БЪЛГАРСКА УЧИТЕЛСКА ПРОГРАМА, CERN

ALICE – експеримент с тежки йони

Петър Христов 26/07/2017

Научна програма Детектор Съвременни методи за анализ Резултати

Физика на тежките йони през погледа на ALICE

- Научната програма на експеримента е посветена на силното взаимодействие
 - Теоретично описание квантова хромодинамика (КХД)
 - Главни "актьори" кварки и глуони
- Силното взаймодействие отговаря за следните загадки на природата
 - Защо масата на силно взаимодействащите частици (адрони) е много по голяма от масата на съставящите ги кварки?
 - Какво удържа кварките в адроните?

КХД: Цвят

- Цветът (R, G, B) е заряд, съответсвуващ на силното взаимодействие
 - Въведен, за да обясни съществуването на Ω⁻(s↑s↑s↑)
 - 70-те години => цветът е заряд за силното взаимодействие
 - В природата се срещат само "безцветни" състояния
 - Този ефект се нарича конфайнмент (удържане): няма строго математическо доказателство
- Кваркови (фермионни) степени на свобода
 - 6 типа (аромата): u, d, s, c, b, t
 - 3 цвята: R, G, В
 - 2 зарядови състояния: кварк и антикварк
 - ▶ 2 спинови състояния: ↑ ↓

- Глуоните пренасят силното взаймодействие
 - Глуоните взаимодействат помежду си

 асимптотическа свобода, конфайнмент, спонтанно нарушаване на киралната симетрия
- Глуонни (бозонни) степени на свобода
 - 8 варианта на цвят
 - 2 кирални състояния (проекции на спина върху импулса)

Квантова хромодинамика (КХД)

Асимптотическа свобода

Преди сблъсъка

След сблъсъка

- Много гореща и плътна ядрена материя в централните сблъсъци докато в периферните имаме "просто" нуклонни взаимодействия
- Сравнено с протон-протонните сблъсъци по-голяма част от енергията ражда частици

Изисквания към детектора ALICE

- Измерване импулсите на заредени частици в широк диапазон
- Идентификация на заредени частици
- Измерване енергията на фотони
- Регистрация на мюони и измерване на техния импулс
- Регистрация на разпадите на странни, очаровани и прелестни частици
- Възстановяване положението на всеки сблъсък
- Измерване на прицелния параметър на сблъсъците ^{*}

Детектор ALICE

"План" за PbPb данни

- Около 16,000 частици минават през детектора при всеки PbPb сблъсък; броят частици достига 90 на ст² в близост до точката на взаимодействие!
- Всяка частица се измерва индивидуално: траектория, идентификация, 4-импулс;
- Определяне точката на взаимодействие с точност няколко Im;
- Идентификация на интересни редки събития в рамките на 100 🛛 s;
- Запис на данни 1.2 Gb/s (2 CD/s) и 1 Pb/y (4 Km висок куп CD);
- Достъп до данните за ~1,000 физици в ~80 института от ~28 страни.

Магнитно поле

Вътрешен силициев тракер

Вътрешен тракер: принцип на работа

- ITS: 6 слоя Si диоди в затворено състояние, формират 2D структура
- При преминаване на заредена частица обеднената зона се йонизира и зарядите създават токов импулс
- Подобна технология има в съвремененните цифрови фотоапарати

Тест на ТРС електрониката

Космически тест 12/2007

20

TPC ALICE

Идентификация на частиците по техните йонизационни загуби

be imparted to a free electron in one collision

24

Детектор по време на прелитане (TOF)

Камери с резистивни плоскости

Измерва времето на прелитане от точката на сблъсък до детектора: ~4 m = 13 ns (скорост = c)

Детектор на преходно излъчване

• Разделяне на релативистки електрони и пиони

- Когато релативистка заредена частица преминава през нееднородна среда, тя излъчва фотон
- Средата е избрана така, че само електроните създават преходно излъчване
- Регистрират се едновременно заредената частица и фотонът
- Дрейфова камера запълнена с тежък газ (Хе)

