan Kallweit (CERN)

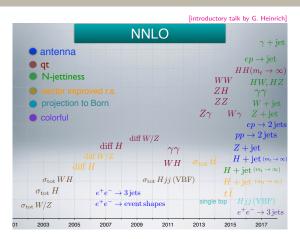
es Houches 2017 SM NXLO WG summar

LHC and the Standard Model June 19, 2013

N-jettiness subtraction/slicing

- Differential 0-jettiness subtractions implemented in GENEVA Monte Carlo
- Global 0-/1-jettiness in MCFM 8: V/H, VH, $\gamma\gamma$; $V/H/\gamma$ +jet
 - ullet Not local in slicing approach; result dependent on slicing parameter $au_{
 m cut}$
 - \bullet au_{cut} dependence can be well controlled by
 - power corrections that can be analyzed and computed in SCET
 - Born+jet NLO calculations that remains stable deep into the IR-singular region
 Straightforward to be outprested if NNI O bears (i.t. /ooft functions are leaven.)

Straightforward to be automated if NNLO beam/jet/soft functions are known


ftalk by F. Tackmannl Estimating Size of Missing Power Corrections. Numerical Results at NNLO. Simple estimate of $\Delta \sigma(\tau_{cut})$ at NⁿLO log scale linear scale relative to full NⁿI O coefficient $\rightarrow Z (13 \text{ TeV})$ gg NNLO $\Delta\sigma(au_{ m cut})/\sigma^{(0,n)}$ 10o.co) 10^{-2} 10-3 T_0 [GeV] To [GeV]

 $10^{-6} \qquad 10^{-5} \qquad 10^{-4} \qquad 10^{-3} \qquad 10^{-2}$ $\tau_{\rm cut} = \mathcal{T}_{\rm cut}/Q$ Typical values in current implementations are in $\tau_{\rm cut} \simeq 10^{-4}\dots 10^{-3}$ range

 $\begin{array}{c|cccc} \text{channel and coefficient} & \text{fitted} & \text{calculated} \\ q\bar{q} & \text{NNLO} & a_3 & -0.01112 \pm 0.00150 & -0.01277 \\ qg & \text{NNLO} & a_3 & +0.02373 \pm 0.00247 & +0.02256 \\ q\bar{q} & \text{NNLO} & a_2 & -0.04662 \pm 0.00180 \\ qa & \text{NNLO} & a_2 & +0.04234 \pm 0.00242 \\ \end{array}$

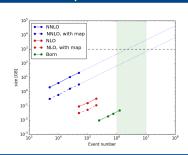
Planned proceeding projects

- Discussion of different IR subtraction schemes
- Drell-Yan as benchmark between applicable schemes
 - inclusive results
 - maybe a benchmark distribution
 - runtime estimate (only partially useful, as process is quite trivial)

How can these NNLO results be made fully available for non-authors?

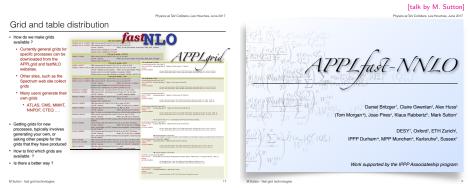
- Public NNLO codes to be run by anyone
- nTuples output written by the programs, to be provided to anyone
- Interface to FASTNLO/APPLGRID/APPLFASTNNLO

nTuples


- nTuples have proven useful for NLO can they be as useful for NNLO?
- Same advantages and same disadvantages but amplified:
 - Programs are more complex, i.e. more runtime can be saved
 - Larger files: more pieces in the calculation, more logarithm coefficients
- Main question: is the size reasonable?
 - ullet studied on $e^+e^- o 3$ jets, hadron–hadron in development
 - modifications to reduce required storage under investigation

[talk by D. Maitre]

Using mapping information


- · The most space-consuming part is the double real part
 - More final state momenta
 - Need much statistics because of subtraction terms
- For each real-real phase-space point we have many subtraction terms
- Each of them has a different set of momenta given by a (n+2) → n or (n+1) → n map
- We can save much space if we simply record the mapping that was used instead of the momenta
- · The downside is that
 - there is more calculation at the moment of reading the nTuple
 - More coupling between nTuple file and code that produced it

Extrapolated file size

Fast grid technologies

- \bullet $\ensuremath{\mathrm{FASTNLO}}$ and $\ensuremath{\mathrm{APPLGRID}}$ provide intermediate output formats
 - that allow for a-posteriori variation of scales and PDFs,
 - that need the original code to be run only once.
- Fast a-posteriori convolution, original calculation reproduced very precisely
- Analysis cuts and observables cannot be changed a-posteriori
- APPLFAST-NNLO interface to NNLOJET has been established.

