

Fabrizio Caola, CERN & IPPP Durham

29th Rencontre de Blois on 'Particle Physics and Cosmology', 30 May 2017

Precision QCD at the LHC

 No spectacular new physics appeared so far. Extremely good control on many different key observables may highlight (small) deviations from SM behavior → indication of new physics

Imagine to have new physics at a scale Λ

- •if Λ small \rightarrow should see it directly, bump hunting
- if Λ large, typical modification to observable w.r.t. standard model prediction: $\delta O \sim Q^2 / \Lambda^2$
- standard observables at the EW scale: to be sensitive to ~ TeV new physics, we need to control δO to few percent
- high scale processes (large p_T , large invariant masses...): sensitive to ~TeV if we control δO to 10-20%

The LHC machine and experimental program are running extremely well. *These levels or precision are within reach*

"Few percent": the theory side $d\sigma = \int dx_1 dx_2 f(x_1) f(x_2) d\sigma_{part}(x_1, x_2) F_J(1 + \mathcal{O}(\Lambda_{QCD}/Q))$ *"NP effects: ~ few percent" No good control/understanding of them at this level. LIMITING FACTOR FOR FUTURE DEVELOPMENT [mt, mw...]*

HARD SCATTERING MATRIX ELEMENT

- large Q → most interesting and theoretically clean
- • $\alpha_{s} \sim 0.1 \rightarrow$ For TYPICAL PROCESSES, we need NLO for ~ 10% and NNLO for ~ 1% accuracy. Processes with large color charges (Higgs): $\alpha_{s} C_{A} \sim 0.3 \rightarrow N^{3}LO$
- •Going beyond that is neither particularly useful (exp. precision) NOR POSSIBLE GIVEN OUR CURRENT UNDERSTANDING OF QCD

Where can we achieve high accuracy?

Focus on simple [*clean exp/th comparison, good control*] processes, high Q [*little non pert. contamination*] observables. Typical examples:

- $H/H+j(j)/VH \rightarrow$ Higgs couplings / characterization
- $V/V+j(j) \rightarrow$ PDFs, backgrounds
- tt, single top \rightarrow gluon and b PDF, V_{tb}, backgrounds...
- $VV \rightarrow$ anomalous couplings, (Higgs) backgrounds...
- $jj(j) \rightarrow$ PDFs, jet dynamics, $\alpha_S...$

Why fixed order?

- Able to provide HIGH PRECISION while PROPERLY ACCOUNT FOR EXPERIMENTAL SETUP (cuts, fiducial region...)
- At high Q, typically processes are a multi-scale problem. However, no huge scale hierarchies → fixed (high enough) order predictions correctly capture all the relevant logs

NNLO computations: challenges

 $O(\alpha_s^2)$ corrections: two-loop (VV), one-loop+j (RV), tree+jj (RR)

Loop amplitudes: status

• Amplitude COMPLEXITY GROWS VERY FAST with the number of scales: invariants (~# legs) and particle masses

$$F_{--++}^{L} = -(x^{2} + y^{2}) \left[4\text{Li}_{4}(-x) + \frac{1}{48}Z_{+}^{4} + (\tilde{Y} - 3\tilde{X})\text{Li}_{3}(-x) + \Xi\text{Li}_{2}(-x) + i\frac{\pi}{12}Z_{+}^{3} + i\frac{\pi^{3}}{2}X - \frac{\pi^{2}}{12}X^{2} - \frac{109}{720}\pi^{4} \right] \\ + \frac{1}{2}x(1 - 3y) \left[\text{Li}_{3}(-x/y) - Z_{-}\text{Li}_{2}(-x/y) - \zeta_{3} + \frac{1}{2}Y\tilde{Z} \right] + \frac{1}{8} \left(14(x - y) - \frac{8}{y} + \frac{9}{y^{2}} \right) \Xi \\ + \frac{1}{16}(38xy - 13)\tilde{Z} - \frac{\pi^{2}}{12} - \frac{9}{4} \left(\frac{1}{y} + 2x \right) \tilde{X} \\ + \frac{1}{4}x^{2} \left[Z_{-}^{3} + 3\tilde{Y}\tilde{Z} \right] + \frac{1}{4} + \left\{ t \leftrightarrow u \right\},$$