ТОF супермодул

RN ALIC

TRD супермодул

HE

Идентификация на частици по черенково излъчване (HMPID)

Газът на радиатора определя дължината на вълната, радиуса на кръга (ъгъл на Ч.), броя фотони

Идентификация на заредени частици: 5 независими детектора 700 ITS dE/dx (keV/300 µm) HMPID Cherenkov angle (rad) 0.7 ITS 600 LICE 0.6 500 PERFORMANCE 02/06/2011 Pb-Pb √s_{NN}=2.76 TeV 0.5 400 0.4 300 PERFORMANCI 0.3 30/09/2011 pp is=7TeV 200 0.2 10⁵ ITS **HMPID** 100 0.1 TPC 0.07 0.1 0 0.2 0.3 0.4 2 3 0.5 4 5 1 1.5 2 2.5 3 3.5 4.5 5 TOF 10³ p (GeV/c) p (GeV/c) 200 TPC dE/dx (arb. units) 180 TPC 160 PERFORMANCE 140 18/05/2011 $\pi + \pi$ Pb-Pb vs_{NN}=2.76 TeV 120 100 80 60 ALICE PRELIMINARY 40

1/(2π p_T) d²N/(dy dp_T) (GeV/c)⁻² 5 년 전 1 TPC s_{NN} = 2.76 TeV 10-5 0-5% Pb-Pb 20-40% Pb-Pb 40-60% Pb-Pb 60-80% Pb-Pb 10-7 10 10 p_(GeV/c) ALI-DIR-27117

Фотонен спектрометър

• Плътен като олово и прозрачен като кристал

 Фотоните предизвикват каскади от електрони и позитрони

• Електроните възбуждат атомите на кристала

 Възбудените атоми излъчват в ултравиолетовия спектър

 Ултравиолетовото излъчване се регистрира от едната страна на кристала от фотодиод

От волт към байт

- Сигналът от всяка клетка (~16 милиона) се обработва от високо интегрирана електроника;
- Електрическият сигнал се оцифрова, за да се обработи след това от компютър;
- Информацията се предава по оптически кабели.

Поток от данни

TUAH

37

Бърза реконструкция Компресиране Тригер от високо ниво

Мрежова инфраструктура

Обработка на данни

• Реконструкция

Заредени частици: обединяване на сработилите канали в следи

> За всяка следа: импулс и идентификация

- > Неутрални частици: енергия в калориметрите
- Моделиране: характеристики на детектора

• Анализ

> Получаване на физическа информация

GRID:

Разпределни изчисления: T0, T1, T2,...

Характеристики на реконструцията

- Ефективност = (Брой реконструирани частици) / (Брой на всички частици)
- Разрешение = (Измерено значение Истинско значение)/ Истинско значение
 - Точност на реконстукцията
- Процент фалшиви = (Брой каони реконструирани като пиони) / (Брой каони)
 - Колко често един реконструиран обект изглежда като друг обект

Важно за физическия анализ

- і) Висока ефективност, добро разрешение, нисък процент фалшиви
- -ii) Добра оценка на ефективността, разрешението и процента фалшиви

-0.05

-0.15

-0.1

-0

0.05

0.1

Какво е "пълен анализ"?

Съвкупност от изследвания, които заедно дават съгласувано и цялостно описание на определено множество от данни

- Покрива всички аспекти, нужни за разбиране и характеристика на данните
- Достатъчна документация
- Независима проверка

Практически съвети

- Планиране ("Седем пъти мери, един път режи")
 - Планирай внимателно стратегията на анализ
 - Идентифицирай факторите, определящи чувствителността
 - Какви графики, илюстрации и таблици трябват?
 - Какви данни са нужни?
 - Какви тригери се използват?
 - Какви моделирани данни са нужни?
- Доверявай, но проверявай
 - Запитай се "Има ли този резултат смисъл?"
 - Къде може да се намери допълнителна информация?
- Ден работа спестява 5 мин. мислене (или обратното)
 - Внимателно подгответе детайлите
 - Ако има проблем, опитайте се да го разберете