Planned proceeding projects

- APPLFast Tables: come up with common interface for input to Tables, such that N(N)LO code providers can stick to standards as guidelines for the output format they provide (Les Houches APPLcord?)
- Working out standards for communication between nTuples at NNLO and users
- Working out standards for output format of (NNLO) fixed order results to pass to parton showers (at runtime)

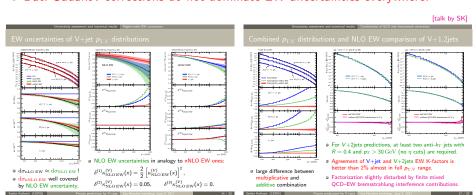
Status of NLO EW matrix element generators (and their implementation into full (parton-level) Monte Carlo programs):

- GOSAM [talk by N. Greiner]
- NLOX [talk by C. Reuschle]
- MADLOOP [talk by V. Hirschil
- OPENLOOPS [talk by M. Schönherr]

SHERPA+GOSAM

- MG5 AMC@NLO
- HERWIG+OPENLOOPS
- MUNICH+OPENLOOPS
- POWHEG+OPENLOOPS
- SHERPA+OPENLOOPS

RECOLA [talk by M. Pellen]


- "IN-HOUSE MC"+RECOLA
- Sherpa+Recola

· ...(?)

- Realistic uncertainty estimate for EW corrections
 - Estimate of missing higher EW orders
 - Additive/multiplicative combination of QCD and EW results
- Democratic clustering (photons+QCD partons)
- Treatment of photons (IS/FS/identified)
- Treatment of (pseudo-)resonances
 - in particular pseudo-resonances in interference contributions without CMS
 - actual resonances in CMS only potential numerical problem at fixed order
- Issues with the complex mass scheme
 - complex α wrong in subleading EW corrections: consistent use of $|\alpha|$?
 - renormalization of (stable) top in presence of complex W mass

Realistic uncertainty estimate for EW corrections

- EW correction large in high-energy tails of distributions (Sudakov regime)
- NNLO Sudakov corrections dominant source of EW uncertainty
 - → use in uncertainty estimate, or even include as nNLO EW
- NNLO Sudakov corrections also relevant for combined QCD-EW uncertainty
 - → multiplicative approach as nominal prediction, plus uncertainty estimate
- But: Sudakov corrections do not dominate EW uncertainties everywhere!

- Exemplary situation: $gq \rightarrow gq + \gamma$ contribution to di-jet production
- QCD and QED singularity structures favours democratic treatment of q, g, γ
 - \rightarrow implies presense of γq initial state at Born level
- But: Experiment would not consider photon-jets as jets
 - \hookrightarrow democratic clustering, and discard jets with $E_{\gamma}>z_{\rm cut}E_{\rm iet}$
- ullet But: E_{γ} not well-defined in perturbative QED $(\gamma
 ightarrow qar{q})$
 - → fragmentation function approach . . .

[talk by V. Hirschi]

NEED FOR DEMOCRATIC JETS

Need to compute "QED corrections": then, include photon emission

But: soft photons induce singularities; one must treat them inclusively

Solution: sum over all configurations

However: (QCD) IR safety demands $E_{aluon} \rightarrow 0$ to be a smooth limit. This implies a $q\gamma$ final state must exist at the Born level. That's OK: treat q's, q's and γ 's democratically

ISSUES WITH DEMOCRATIC JETS

But experimentalists typically do not consider photon-jets as jets.

Solution: cluster democratically, but discard jets where $E_{\gamma} > z_{cut}E_{iet}$

This is a problem only at $\Sigma_{NLO,3}$ and beyond (at least two EW couplings are needed); in principle it can be ignored at NLO EW.

Still, it is much cleaner to devise a solution which is universally valid

- Distinction between different photon types
 - initial state: unresolved \rightarrow short-distance scheme (G_{μ} , $\alpha(m_Z)$, MS, ...)
 - final state: identified $\rightarrow \alpha(0)$ scheme, no $\gamma \rightarrow f\bar{f}$ splittings
 - final state: democratic \rightarrow short-distance scheme, include $\gamma \rightarrow f\bar{f}$ splittings
 - → identify photon through fragmentation function
- Other descriptions could also work reasonably.

