Relaxation Phenomenology

Diego Redigolo
10/08/2018
Relaxion = New Playground for Naturalness

new theoretical challenges ↔ new phenomenological probes
Relaxion = New Playground for Naturalness

new theoretical challenges

hopefully another example after Nate's talk

new phenomenological probes
Relaxion = New Playground for Naturalness

Setting the stage
The Relaxion rolling

(Graham, Kaplan & Rajendran)

\[V(\phi) \]

\[\mu^2(\phi) > 0 \]
The Relaxion rolling

(Graham, Kaplan & Rajendran)

\[V(\phi) \]

\[\mu^2(\phi) > 0 \]

\[\phi \text{ rolling potential:} \]

\[\Lambda_{\text{roll}}^4 \cos \frac{\phi}{F} \]
The Relaxion rolling

(Graham, Kaplan & Rajendran)

\[\phi \text{ rolling potential:} \]

\[\Lambda_{\text{roll}}^4 \cos \frac{\phi}{F} \]
The Relaxion rolling

(phi-dependent Higgs mass)

\[\Lambda_H^2 \left(\kappa - \cos \frac{\phi}{F} \right) H^\dagger H \]

\[\mu^2(\phi) \]

(phi rolling potential):

\[\Lambda_{\text{roll}}^4 \cos \frac{\phi}{F} \]
The Relaxion rolling

(Graham, Kaplan & Rajendran)

\[V(\phi) \]

rolling down the Higgs mass goes down

\[\mu^2(\phi) > 0 \]

\[\phi - \text{dependent Higgs mass} \]

\[\Lambda_H^2 (\kappa - \cos \frac{\phi}{F}) H^\dagger H \approx (\kappa \Lambda_H^2 - g\phi) H^\dagger H \]

\[\mu^2(\phi) \]

\[\phi \text{ rolling potential:} \]

\[\Lambda_{\text{roll}}^4 \cos \frac{\phi}{F} \approx g \Lambda_H^3 \phi \]
The Relaxion rolling

\[V(\phi) \]

\[\phi \text{ rolling potential:} \]

\[\phi_{\text{roll}} \sim \frac{\Lambda_{\text{roll}}^4}{3H_IF} \]

\[\phi_{\text{roll}} \sim \frac{\Lambda_{\text{roll}}^4}{3H_IF} \]

\[\phi_{\text{rolling potential:}} \]

\[\Lambda_{\text{roll}}^4 \cos \frac{\phi}{F} \sim g\Lambda_H^3 \phi \times r_{\text{roll}}^2 \]

\[\frac{g}{\Lambda_H} \ll 1 \]

\[\text{the pace of the scanning:} \quad r_{\text{roll}} \equiv \frac{\Lambda_{\text{roll}}^2}{\Lambda_H^2} \geq \frac{1}{4\pi} \]

\[\phi_{\text{-dependent Higgs mass}} \]

\[\frac{\Lambda_H^2 (\kappa - \cos \frac{\phi}{F}) H^\dagger H}{\mu^2(\phi)} \sim (\kappa \Lambda_H^2 - g\phi) H^\dagger H \]

\[\mu^2(\phi) > 0 \]

\[\phi \text{ rolling potential:} \]

\[\phi_{\text{rolling potential:}} \]

\[\Lambda_{\text{roll}}^4 \cos \frac{\phi}{F} \sim g\Lambda_H^3 \phi \times r_{\text{roll}}^2 \]

\[\frac{g}{\Lambda_H} \ll 1 \]

\[\text{the pace of the scanning:} \quad r_{\text{roll}} \equiv \frac{\Lambda_{\text{roll}}^2}{\Lambda_H^2} \geq \frac{1}{4\pi} \]
The Relaxion wiggles

\(V(\phi) \)

\[\mu^2(\phi) > 0 \quad \mu^2(\phi) < 0 \]