Основи на анализа

- Обща информация за всички анализи
 - Оценка на пълната ефективност за сигнала след всички критерии за отбор
 - Оценка на очаквания брой фонови събития след всички критерии за отбор
 - Оценка на статистическите и систематични грешки
- Основни типове анализ
 - Преброяване на събития (вероятности на процеси и разпади)
 - Измерване на характеристики (маса, време на живот, импулсни спектри)
 - Търсене на нещо ново (забранени разпади, нова физика)
- Трябват ни данни и моделиране

Етапи на физически анализ

- Използваме резултатите на реконструкцията
- Избираме събития на базата на реконструираните характеристики
 - Често изчисляваме нови величини, например масата на комбинация от частици
 - Селекцията на събития цели да подобри например отношението сигнал/фон
- Оценки
 - Ефективност на селекцията
 - Количество фонови събития след селекцията
 - Може да използваме симулация и данни за оценка на грешките
- Окончателната фигура показва
 - Сравнение с теорията
 - Корекция за ефективност и фон
 - Статистически и систематически грешки

Подобряване на селекцията

- Избор на оценка за качеството на селекцията
- За измервания
 - Селекцията минимизира очакваната грешка
- За търсене на нещо ново най-често се използват
 - Максимална значимост S²/(S+B)
 - Минимална горна граница на оценката
 - Минимално количество данни за откритие, L₅

Пример за моделиране

Моделиране на физически процес

-Резултатът е енергия и импулс на родените частици, в случая на електрон-позитронната двойка от разпада на Z.

Моделиране на детектора -Моделиране на преминаването на електрони през детектора: -Отклоняване на -Отклоняване на траекторията в магнитно поле; -Йонизация на чувствителните елементи; -Взаимодействие с веществото на детектора; -Електромагнитни лавини. Моделиране на електрониката

-Отклик на

чувствителните елементи

в резултат на

йонизацията.

-Моделиране на ЕМ

импулс и електронните елементи.

-Резултатът е подобен на истинските данни + МС истина.

Моделирането изисква големи изчислителни ресурси.

Geant4 накратко

- Устойчиво ядро с възможност за разширение
 - Геометрически пакет, E/B полета, стек за частици
- Богат избор от физически модели (обикновено 2 алтернативи)
 - ▶ e-/e+/gamma 10s eV до TeV
 - Адро-ядрени взаимодействия до І ТеV
 - ▶ Неутронни взаимодеиствия от термализация до I TeV
 - Йон-йонни взаимодействия от 100s MeV/n до 10 GeV/n
 - Оптически свойства, слаби разпади и радиоактивност
- I/O, визуализация, скриптове
- Основен инструмент
 - Над 2000 цитирания за описанието на G4 NIMA (2003)
- Повече от 90 автори
 - Използване: НЕР (75%), биология/медицина (15-20%), космически изследвания (5-10%).
- Отворен код, разпространяван през Уеб. G4 лицензия 2006.

Експерименти

Космически изследвания

ISS Columbus

AMS

Simbol-X

Chang'e-1

LRO

Съвети(не само за Geant4)

"ДА"

- Използвайте ръководството
- Консултирайте се с форума
- Започнете от пример
- Винаги отчитайте нужните физически процеси и ограниченията върху физическите величини
- Изключете физически процеси и събития, които не ви трябват: вие сте експерт

"HE"

- Не използайте лекции вместо ръководството
- Geant4 е сложен продукт и няколко слайда не стигат
- Не чакайте да сте C++ експерт, за да започнете
- Не е нужно да четете цялото ръководство, за да започнете
- Не резглеждайте Geant4 като универсална черна кутия
- Не позволявайте на детайлите да ви забавят

Използвайте примерите на Geant4 за начинаещи <u>http://geant4.fnal.gov/index_web/novice_examples_explained.shtml</u>