[talk by M. Schönherr]

External photons - initial state

Harland-Lang et.al. arXiv:1605.04935. Kallweit et.al. arxiv:1705.00598

- . initial state photons are not resolved, treat them identically to any other parton
- · both elastic and inelastic photons evolve according to DGLAP \rightarrow splittings $\gamma \rightarrow \gamma$, $\gamma \rightarrow q\bar{q}$, $q \rightarrow q\gamma$
- . the photon PDF (at NLO QED) contains renormalisation factors that must be cancelled by the partonic cross section
- ⇒ renormalisation in short-distance scheme (G_u, α(m_Z), MS, ...)

External photons - final state

· final state photons may be resolved or not strictly speaking: differentiate between short-distance photon and indentified, measurable photon

Subtleties

- ⇒ if treated as identified particle, renormalise on-shell (α(0)). no $\gamma \rightarrow ff$ splittings
 - → renormalisation contains IR poles
- ⇒ if treated democratically (just another parton), renormalise in short distance scheme $(G_{ii}, \alpha(m_Z), \overline{MS}, ...)$, include $\gamma \to ff$ splittings → pure UV renormalisation
 - \rightarrow identify photon through fragmentation function $D^p_{\gamma}(z, \mu)$

i.e.
$$D_{\gamma}^{\gamma}(z,\mu) = \frac{\alpha(0)}{\alpha_{\mathsf{sd}}} \delta(1-z) + \mathcal{O}(\alpha)$$

all others $D_{\alpha}^{q}(z, \mu) = \mathcal{O}(\alpha), D_{\alpha}^{g}(z, \mu) = \mathcal{O}(\alpha^{2})$

identical at NLO EW, if fragmentation D^q on Born is negligible

Issues with the complex mass scheme

- ullet Complex lpha spoils IR factorization and KLN cancellation
 - → only in subleading (below NLO EW) corrections
- possible solution: assign a phase to G_{μ} to make α real?
- ullet Example with stable top quarks and unstable W bosons
 - → imaginary residue of UV pole remains uncancelled
- solution: always consider fully decayed particles?

COMPLEX MASS SCHEME ISSUES

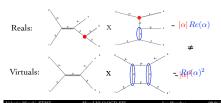
Is there anyway to salvage the CMS with unstable final states?

Relevant case: $p p > t t \sim (+jets)$

 $p p > t t^-$: Can set all widths to zero, so OK.

 $p p > t t \sim j$: Must retain the weak bosons width. Is **WT=0** ok?

$$\begin{array}{c} m_t^{(OS)} \\ \longrightarrow \end{array} = \begin{array}{c} m_t^{bare} \\ \longrightarrow \end{array} + \begin{array}{c} \lim_{\substack{(B(n_t^{(OS)}, 0, m_h^{(CBS)})) \\ \longrightarrow \\ \longleftarrow}} \sim \\ \delta_{m_t} \\ \longrightarrow \end{array} + \begin{array}{c} \delta_{m_t} \\ \longrightarrow \\ \longrightarrow \end{array}$$

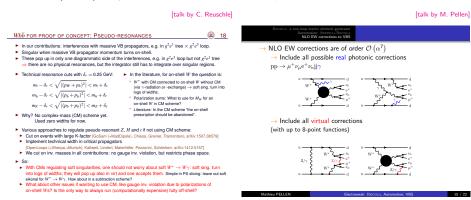

Any easy solution within the CMS? Or is one forced to always consider fully decayed particles? Notice that the top width offshell effect $(\mathcal{O}(\Gamma_t/m_t))$ are anyway of the same order.

How to handle the complex phase of α ?

• In the G_μ -scheme for example, ${f lpha}$ is defined as:

$$\alpha^{(CMS,G_{\mu})} = \frac{\sqrt{2}G_f}{\pi} \frac{M_W^{(CMS)2} - M_W^{(CMS)4}}{M_w^{(CMS)2}} \longrightarrow \text{Should be complex!}$$

• In practice the complex phase is irrelevant because the matrix elements factorize $|\alpha|$. However, in subleading blobs, one can have:



Stefan Kallweit (CERN)

[talk by V. Hirschi]

Treatment of (pseudo-)resonances

- Pseudo-resonances arise in QCD-EW interference contributions (no squared propagator; in CMS regularized by respective particle width)
- ullet Ways out if external on-shell W bosons need to be used (CMS not applicable):
 - introduce small (gauge-invariance breaking) regulator width
 - apply technical phase-space cuts around the propagator poles
- Other (best?) way out: Never treat unstable particles as stable external states!