\(\phi \) gets a "backreaction" potential after EWSB

Periodicity of this potential smaller than the "rolling"

\[\Lambda_{\text{br}}^4 \cos \frac{\phi}{f} \]
The Relaxion wiggles

\[V(\phi) \]

\[\phi \sim \phi_c \]

\(\mu^2(\phi) > 0 \quad \mu^2(\phi) < 0 \)

\[\phi \] gets a "backreaction" potential after EWSB

\[\Lambda_{br}^4 \cos \frac{\phi}{f} \]

\(\Lambda_{br} \) model dependent

Periodicity of this potential smaller than the "rolling"

\[f/F \approx Q \ll 1 \]
$I + II = \text{rolling} + \text{wiggles}$

Stopping condition

$\mu^2(\phi_0) = m_h^2$

$\phi \sim \phi_c$

EW scale
\[I + II = \text{rolling} + \text{wiggles} \]

\[\mu^2(\phi_0) = m_h^2 \]

Stopping condition

EW scale

\[\phi \sim \phi_c \]

CP violating phase

\[\sin \frac{\phi_0}{f} \sim \sin \frac{\phi_0}{F} \sim \mathcal{O}(1) \]
\[\mathbf{I} + \mathbf{II} = \text{rolling} + \text{wiggles} \]

Stopping condition

EW scale

\[\mu^2(\phi_0) = m_h^2 \]

\[\phi \sim \phi_c \]

CP violating phase

\[\sin \left(\frac{\phi_0}{f} \right) \sim \sin \left(\frac{\phi_0}{F} \right) \sim \mathcal{O}(1) \]

Ratio of scales

Ratio of vevs

\[\frac{\Lambda_{\text{roll}}}{\Lambda_{\text{br}}} \sim \left(\frac{F}{f} \right)^{1/4} \]
\[\mathbf{I} + \mathbf{II} = \text{rolling + wiggles} \]

CP violating phase
\[\sin \frac{\phi_0}{f} \sim \sin \frac{\phi_0}{F} \sim O(1) \]

Stopping condition
EW scale
\[\mu^2(\phi_0) = m_h^2 \]

Ratio of scales = Ratio of vevs
\[\frac{\Lambda_{\text{roll}}}{\Lambda_{\text{br}}} \sim \left(\frac{F}{f} \right)^{1/4} \approx \frac{1}{Q} \gg 1 \]
\[\text{\upshape I} + \text{\upshape II} = \text{rolling} + \text{wiggles} \]

\[\Delta \phi \sim \frac{\phi_{\text{roll}}}{H_I} N_e \]

\[N_e \sim \left(\frac{F H_I}{\Lambda_{\text{roll}}^2} \right)^2 \gg 1 \]

\[\sin \frac{\phi_0}{f} \sim \sin \frac{\phi_0}{F} \sim \mathcal{O}(1) \]

Price to pay:

Stopping condition

EW scale

\[\mu^2(\phi_0) = m_h^2 \]

\[\phi \sim \phi_c \]

Huge number of e-folds

CP violating phase

Ratio of scales = Ratio of vevs

\[\frac{\Lambda_{\text{roll}}}{\Lambda_{\text{br}}} \sim \left(\frac{F}{f} \right)^{1/4} \approx 1/Q \gg 1 \]
\[I + II = \text{rolling + wiggles} \]

Price to pay:

\[N_e \sim \left(\frac{F H_I}{\Lambda_{roll}^2} \right)^2 \gg 1 \]

Stopping condition

EW scale

\[\mu^2(\phi_0) = m_h^2 \]

Ratio of scales = **Ratio of vevs**

\[\frac{\Lambda_{roll}}{\Lambda_{br}} \sim \left(\frac{F}{f} \right)^{1/4} \approx \frac{1}{Q} \gg 1 \]

