Precision W,Z Measurements at Colliders

Rencontre de Blois, Mai 2017

Kristof Schmieden, on behalf of the ATLAS & CMS collaborations

kristof.schmieden@cern.ch

Introduction - Precision Measurements in SM

- Why do we perform precise measurements of standard model processes?
 - Challenge theoretical calculation on most precise level!
- Look for deviations from standard model predictions
- Consistency in the EWK sector
 - Potential for finding evidence of physics beyond the standard model
- Study QCD and EWK interactions at extreme regions of phase space
 Use high energy collisions

Experimental precision needed to challenge theory calculations: < few % — achieved at hadron colliders —

Kristof Schmieden

Introduction - Precision Measurements in SM

- CERN
- Why do we perform precise measurements of standard model processes?
 - Challenge theoretical calculation on most precise level!
- Look for deviations from standard model predictions
- Consistency in the EWK sector
 - Potential for finding evidence of physics beyond the standard model
- Study QCD and EWK interactions at extreme regions of phase space
 Use high energy collisions
- Which prediction to compare to:
 - State of the art Matrix Element calculations (NNLO)
 - Non-perturbative QCD, Resummation, Parton Shower

See talks by Fabrizio Caola and Peter Richardson

• PDFs

Experimental precision needed to challenge theory calculations: < few % — achieved at hadron colliders —

Overview of standard model measurements

Standard Model Production Cross Section Measurements

Overview of standard model measurements

Standard Model Production Cross Section Measurements

Kristof Schmieden

Kristof Schmieden

W Mass measurement

Content

• Relies on other precision measurements

- Single Boson cross section measurements
 - Inclusive & differential
 - Impact on PDFs
- Angular distributions
 - Z Forward Backward asymmetry
 - Weak mixing angle
 - Z Angular Coefficients / Z Polarisation

Summary

See Fabio Cossutti's talk on tests of QCD @ colliders

Personal selection of results,

W-mass measurement

W mass @ LHC

- Sensitive probe of SM EWK sector
- Sensitive to EWK corrections and modeling of boson kinematic

- Current SM predictions:
 Δm_w = 8 MeV
- Extremely challenging measurement

arXiv:1701.07240

• Relies on previous W,Z precision measurements!

W mass @ LHC

- Sensitive probe of SM EWK sector
- Sensitive to EWK corrections and modeling of boson kinematic
- PDF for simulation chosen by 7TeV W,Z inclusive cross section measurement
- p_T^Z constraint from measurement
- Uncertainty on spin correlations from
 8 TeV Z polarization measurement

- Current SM predictions:
 Δm_w = 8 MeV
- Extremely challenging measurement

arXiv: 1608.01509

• Relies on previous W,Z precision measurements!

- Sensitive variables: pT^I & mT
- Pushed precision of lepton & missing energy calibration to unprecedented accuracy
- Good agreement between hadron collider measurements

W mass @ LHC - Uncertainties

5	A
	<u>h</u> è.

Sourco		
Source	рТ	mT
QCD modeling	11.6	12.9
e: E scale, eff	14.2	14.3
μ: pT scale, eff	9.8	9.7
Recoil corrections	2.6	13.0
EWK corrections	5.6	2.6

• Largest uncertainties:

arXiv:1701.07240

- Theory model
- Electron experimental uncertainties

W mass @ LHC - Uncertainties

Sourco		
Source	рТ	mT
QCD modeling	11.6	12.9
e: E scale, eff	14.2	14.3
μ: pT scale, eff	9.8	9.7
Recoil corrections	2.6	13.0
EWK corrections	5.6	2.6

• Largest uncertainties:

arXiv:1701.07240

- Theory model
- Electron experimental uncertainties

Kristof Schmieden

Rencentre de Blois - Mai 2017

W,Z Boson inclusive & differential cross sections

W,Z - Boson Inclusive x-Section @ 7 TeV

- Measurement of the total & differential production cross sections
 - Electron & Muon final states
 - W $\rightarrow \ell_{\nu}$: $|\eta_{\ell}| < 2.5$
 - $Z \rightarrow \ell \ell$: $|Y_{\ell \ell}| < 3.6$, three bins in $m_{\ell \ell}$
- Total production cross sections: Uncertainty < 2.8 % total Lumi: 1.8%, exp. sys: W: ~1%, Z: 0.4%

	$\sigma_{W \to \ell \nu}^{\rm tot} [{\rm pb}]$	total unc.:
$W^+ \to \ell^+ \nu$	$6350 \pm 2 (\text{stat}) \pm 30 (\text{syst}) \pm 110 (\text{lumi}) \pm 100 (\text{acc})$	2.4%
$W^- \to \ell^- \bar{\nu}$	$4376 \pm 2 ({ m stat}) \pm 25 ({ m syst}) \pm 79 ({ m lumi}) \pm 90 ({ m acc})$	2.8%
$W \to \ell \nu$	$10720 \pm 3 (\text{stat}) \pm 60 (\text{syst}) \pm 190 (\text{lumi}) \pm 130 (\text{acc})$	2.2%
	$\sigma_{Z/\gamma^* \to \ell\ell}^{\rm tot} [{\rm pb}]$	
$Z/\gamma^* \to \ell\ell$	$990 \pm 1 (\text{stat}) \pm 3 (\text{syst}) \pm 18 (\text{lumi}) \pm 15 (\text{acc})$	2.4%