Planned proceeding projects

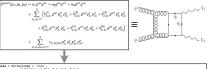
- Discussion and solutions for the before-mentioned topics (and relates ones) suggestion for realistic EW (and mixed QCD-EW) uncertainty estimates
- Numerical investigation of the impact of "democratic clustering" against other possible prescriptions, on di-jet or $W(\to l\nu)$ +jet (or even $W(\to l\nu)$ +2jets) as a sample process.
- Numerical investigation of the impact of different pseudo-resonance treatments in processes with external vector bosons treated as stable, on W+2 jets as a sample process

Prospects in amplitudes and four-dimensional approaches:

- Distribution of multi-loop results
- Four-dimensional methods at NLO/NNLO
- Progress in two-loop amplitudes

Distribution of multi-loop results

- Idea to build a database for master integrals
 - easy search for Feynman graphs
 - links to literature
 - explicit results ready for download
- Extension beyond only integrals proposed (e.g. multiloop form factors)



 \Rightarrow use **UFO** format

[talk by V. Hirschi]

MULTILOOP FORM FACTORS

• IDEA: use a similar format for distributing multi-loop form-factors:

 Allows a tool like MG5_aMC to generate arbitrary 2-loop amplitudes containing this loop (with any decay or vector quantum numbers, but with still onshell gluons)

The Loop-Tree Duality

- New algorithm/regularization scheme for higher-orders in perturbative QFT
- Local cancellation of IR and UV singularities (IR unsubtracted and 4-dim.)
- Simultaneous generation of real and virtual corrections advantageous, particularly for multi-leg processes (at NLO level, so far).
- Outlook: automation and fully differential multi-leg at NNLO (and beyond)

[talk by G. Chachamis]

[talk by F. Driencourt-Mangin]

A graphical representation of the Loop-Tree Duality

Comparison with DREG LTD / FDU DREG Modify the dimensions of the space- Computations without altering the time to d = 4-2ed=4 space-time dimensions1 Singularities manifest after Singularities killed before integration as 1/e poles: integration: . IR cancelled through suitable Unsubtracted summation over subtraction terms, which need degenerate IR states at to be integrated over the integrand level through a unresolved phase-space suitable momentum mapping UV through local counter-terms UV renormalized Virtual and real contributions are · Virtual and real contributions are considered separately: phase-space considered simultaneously: more with different number of final-state efficient Monte Carlo implementation particles and fully differential

¹ Gnendiger et al., To d, or not to d: Recent developments and comparisons of regularization schemes, arXiv:1705.01827

F. Driencourt-Mangin

Les Houches Workshop Series 2017

ourt-Mangin Les He

- Local subtraction terms for loop amplitudes
- Loop-tree duality to re-write cyclic-ordered one-loop amplitude
- Contour deformation
- Cancellations at the integrand level (with UV divergences, non-zero spins and initial-state partons)
- only simple integrals analytically, to reproduce the finite terms associated to a given renormalisation/factorisation scheme

[talk by S. Weinzierl]

Cancellations at the integrand level

$$\int\limits_{n+1} d\sigma^{\mathrm{R}} + \int\limits_{n} d\sigma^{\mathrm{V}} \quad = \quad \int\limits_{n+1} \left(d\sigma^{\mathrm{R}} - d\sigma^{\Delta}_{\mathrm{R}} \right) + \int\limits_{\underline{u}} \underbrace{(\mathbf{I} + \mathbf{L}) \otimes d\sigma^{B}}_{n+\mathrm{loop}} + \int\limits_{n+\mathrm{loop}} \left(d\sigma^{\mathrm{V}} - d\sigma^{\Delta}_{\mathrm{V}} \right)$$

- At NLO both dσ^A_P and dσ^A_V are easily integrated analytically.
- This is no longer true at NNLO and beyond.