CP violating phase

\[\sin \frac{\phi_0}{f} \sim \sin \frac{\phi_0}{F} \sim \mathcal{O}(1) \]

there is a price to pay for too large pace

\[\frac{\Lambda_H}{\Lambda_{br}} \sim 1/\sqrt{r_{roll}} \cdot 1/Q \]
\[\sin \frac{\phi_0}{f} \sim \sin \frac{\phi_0}{F} \sim \mathcal{O}(1) \]
THE RELAXION CP PROBLEM

\[
\sin \frac{\phi_0}{f} \sim \sin \frac{\phi_0}{F} \sim O(1)
\]

\textit{if classical rolling + Hubble friction set the Cosmo}

\[
\dot{\phi}_{\text{roll}} \gtrsim H_I^2
\]

\[
V_{\text{infl}} \gtrsim \Delta V_{\text{roll}}
\]
THE RELAXION CP PROBLEM

- if classical rolling + Hubble friction set the Cosmo
 \[\dot{\phi}_{\text{roll}} \gtrsim H_I^2 \quad V_{\text{infl}} \gtrsim \Delta V_{\text{roll}} \]

- if QCD anomaly generates the wiggles
 \[\frac{\phi}{f} \tilde{G} \tilde{G} \quad \longleftrightarrow \quad m_\pi^2 f_\pi^2 \cos \frac{\phi}{f} \quad \longleftrightarrow \quad \theta_{\text{QCD}} \sim O(1) \]
THE RELAXION CP PROBLEM

\[\sin \frac{\phi_0}{f} \sim \sin \frac{\phi_0}{F} \sim \mathcal{O}(1) \]

- if classical rolling + Hubble friction set the Cosmo
 \[\dot{\phi}_{\text{roll}} \gtrsim H_I^2 \quad V_{\text{infl}} \gtrsim \Delta V_{\text{roll}} \]

- if QCD anomaly generates the wiggles
 \[\frac{\dot{\phi}}{\dot{f}} G \tilde{G} \quad \text{-----} \quad m_\pi^2 f_\pi^2 \cos \frac{\phi}{f} \quad \text{-----} \quad \theta_{\text{QCD}} \sim \mathcal{O}(1) \]

Then the relaxion is excluded by neutron EDM

\[d_n = \frac{e}{m_\rho} \frac{g_{\pi NN} \tilde{g}_{\pi NN}}{4\pi^2} \log \frac{m_\rho}{m_\pi} \approx \theta \cdot 10^{-15} \text{ e cm} \]

\[d_n < 10^{-26} \text{ e cm} \quad \text{Pendlebury '15} \]
POSSIBLE SOLUTIONS
POSSIBLE SOLUTIONS

• changing the Cosmo:

★ particle production: no slope vs wiggles Hook & Tavares

★ relaxing the vev Graham, Kaplan & Rajendran

★ inflation between EW & QCD PT Nelson & Prescod-Weinstein
POSSIBLE SOLUTIONS

● changing the Cosmo:

★ particle production: no slope vs wiggles Hook & Tavares
★ relaxing the vev Graham, Kaplan & Rajendran
★ inflation between EW & QCD PT Nelson & Prescod-Weinstein

● changing the Field Theory:

★ ignoring CP: no QCD anomaly (Gupta, Komargodski, Perez, Ubaldi)
★ solving CP: Nelson-Barr relaxion (Davidi, Gupta, Perez, DR, Shalit)
POSSIBLE SOLUTIONS

- changing the Cosmo:
 - particle production: no slope vs wiggles
 Hook & Tavares
 - relaxing the vev
 Graham, Kaplan & Rajendran
 - inflation between EW & QCD PT
 Nelson & Prescod-Weinstein