Моделирано събитие с бозон на Хигс в CMS

ROOT: система за анализ на данни

- Съхранение на данни. Сериализация/десериализация на С++ обекти в ефективни структури от данни, оптимизирани за бързо четене.
- Достъп до данни. Самоописателни структури от данни (ROOT файлове) с възможност да бъдат организирани във вериги.
- Обработка на данни. Хистограми, апроксимация на функции, минимизация, мат. функции, статистика.
- Визуализация на резултати. Добре развита графична (GUI) подсистема.
- Интерактивна разработка на приложения. С++ интерпретатор, бързо и лесно създаване на прототипи (С++ макроси) и тяхното компилиране.
- Геометрически пакет, псевдослучайни числа и др.

Класификация на събития

• Можем да използваме за разделяне променливите x_1, x_2, \dots

Как да сложим разделителна граница за избор на <u>S</u>?

Разделяне на Сигнал и Фон

ТМVA: Многомерни методи за анализ в ROOT

- Примери за класификация и регресия
 - Оптимизация на правоъгълно отрязване
 - Проективни и многомерни оценки по метода на правдоподобието
 - Алгоритъм за k-близки съседи
 - Дискриминанти на Фишер и Н-матицата
 - Функционални дискриминанти
 - Невронни мрежи
 - Подсилени дървета за решения
 - RuleFit
 - Машина за опорни вектори
- Методи за предварителна обработка на данните:
 - Декорелация, Разложение по принципни компоненти
- Комбинирани методи:
 - Подсилване, Категоризация

Предварителна обработка на данните: декорелация

Обща за всички методи в 7МVA

Отсраняване на линейна корелация чрез ротация на данните

- Алгоритъм на Холецки: намира квадратния корен C' на ковариационната матрица C, i.e., C = C'C'
- ➡ Преобразува данните (x) в декорелиран вектор (x'): x' = C '⁻¹x
- Анализ на принципните компоненти (PCA)
 - Линейно преобразование, което максимизира дисперсията

 Матрицата на собствените вектори V удовлетворява уравненията: C · V = D · V и така PCA елиминира корелациите

Резултати на декорелацията

Декорелацията е пълна, ако

- Корелациите са линейни
- Разпределението на данните е гаусово
- Като цяло тези условия не винаги са изпълнени

Линеен дискриминантен анализ на Фишер (LDA)

Добре известен, прост и елегантен метод за класификация.

LDA определя ос в хиперпространството на данните. Проекцията на събитията върху тази ос максимално разделя сигнала и фона, при това събитията от един и същи тип остават близки

Проста функция за класификация:

$$y_{\text{Fi}}(i_{\text{event}}) = F_0 + \sum_{k \in \{\text{variables}\}} x_k(i_{\text{event}}) \cdot F_k$$
 "Коефициенти на Фишер"

- Коефициентите на Фишер се изчисляват на основата на ковариационните матрици за сигнала и фона
- Методът изисква различни средни значения за сигнала и фона
- Оптимална класификация за линейно корелирани данни с гаусово рапределение

Нелинеен анализ: невронни мрежи

Нелинейна класификация, базирана на тегла и активационна функция за всеки възел

Аналитична формула за промяна на теглата по метода на обратното разпространяване

Три варианта в TMVA (всички са многослойни перцептрони MLP)

- ТМІрАNN: Интерфейс към MLP в ROOT
- MLP: Собствен TMVA MLP за подобряване на скоростта и гъвкавостта
- **СFMIPANN:** Алгоритъм на ALEPH за търсене на Хигс

60

Дървета на решения

- Последователно разделяне на данните във всеки възел, крайните възли (листа) класифицират събитието като сигнал или фон
 - Отглеждане дърво на реше
 - Започваме от основния възел
 - Разделяме тренировъчното
 множество на две по отношение
 на значение на най-подходящата
 променлива
 - Критерий: max "Gini-Index"= purity
 × (1– purity)
 - Разделяме до min. брой събития или max. purity Дърво на решенията преди окастряне