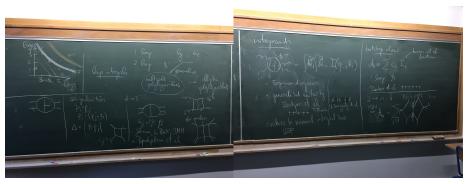
$$\int\limits_n \left(\mathbf{I} + \mathbf{L} \right) \quad = \quad \int\limits_n \left[\int\limits_1 d\sigma_R^\Lambda + \int\limits_{\text{loop}} d\sigma_V^\Lambda + d\sigma_{\text{CT}}^V + d\sigma^C \right] \, .$$

- Unresolved phase space is (D-1)-dimensional.
- Loop momentum space is D-dimensional
- dσ_{CT} counterterm from renormalisation dσ^C counterterm from factorisation

Cancellations of infrared singularities

Only final-state particles:

With initial-state particles:



Planned proceeding projects

- Standards for public multi-loop results: come up with Drell-Yan as an example for tool-chain at various levels in UFO format
 - Merge this approach with the Loopedia project (original plan: only integrals)?
- Working out standards for providing two-loop amplitudes to combine them with other building blocks making up a NNLO fixed-order calculation
- Reasonable project on four-dimensional methods under discussion

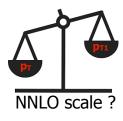
Progress in two-loop amplitudes

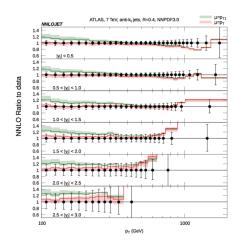
[talk by J. Henn]

• "State of the art is moving towards $2 \rightarrow 3$ processes"

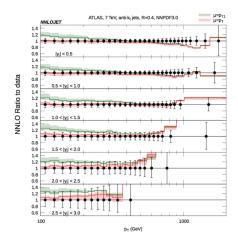
Planned proceeding projects

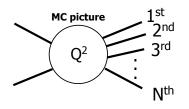
- Update the processes computed since release of the last wishlist (correct for out-dated process information, make some details more precise)
- Add new required processes to the new wishlist
- Provide references for the calculations
- Provide links to relevant measurements
- Add information on required experimental precision
- Promote the Les Houches wishlist to a reference for SM processes, saying which fixed-order calculations are available at which order (make sure that also applied approximations are visible)

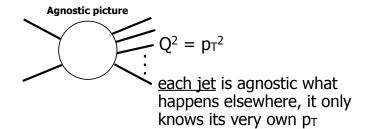

N(N)LO, Multi-legs SM group experimental summary


- K. Theofilatos
- J. Huston (co-convener)

Les Houches 14 June 2017

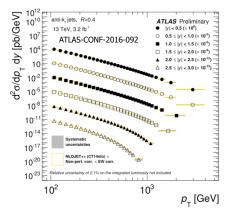

From questions arising from the


From questions arising from the



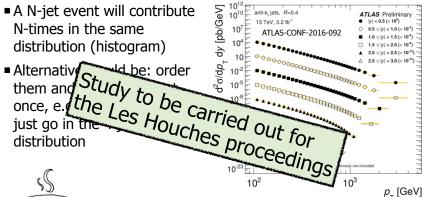
to wondering if AK04 is sufficiently wide enough and if the inclusive jet observable makes sense to start with ...

Two pictures



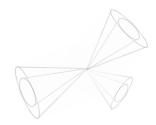
<u>each event</u> has a specific scale Q²

Inclusive jet cross section

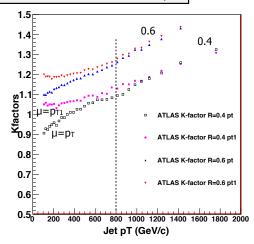

- A N-jet event will contribute N-times in the same distribution (histogram)
- Alternative would be: order them and use each event once, e.g., a 4-jet event will just go in the 4-jet distribution

a bet has been placed that peculiarities of the different scale differences will reside on high N_{iet} that gets a soft scale for $\mu = p_T$

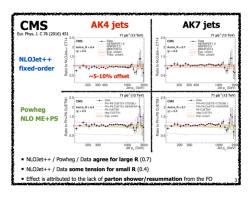
Inclusive jet cross section



a bet has been placed that peculiarities of the different scale differences will reside on high N_{jet} that gets a soft scale for $\mu = p_T$

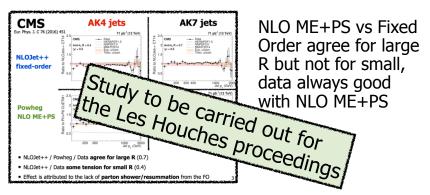

But is this discussion

independent of the cone size?