[Bern, De Freitas, Dixon [2002]

gg→VV: ~ 10 MB expression

- Despite a lot of recent progress still pretty limited knowledge. State of the art:
 - Analytically: 2 -> 2, external masses (pp->VV*) [FC, Henn, Melnikov, Smirnov, Smirnov (2014-15); Gehrmann, Manteuffel, Tancredi (2014-15)]
 - Numerically: 2->2, internal/external masses (pp-> tt, pp->HH) [Czakon; Borowka, Greiner, Heinrich, Jones, Kerner, Schlenk, Schubert, Zirke (2016)]
 - Lot of recent progress: towards 2->3
 [Badger et al (2016)]; numerical unitarity [Abreu et al (2017)], many-scales integrals [Gehrmann, Henn, Lo Presti (2015); Papadopoulos, Tommasini, Wever (2016); Tancredi, Remiddi (2016); Weinzierl et al (2017); Bonciani et al (2016)]

IR structure of real emission

- •IR divergences hidden in PS integrations of extra real emission(s)
- After integrations, all singularities are manifest and cancel against two-loop (KLN)
- We are interested in realistic setup (arbitrary cuts, arbitrary observables) → we need fully differential results, we are not allowed to integrate over the PS
- The challenge is to EXTRACT PS-INTEGRATION SINGULARITIES WITHOUT ACTUALLY PERFORMING THE PS-INTEGRATION

Dealing with real emission

A lot of conceptual progress in the last few years \rightarrow we are now able to tackle this issue

```
``Antenna'' [Gehrmann-de Ridder, Gehrmann, Glover]
      ``qt'' [Catani, Grazzini]
``N-jettiness'' [Boughezal et al, Gaunt et al]
 ``Sector decomposition+FKS'' [Binoth, Heinrich; Anastasiou, Melnikov,
 Petriello; Czakon; Czakon, Heymes; FC, Melnikov, Röntsch]
   ``Projection to Born'' [Cacciari, Dreyer, Karlberg, Zanderighi, Salam]
         ``Colorful NNLO'' [Del Duca, Duhr, Kardos, Somogyi, Trocsanyi]
```

Dealing with real emission

A lot of conceptual progress in the last few years \rightarrow we are now able to tackle this issue

Some of these techniques are quite generic

- •IN PRINCIPLE, they allow for ARBITRARY COMPUTATIONS
- •IN PRACTICE: `genuine' 2→2 REACTIONS, with big computer farms

A typical example:

- Inclusive DY (2→1 inclusive): ~ few second
- DY, precise lepton observables (2→1 exclusive): ~ 100 CPU hours
- V+jet, diff. distribution (2→2 exclusive): ~ 100.000 CPU hours

IOTTUI NNLO'' [Del Duca, Dubr Kar

2 → 2 phenomenology at NNLO: the global picture

2→2 pheno @ NNLO: the global picture

Greatly reduced theoretical uncertainties, perturbative convergence established

 $\sigma = 48.58 \,\mathrm{pb}_{-3.27 \,\mathrm{pb} \,(-6.72\%)}^{+2.22 \,\mathrm{pb} \,(+4.56\%)} \,(\mathrm{theory}) \pm 1.56 \,\mathrm{pb} \,(3.20\%) \,(\mathrm{PDF} + \alpha_s) \,.$

Inclusive H@N³LO [Anastasiou, Duhr, Dulat, Herzog, Mistlberger]

Exclusive Higgs + jet [Boughezal, et al; Chen et al; FC, Melnikov, Schulze]

2→2 pheno @ NNLO: the global picture

Very good / improved data-theory comparison

2→2 pheno @ NNLO: the global picture

Very good / improved data-theory comparison

Z+J/Z p_T *shape* [Gehrmann-de Ridder et al; Boughezal et al]

Inclusive jet production *For a particular scale choice* [Currie, Glover, Gehrmann, Gehrmann-de Ridder, Huss, Pires (2017)]

2 → 2 phenomenology at NNLO: what have we learned so far?