Root

node

xi > c1

 \mathbf{x}_2

Листата се класифицират по мнозинството събития мли използвайки тегла горе на дъово

Възлите с малка статистическа значимост се сливат с по-горните

Прекалено бърза фрагментация на данните

Подсилени дървета на решения (BDT)

Дърветата на решения са популярни (основно извън НЕР)

• Предимства:

 Не зависят от монотонни преобразования на данните и от екстремални значения

Променливи със слаб потенциал за класификация се игнорират

Недостатъци:

 Нестабилност: малки изменения в тренировъчната извадка водят до големи промени в структурата на дървото

Чувствителни към прекалено обучение (→ нужно е окастряне)

Подсилени дървета на решения: "гора" от дървета гласува мажоритарно, като събитията във всяко дърво и самите дървета имат свои тегла

"AdaBoost": неправилно класифицираните събития имат по-голямо тегло в следващите дървета

"Bagging": случайни тегла на събитията, случайни извадки от тренировъчните данни

Всяко отделно дърво е лош класификатор, но сумата им работи добре → подобрена стабилност!

Характеристики на различните методи

Отсяване на фон като функция на ефективността

Избрани резултати

Загуба на енергия от адронни струи 1. Ядрено вещество

Напречен импулс

Струи: азимутални корелации @ RHIC

Струи @ LHC

Pb-Pb събитие с голяма енергетическа асиметрия

- → струята-партньор губи много енергия, но е в очакваната посока!
- → голям брой частици с импулси ~IGeV/с съпровождат струята-партньор

Азимутален поток от частици

Азимутален поток от частици

- v₂ е мярка за азимуталната анизотропия на потока частици родени при взаимодействието (втори Фурие-коефициент)
- Позволява да се изследва ранното състояние на системата, когато пространствената анизотропия е най-голяма
- v_n + хидродинамични модели => вискозитет
- Малък вискозитет => идеална течност

Първи p-Pb събития на ALICE: пилотен тест 12/09/2012

Измерване на v_2 в p-Pb

- Частиците с различна маса имат различно поведение в p-Pb събития
- Картината е подобна на тази в Pb-Pb
- В системата се наблюдава колективно поведение!
Двумерни двучастични корелации: Δφ и Δη

Pb-Pb vs. pp

поне така си мислехме дълго време...

тук: $\eta = \eta_{lab}$

CMS: Хребет от близката

страна

- …наблюдава се в рр сблъсъци с голяма множественост
 - 0.005% събития с най-голяма множественост
- …наблюдава се в p-Pb с голяма множественост
 - ~40% събития с най-голяма множественост
 - Учудващо голям ефект

тук: $\eta = \eta_{lab}$

ALICE: Двоен хребет

- Процедура за изваждане на корелациите от струи
 - При 60-100% централност нама хребет подобно на рр

0-20%

60-100%

Колективно поведение в "малки" системи

- Характерни за Pb-Pb ефекти в pp and p-Pb събития
- Нова парадигма при интерпретацията на резултатите?
- Указания за КГП в сблъсъци на p-Pb и pp с голяма множественост?)

LHC	рр	p-Pb	Pb-Pb
Площ на сблъсъка (fm²)	2	12	150
Обем при равновесие (fm ³)	25	160	5000
Плътност на енергията (GeV/fm ³)	>1(?)	3 (?)	10

 Дискусия за влиянието на началното състояние и многократното разсейване върху колективното поведение системата

Заключение

- Изследвания преди и на SPS => указания за създаване на КГП
- Изследвания на RHIC: загуба на енергия в адронни струи, елиптичен поток => КГП е гореща плътна материя, подобна на идеална течност
- LHC: акцент върху свойствата на "горещата плътна материя", процесите с голям предаден импулс и точните измервания
- Неочаквани резултати в p-Pb събития: указания за колективно поведение в "малки" системи