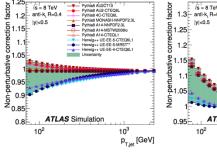
scale choice differences get larger for smaller R

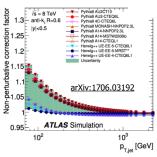
NNLO/LO K-factors ATLAS R=0.4,0.6


partonic vs hadronic x-sections

NLO ME+PS vs Fixed Order agree for large R but not for small, data always good with NLO ME+PS

quantify resummation/shower effects affecting small cones for FO predictions comparing ME with ME+PS for (N)LO using MCs

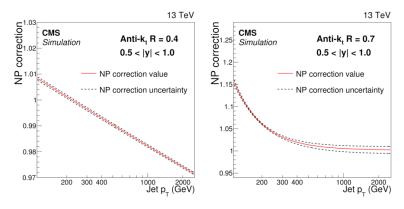

partonic vs hadronic x-sections



quantify resummation/shower effects affecting small cones Ideally we would like Pythia, Herwig, Powheg, Sherpa, for (N) aMC@NLO people subscribing if not done that already, Rivet routines from CMS are waiting in the wiki

Unboxing NP effects

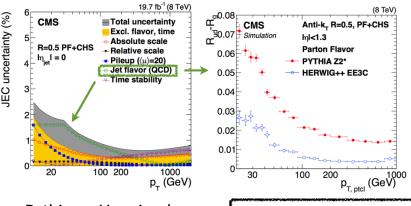
$$C_{\rm NP} = \frac{d\sigma^{\rm ME+PS+HAD+MPI}/dp_{\rm T}}{d\sigma^{\rm ME+PS}/dp_{\rm T}}$$



- Herwig alone predicts **small δC_{NP}** when varying its tunes
- Pythia alone predicts **small δC_{NP}** when varying its tunes
- But Pythia/Herwig disagree on C_{NP}

10

NP at CMS



- Herwig/Pythia and Powheg+Pythia used for envelopes
- ■Uncertainties become larger (a bit) at high P_T for R=0.7

Philosophical (?) questions

- ■Why the procedure of assessing C_{NP} , δC_{NP} can't be made ~identical between ATLAS/CMS
- ■Why Pythia and Herwig predict so much different C_{NP} ? What about Sherpa ?
- What is the best cone size, interplay for NP and soft pertubative effects (resummation)
- •Are these purely theoretical aspects on the interpretation having nothing to do with the experimental-measurements@hadron-level?

Interplay with the jet group

Pythia vs Herwig gluon response is a dominant experimental uncertainty

What about UE/PU area subtraction (offset JEC)?

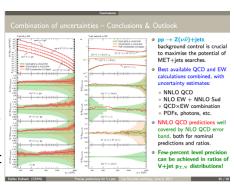
Les Houches accord on NP/cone?

- Les Houches accord on MPI+HAD assessment (C_{NP} , δC_{NP})
- Understand why Pythia vs Herwig predict different C_{NP}
 - Can we get Sherpa also ? Yes we can
 - "jet flavor uncertainties" upon calibrating the jets? (dominant experimental uncertainties on the cross section)
- Rivet routines for tuning observables jet mass, width and LH angularities have been provided in the LH wiki (interplay with jet group) -- can these be also measured by ATLAS/CMS for Les Houches 2019?
- **3-rd dimension of the problem**, evaluate these for different cone sizes, suggested R=0.3, 0.4, 0.6, 0.7, 1.0

Les Houches accord on NP/cone?

- Les Houches accord on MPI+HAD assessment (C_{NP} , δC_{NP})
- Understand why Pythia vs Herwig predict different C_{NP}
- The Can we will be carried out for the Les Houches proceedings heasured
- **3-rd dimension of the problem**, evaluate these for different cone sizes, suggested R=0.3, 0.4, 0.6, 0.7, 1.0

os://phystev.cnrs.fr/wiki/2017:working_groups:incljets


~TeV Z's are useful for QCD resummation studies

Idea behind this exercise:

- mZ' sets high scale the scale of Z' + jets
- check down to which **p_{T1}^{min}** the FO predictions are alone sufficient to describe the leading jet p_T spectrum by contrasting them with resummed predictions
- project to be added soon in the wiki, would be nice to compare predictions with some real Z' data ;-)

Uncertainties in ratios

- scale choices in ratios e.g., W+>=1 jet/Z+>=1 jet, H+>=1 jet/Z+>=1 jet at NLO and at NNLO
- paradigm from V+jets background for DM searches was discussed (W/Z, Z/γ)
- :-(from discussion at LH not easy to do similar tricks for VV, VV+2j VBSs

Summary of the summary

unknotting the knot (reducing uncertainties)

subscribe to the wiki and become a contributor to the SM studies!