At this level of precision, basically everything becomes relevant

(inclusive VBF@N³LO: [Dreyer, Karlberg (2016)]

- Properly modeling the actual experimental setup is crucial (especially for cuts constraining QCD radiation)
- *Example:* WW, 13 TeV: qq- vs gg-initiated sub-processes
- •full inclusive [*unobservable*]: qq@NNLO +7%, gg + 4%
- •WW fiducial region: qq@NNLO -2%, gg +9% (similar result for Higgs-cuts)

[higher order corrections to gg component: FC, Dowling, Melnikov, Röntsch, Tancredi (2016)]

Example: **VBF**

In the fiducial region: ~5-10% corrections, i.e. one order of magnitude larger than for the inclusive cross-section. Non trivial shapes

[Cacciari, Dreyer, Karlberg, Salam, Zanderighi (2016)]

towards N³LO differential in $ggF \rightarrow see B$. Mistlberger's talk

•*Can we trust NNLO results in the fiducial region?* Harsh cuts could introduce largish logs → perturbative breakdown...

Example: Higgs production with jet veto (H→WW...)

•No breakdown of fixed (high) order till very low scales

• Fixed (higher) order captures bulk of the effect

2 → 2 phenomenology at NNLO: unsolved puzzles

NNLO: open puzzles

•V+j: unexpected disagreement even with high precision / clean data

NNLO: open puzzles

• Inclusive jet spectrum: $\mu = p_{t,L} vs p_t$

[Currie, Glover, Gehrmann, Gehrmann-de Ridder, Huss, Pires (2017)]

•Despite small scale variation, very large dependence on scale choice (hardest jet in the event vs individual jet). Non trivial jet dynamics to be understood

2 → 2 phenomenology at NNLO: applications

A key player: TOP DIFFERENTIAL DISTRIBUTIONS

Czakon, Hartland, Mitov, Nocera, Rojo (2017)]

NNLO: applications

Are data/predictions globally compatible: IT SEEMS SO (with the caveats mentioned before...)

Application of NNLO results: H pT

[Bizon, Monni, Re, Rottoli, Torrielli (2017)]

•Matching of NNLO H+J with N³LL Higgs p_T resummation

- •Significant reduction of perturbative uncertainties from NLO+NNLL to NNLO+NNLL, no large N³LL effect
- Again, no breakdown of perturbation theory until very low scales (resummation effects: 25% at $p_T = 15$ GeV, ~0% at $p_T = 40$ GeV)

NNLO: status and future

- A lot of theoretical progress in the recent past
- This lead to realistic $2 \rightarrow 2$ PHENOMENOLOGY AT NNLO
- Many interesting features
 - Greatly reduced th. uncertainties (expected)
 - Stability w.r.t. logarithmic corrections (not so obvious) → fiducial region
- And a few surprises
 - Non trivial jet dynamics (larger than naively expected corrections)
 - Curious data/theory discrepancies (PDFs? NonPert?)
- A lot more to explore
 - More pheno: e.g. jet dynamics @ NNLO vs mergedPS...
 - 2 \rightarrow 2 in ``extreme'' kinematics (boosted/off-shell H+j and pp \rightarrow VV)
 - better understanding of jet dynamics: $pp \rightarrow 3j$. Also: α_s , maybe some extra handle to understand NP effects?
 - Important backgrounds / precision tests: Hjj (VBF contamination, jet-bin correlations...), Vjj, ttj

NNLO: status and future

- This will require significant improvement on stat-of-the art
- Breaking the 2 \rightarrow 2 barrier highly non trivial
 - •2-loop amplitudes
 - 1-loop: stable / fast $2 \rightarrow 4$ loop amplitudes in the soft / collinear region
 - more efficient IR subtraction
 - even if the goal is ≠ from NLO, at least some degree of automation
- Beyond NNLO?
 - Exclusive Higgs at N³LO
 - N³LO beyond the Higgs?

The LHC provides constant Motivation and Inspiration Exciting times ahead! Thank you very much for your attention!

Non-perturbative effects in Z $\ensuremath{p_{\text{T}}}$

- ► Inclusive Z cross section should have $\sim \Lambda^2/M^2$ corrections (~10⁻⁴?)
- ➤ Z p_T is not inclusive so corrections can be ~Λ/M.
- Size of effect can't be probed by turning MC hadronisation on/off
 [maybe by modifying underlying MC parameters?]
- Shifting Z p_T by a finite amount illustrates what could happen

A conceptually similar problem is present for the W momentum in top decays

[G. Salam, ``Future challenges for precision QCD'']

Parton distribution functions circa 2016

- Big improvement w.r.t. few years ago [better handling on fit, larger data coverage (LHC)]. Reasonable consensus among different groups
- FOR CENTRAL EW PRODUCTION: 2/3% PRECISION
- Going below may require some rethinking of PDF uncertainty