- changing the Field Theory:
 - ignoring CP: no QCD anomaly
 Gupta, Komargodski, Perez, Ubaldi
 - solving CP: Nelson-Barr relaxion
 Davidi, Gupta, Perez, DR, Shalit

see Nayara’s talk

if we have time…
Relaxion = New Playground for Naturalness

How do we test the relaxion paradigm?
The relaxion parameter space

Model-independent PHENO depends on explicit breaking from wiggles

wiggles + relaxion VEV
The relaxion parameter space

Model-independent PHENO depends on explicit breaking from wiggles

\[m_a \simeq \frac{M_{\text{br}}^2}{f} \]
The relaxion parameter space

Model-independent PHENO depends on explicit breaking from wiggles

\[f (\text{GeV}) \]

\[m_a (\text{eV}) \]

\[10^{-15} \quad 10^{-10} \quad 10^{-5} \quad 1 \quad 10^5 \quad 10^{10} \]

\[10^{20} \quad 10^{16} \quad 10^{12} \quad 10^8 \quad 10^4 \]

\[\sin \theta \]

\[10^{-43} \quad 10^{-38} \quad 10^{-33} \quad 10^{-28} \quad 10^{-23} \quad 10^{-18} \quad 10^{-13} \]

\[10^{-15} \quad 10^{-10} \quad 10^{-5} \quad 1 \quad 10^5 \quad 10^{10} \]

\[M^2_{\text{br}} / f \]

\[m_a \approx \frac{M^2_{\text{br}}}{f} \]

\[\sin \theta \approx \frac{v}{f} \cdot \frac{M^2_{\text{br}}}{m^2_h} \]

Flacke, Gupta, Frugiuele, Fuchs, Perez
Choi and Im
The relaxation parameter space

Model-independent boundaries

\[\Lambda_{\text{br}} > \sqrt{4\pi v} \]

\[f < 4\pi v \]

\[\Lambda_H < 4\pi v \]

\[\Lambda_{\text{roll}} \lesssim H_I^2 M_{\text{Pl}}^2 \]

\[\phi \gtrsim H_I^2 \]
The relaxion parameter space

Model-independent boundaries

\[
\Lambda_H < 4\pi v
\]

\[
\Lambda_{br} > \sqrt{4\pi v}
\]

\[
\Lambda_{roll} \lesssim H_I^2 M_{Pl}^2
\]

\[
\phi \gtrsim H_I^2
\]

\[
\frac{4\pi v}{\Lambda_H} \lesssim \left(\frac{M_{Pl}}{r_{roll}} \right)^{1/2} \left(\frac{\Lambda_{br}^4}{f} \right)^{1/6}
\]

\[
\sqrt{\frac{M_{Pl}}{f}} \cdot 10^{-18} \text{ eV} \lesssim m_a \lesssim v
\]
The relaxion parameter space

Model-independent boundaries

\[\Lambda_{br} > \sqrt{4\pi v} \]
\[f < 4\pi v \]
\[\Lambda_H < 4\pi v \]
\[f < 4\pi v \]

\[\Lambda_{roll} \lesssim H_I^2 M_{Pl}^2 \]
\[\phi \gtrsim H_I^2 \]
\[4\pi v \lesssim \Lambda_H \lesssim \left(\frac{M_{Pl}}{r_{roll}} \right)^{1/2} \left(\frac{\Lambda_{br}^4}{f} \right)^{1/6} \]
\[\sqrt{\frac{M_{Pl}}{f}} \cdot 10^{-18} \text{ eV} \lesssim m_a \lesssim v \]

inflation OK

small quantum spread

maximal gain in cut-off
The relaxation parameter space

Model-independent boundaries

\[f < 4\pi v \]

\[\Lambda_{\text{br}} > \sqrt{4\pi v} \]

\[\Lambda_H < 4\pi v \]

\[\Lambda_{\text{roll}} \lesssim H_I^2 M_{\text{Pl}}^2 \]

\[\dot{\phi} \gtrsim H_I^2 \]

\[4\pi v \lesssim \Lambda_H \lesssim \left(\frac{M_{\text{Pl}}}{r_{\text{roll}}} \right)^{1/2} \left(\frac{\Lambda_{\text{br}}^4}{f} \right)^{1/6} \]

\[\sqrt{\frac{M_{\text{Pl}}^3}{f}} \cdot 10^{-18} \text{ eV} \lesssim m_a \lesssim v \]

inflation OK

small quantum spread

maximal gain in cut-off

minimal mass
The relaxion parameter space

Highest cut-off ↔ **Highest mixing**

Testable Setup
The relaxion parameter space

Highest cut-off \leftrightarrow highest mixing

TESTABLE SETUP
The Phenomenology is the one of a light Higgs portal

Frugiuele, Fuchs, Perez, Schlaffer
Can the Relaxion be a relic?

If produced cold (misalignment, during inflation etc..) it would be a classical background

\[m_\phi \lesssim 10 \text{ eV} \]
Can the Relaxion be a relic?

if produced cold (misalignment, during inflation etc..) it would be a classical background

\(m_\phi \lesssim 10 \text{ eV} \)
Can the Relaxion be a relic?

if produced cold (misalignment, during inflation etc..) it would be a classical background

\[m_\phi \lesssim 10 \text{ eV} \]

\[\Lambda_{\text{br}} > \sqrt{4\pi} \text{ eV} \]

\[\Lambda_{\text{H}} < 4\pi \text{ eV} \]

\[m_a \text{ (eV)} \]

\[\omega \text{ [Hz]} \]

\[\sin \theta \]

\[10^{-15} \quad 10^{-10} \quad 10^{-5} \quad 1 \quad 10^5 \quad 10^{10} \]

\[10^{-4} \quad 10^{-9} \quad 10^{-14} \quad 10^{-19} \quad 10^{-24} \]

\[10^{-43} \quad 10^{-38} \quad 10^{-33} \quad 10^{-28} \quad 10^{-23} \quad 10^{-18} \quad 10^{-13} \quad 10^{-8} \quad 10^{-3} \]

\[f > M_{\text{Pl}} \]

\[< \text{ gravity} \]

\[> \text{ gravity} \]

this might enhance detectability in the near future

bullet atomic clock experiments

bullet absorption

bullet ...

if produced cold (misalignment, during inflation etc..) it would be a classical background

\[m_\phi \lesssim 10 \text{ eV} \]
Can the Relaxion be a relic?

if produced cold (misalignment, during inflation etc..) it would be a classical background

\[m_\phi \lesssim 10 \text{ eV} \]

Diagram

- Classical region
- \(\Lambda_{\text{br}} > \sqrt{4\pi} v \)
- \(\Lambda_{H} < 4\pi v \)
- Various lines indicating different conditions

Text

- *this might enhance detectability in the near future*

- **bullet points**
 - atomic clock experiments
 - absorption
 - ...

References

Perez, DR, Safronova, Ubaldi, Zupan

Graph

- Log scale for \(m_\phi \) and \(\log_{10}[m_\phi/\text{eV}] \)
- Various lines indicating different limits and conditions
- Points and regions indicating different values and conditions
The Nelson Barr relaxion

\[\phi_0 \sim \delta_{\text{CKM}} \] (see Gilad's talk)

narrows down the relaxion parameter space

(certainly not the only way but it is one well motivated way)
The Nelson Barr relaxion

\(\phi_0 \sim \delta_{\text{CKM}} \) (see Gilad’s talk)

narrowed down the relaxion parameter space
(certainly not the only way but it is one well motivated way)
Can we formulate a no-lose theorem for other states?

(see Hinchliffe's rule)
Something else than QCD generates the wiggles

Espinosa, Grojean, Panico, Pomarol, Pujolas, Servant

Komargodski, Gupta, Perez, Ubaldi

\[V_{br} = -M_{br}^2 H^\dagger H \cos \frac{\phi}{f} + r_{br} M_{br}^4 \cos \frac{\phi}{f} \]
Something else than QCD generates the wiggles

Espinosa, Grojean, Panico, Pomarol, Pujolas, Servant
Komargodski, Gupta, Perez, Ubaldi

\[V_{\text{br}} = -M_{\text{br}}^2 H^\dagger H \cos \frac{\phi}{f} + r_{\text{br}} M_{\text{br}}^4 \cos \frac{\phi}{f} \]

\[\Lambda_{\text{br}} \equiv \sqrt{v M_{\text{br}}} \]
Something else than QCD generates the wiggles

Espinosa, Grojean, Panico, Pomarol, Pujolas, Servant

Komargodski, Gupta, Perez, Ubaldi

\[V_{br} = -M_{br}^2 H^\dagger H \cos \frac{\phi}{f} + r_{br} M_{br}^4 \cos \frac{\phi}{f} \]

\[\Lambda_{br} \equiv \sqrt{vM_{br}} \]

\[\Lambda_{br} \gtrsim M_{br} \text{ to make it work} \]

(coincidence problem)
Something else than QCD generates the wiggles

Espinosa, Grojean, Panico, Pomarol, Pujolas, Servant

Komargodski, Gupta, Perez, Ubaldi

\[
V_{br} = -M_{br}^{2} H^\dagger H \cos \frac{\phi}{f} + r_{br} M_{c}^{4} \cos \frac{\phi}{f}
\]

\[
\Lambda_{br} \equiv \sqrt{\nu M_{br}}
\]

\[
\Lambda_{br} \lesssim M_{br} \quad \text{to make it work}
\]

(coincidence problem)

\[
\text{no loose theorem}
\]
Something else than QCD generates the wiggles

Espinosa, Grojean, Panico, Pomarol, Pujolas, Servant
Komargodski, Gupta, Perez, Ubaldi

\[V_{\text{br}} = -M_{\text{br}}^2 H^\dagger H \cos \frac{\phi}{f} + r_{\text{br}} M_{\text{br}}^4 \cos \frac{\phi}{f} \]

\[\Lambda_{\text{br}} \equiv \sqrt{v M_{\text{br}}} \]

\[\Lambda_{\text{br}} \gtrsim M_{\text{br}} \text{ to make it work} \]
(coincidence problem)

no loose theorem

New states @ the EW scale \[\mathcal{L}_{\text{NP}} \supset H f^{SM} f^{NP} \]
Something else than QCD generates the wiggles

Espinosa, Grojean, Panico, Pomarol, Pujolas, Servant

Komargodski, Gupta, Perez, Ubaldi

\[V_{br} = -M_{br}^2 H^\dagger H \cos \frac{\phi}{f} + r_{br} M_{br}^4 \cos \frac{\phi}{f} \]

\[\Lambda_{br} \equiv \sqrt{v M_{br}} \]

\[\Lambda_{br} \gtrsim M_{br} \text{ to make it work} \]

(coincidence problem)

no loose theorem

New states @ the EW scale \[\mathcal{L}_{NP} \supset H f^{SM} f^{NP} \]

Generically these states are EW-charged
Something else than QCD generates the wiggles

Espinosa, Grojean, Panico, Pomarol, Pujolas, Servant

Komargodski, Gupta, Perez, Ubaldi

\[V_{br} = -M_{br}^2 H^\dagger H \cos \frac{\phi}{f} + r_{br}M_{br}^4 \cos \frac{\phi}{f} \]

\[\Lambda_{br} \equiv \sqrt{vM_{br}} \]

\[\Lambda_{br} \gtrsim M_{br} \text{ to make it work} \]

(coincidence problem)

no loose theorem

New states @ the EW scale: \(\mathcal{L}_{NP} \supset H f^{SM} f^{NP} \)

\[\uparrow \text{Generically these states are EW-charged} \]

\[\uparrow \text{We can test them @ collider} \]
We use sterile neutrinos $\mathcal{L}_{NP} \supset Y_N \tilde{H} L N^c$
We use sterile neutrinos $\mathcal{L}_{NP} \supset Y_N \tilde{H} L N^c$

Froggatt-Nielsen texture to ensure

$$\begin{cases} \Lambda_{br} \gtrsim M_{br} & \text{(where } M_{br} \text{ is the scale of sterile neutrinos)} \\ \text{neutrino masses for free} \end{cases}$$
We use sterile neutrinos \[\mathcal{L}_{\text{NP}} \supset Y_N \tilde{H} L N^c \]

Froggatt-Nielsen texture to ensure \[\Lambda_{\text{br}} \gtrsim M_{\text{br}} \quad (\text{where } M_{\text{br}} \text{ is the scale of sterile neutrinos}) \]

\{ neutrino masses for free \}

The relaxion is the PNGB of a \(U(1) \) flavor symmetry acting on leptons
Counter-Example
(Davidi, Gupta, Perez, DR, Shalit)

We use sterile neutrinos \(\mathcal{L}_{NP} \supset Y_N \tilde{H} L N^c \)

Froggatt-Nielsen texture to ensure \(\Lambda_{br} \gtrsim M_{br} \) (where \(M_{br} \) is the scale of sterile neutrinos)

neutrino masses for free

The relaxion is the PNGB of a \(U(1) \) flavor symmetry acting on leptons

\[
\mathcal{L}_\phi \supset \frac{i v \phi}{f} (L^c_j + e^c_k) e_j e^c_k
\]
Counter-Example
(Davidi, Gupta, Perez, DR, Shalit)

We use sterile neutrinos \(\mathcal{L}_{NP} \supset Y_N \tilde{H} L N^c \)

Froggatt-Nielsen texture to ensure \(\Lambda_{br} \gtrsim M_{br} \) (where \(M_{br} \) is the scale of sterile neutrinos)

neutrino masses for free

The relaxion is the PNGB of a U(1) flavor symmetry acting on leptons

\[
\mathcal{L}_\phi \supset \frac{i v \phi}{f} (L_j + e^c_k) e_j e^c_k
\]

\[\Gamma(\mu \to e\phi) \sim \frac{m_e^2 m_\mu}{16\pi f^2} \]

\(FV \) lepton decays VS star cooling

\begin{itemize}
\item Compton
\item Pair Annihilation
\item Electromagnetic Bremsstrahlung
\end{itemize}
Star cooling gives the most stringent bound!
Can we increase the sensitivity of future experiments?

Learning from the past...

TRIUMF (1988) $\approx 10^7 \mu$ \hspace{1cm} BR($\mu \rightarrow e + a$) $\lesssim 3 \cdot 10^{-6}$ \hspace{1cm} $f_a \gtrsim 10^7$ GeV

The signal is a line at $E_e \approx \frac{m_\mu}{2}$

The background comes from

The peak of the Michel spectrum depend on the muon polarization

IT IS ZERO in the OPPOSITE direction to the muon polarization!
More recent experiments...

| CRYSTAL BOX (1988) | $10^{12} \mu$ | $\text{BR}(\mu \rightarrow e + a + \gamma) \lesssim 1 \cdot 10^{-9}$ | $f_a \gtrsim 10^6 \text{ GeV}$ |
More recent experiments...

| CRYSTAL BOX (1988) | $10^{12} \mu$ | $\text{BR}(\mu \to e + a + \gamma) \lesssim 1 \cdot 10^{-9}$ | $f_a \gtrsim 10^6 \text{ GeV}$ |

MEG with $10^{14} \mu$? no analysis but naively: $\text{BR}(\mu \to e + a + \gamma) \lesssim 1 \cdot 10^{-9} \cdot \frac{1}{\sqrt{100}}$
More recent experiments...

| CRYSTAL BOX (1988) | 10^{12} μ | $\text{BR}(\mu \rightarrow e + a + \gamma) \lesssim 1 \cdot 10^{-9}$ | $f_a \gtrsim 10^6$ GeV |

| MEG with 10^{14} μ | no analysis but naively: $\text{BR}(\mu \rightarrow e + a + \gamma) \lesssim 1 \cdot 10^{-9} \cdot \frac{1}{\sqrt{100}}$ |

| MEG II ? | Mu3e ? |

They could use the TRUMF trick only with an electron only trigger + detector upgrade
More recent experiments...

<table>
<thead>
<tr>
<th>CRYSTAL BOX (1988)</th>
<th>$10^{12} \mu$</th>
<th>$\text{BR}(\mu \rightarrow e + a + \gamma) \lesssim 1 \cdot 10^{-9}$</th>
<th>$f_a \gtrsim 10^6 \text{ GeV}$</th>
</tr>
</thead>
</table>

MEG with $10^{14} \mu$? no analysis but naively: $\text{BR}(\mu \rightarrow e + a + \gamma) \lesssim 1 \cdot 10^{-9} \cdot \frac{1}{\sqrt{100}}$

MEG II? Mu3e?

They could use the TRUMF trick only with an electron only trigger + detector upgrade

GENERAL LESSON HERE:

- Flavor experiment can be extremely good at probing light new states
- They compete/complement with astro in some region of the par. space
- Optimised searches on many motivated final states need still to be done

(I have more examples @ NA62 and LHCb)
Relaxion = New Playground for Naturalness

- Switches the focus to very light weakly coupled states
- Worst case we would have ameliorated our sensitivity on light weakly coupled scalars
- Many cosmological and UV problems to be taken more seriously
Thanks everyone for the amazing Workshop
BACKUP
Rolling generated by Nelson-Barr sector

(see Gilad's talk)

$V(\phi)$

ϕ rolling potential:

$V_{\text{roll}} = \frac{g_{u,d} \tilde{g}_{u,d} f^4}{16\pi^2} \cos \frac{\phi}{F}$

ϕ-dependent Higgs mass:

$\Lambda_H^2 (\kappa - \cos \frac{\phi}{F}) H^\dagger H$

$\mu^2(\phi)$

$\Lambda_H^2 = \frac{g_{u,d} \tilde{g}_{u,d} (Y_u)^T Y_u}{16\pi^2} f^2$
Rolling generated by Nelson-Barr sector

(see Gilad's talk)

φ rolling potential:

\[
V_{\text{roll}} = \frac{g_{u,d} \tilde{G}_{u,d} f^4}{16\pi^2} \cos \frac{\phi}{F}
\]

φ-dependent Higgs mass:

\[
\Lambda_H^2 \left(\kappa - \cos \frac{\phi}{F} \right) H^\dagger H
\]

\[
\mu^2(\phi)
\]

hard-breaking

\[
\Lambda_H^2 = \frac{g_{u,d} \tilde{G}_{u,d} (Y_u)^T Y_u f^2}{16\pi^2}
\]
Rolling generated by Nelson-Barr sector
(see Gilad's talk)

\(V(\phi) \)

\[V_{\text{roll}} = \frac{g_{u,d} \tilde{g}_{u,d} f^4}{16\pi^2} \cos \frac{\phi}{F} \]

\(\phi \) rolling potential:

\(\phi \)-dependent Higgs mass:

\[\Lambda_H^2 (\kappa - \cos \frac{\phi}{F}) H^\dagger H \]

\[\mu^2(\phi) \]

\(\Lambda_H^2 = \frac{g_{u,d} \tilde{g}_{u,d} (Y_u)^T Y_u f^2}{16\pi^2} \]

hard-breaking

small NB couplings

to avoid \(\theta_{QCD} \)
Rolling generated by Nelson-Barr sector
(see Gilad's talk)

φ rolling potential:

\[V_{\text{roll}} = \frac{g_{u,d} \tilde{g}_{u,d} f^4}{16\pi^2} \cos \frac{\phi}{F} \]

φ-dependent Higgs mass:

\[\Lambda_H^2 (\kappa - \cos \frac{\phi}{F}) H^\dagger H \]

\[\Lambda_H^2 = \frac{g_{u,d} \tilde{g}_{u,d} (Y_u)^T Y_u \tilde{f}^2}{16\pi^2} \]

hard-breaking

small NB couplings to avoid \(\theta_{QCD} \)

\[\sqrt{g_{u,d} \tilde{g}_{u,d}} \lesssim 10^{-3} \]

(depends on the flavor structure)

see M. Dine & P. Draper and L. Vecchi