Ζ

- Measurement of the total & differential production cross sections
 - Electron & Muon final states
 - W $\rightarrow \ell_{\nu}$: $|\eta_{\ell}| < 2.5$
 - $Z \rightarrow \ell \ell$: $|Y_{\ell \ell}| < 3.6$, three bins in $m_{\ell \ell}$
- Total production cross sections: Uncertainty < 2.8 % total Lumi: 1.8%, exp. sys: W: ~1%, Z: 0.4%

	$\sigma_{W \to \ell \nu}^{\text{tot}} \text{ [pb]}$	total unc.:
$W^+ \to \ell^+ \nu$	$6350 \pm 2 (\text{stat}) \pm 30 (\text{syst}) \pm 110 (\text{lumi}) \pm 100 (\text{acc})$	2.4%
$W^- \to \ell^- \bar{\nu}$	$4376 \pm 2 ({\rm stat}) \pm 25 ({\rm syst}) \pm 79 ({\rm lumi}) \pm 90 ({\rm acc})$	2.8%
$W \to \ell \nu$	$10720 \pm 3 (\text{stat}) \pm 60 (\text{syst}) \pm 190 (\text{lumi}) \pm 130 (\text{acc})$	2.2%
	$\sigma_{Z/\gamma^* \to \ell\ell}^{\text{tot}} \text{ [pb]}$	
$Z/\gamma^* \to \ell\ell$	$990 \pm 1 (\text{stat}) \pm 3 (\text{syst}) \pm 18 (\text{lumi}) \pm 15 (\text{acc})$	2.4%

• Dominating uncertainties (syst):

• Signal modeling el. (W) 0.7%, Z_{forward} 1.1%

• Experimental:

W

Ζ

- Multijet BG estimate (W only) < 0.7 %
- Reconstruction efficiency ~ 0.2 %
- Transverse momentum scale (W) ~ 0.2 %

arXiv:1612.03016

- Measurement of the total & differential production cross sections
 - Electron & Muon final states
 - W $\rightarrow \ell_{\nu}$: $|\eta_{\ell}| < 2.5$
 - $Z \rightarrow \ell \ell$: $|Y_{\ell \ell}| < 3.6$, three bins in $m_{\ell \ell}$
- Total production cross sections: Uncertainty < 2.8 % total Lumi: 1.8%, exp. sys: W: ~1%, Z: 0.4%

	$\sigma_{W \to \ell \nu}^{\text{tot}} \text{ [pb]}$	total unc.:
$W^+ \to \ell^+ \nu$	$6350 \pm 2 (\text{stat}) \pm 30 (\text{syst}) \pm 110 (\text{lumi}) \pm 100 (\text{acc})$	2.4%
$W^- \to \ell^- \bar{\nu}$	$4376 \pm 2 ({ m stat}) \pm 25 ({ m syst}) \pm 79 ({ m lumi}) \pm 90 ({ m acc})$	2.8%
$W \to \ell \nu$	$10720 \pm 3 (\text{stat}) \pm 60 (\text{syst}) \pm 190 (\text{lumi}) \pm 130 (\text{acc})$	2.2%
	$\sigma_{Z/\gamma^* \to \ell\ell}^{\text{tot}} \text{ [pb]}$	
$Z/\gamma^* \to \ell\ell$	$990 \pm 1 (\text{stat}) \pm 3 (\text{syst}) \pm 18 (\text{lumi}) \pm 15 (\text{acc})$	2.4%

- Dominating uncertainties (syst):
 - Signal modeling el. (W) 0.7%, Z_{forward} 1.1%
- Experimental:

W

Ζ

- Multijet BG estimate (W only) < 0.7 % ~ 0.2 %
- Reconstruction efficiency
- Transverse momentum scale (W) ~ 0.2 %

Most precise hadron collider result on single vector boson production

- 4.6 fb⁻¹ @ 7 TeV CME
 - 29 M W candidates
 - 3 M Z candidates

arXiv:1612.03016

Z Boson - x-Section in forward region @ 13 TeV

• Acceptance in forward region:

<u>LHCb</u>

- 2.0 < |η_ℓ| < 4.5, p_T > 20 GeV
- 60 GeV < $m_{\ell\ell}$ < 120 GeV

Source	$\Delta \sigma^{\mu\mu}_Z$ [%]	$\Delta \sigma^{ee}_{Z} [\%]$
Statistical	0.5	0.9
Reconstruction efficiencies	2.4	2.4
Purity	0.2	0.5
FSR	0.1	0.2
Total systematic (excl. lumi.)	2.4	2.5
Luminosity	3.9	3.9

stat. sys. lumi. total unc.:

$$\sigma_{\rm Z}^{\mu\mu} = 198.0 \pm 0.9 \pm 4.7 \pm 7.7 \,\text{pb}, \qquad 4.5\%$$

$$\sigma_{\rm Z}^{\rm ee} = 190.2 \pm 1.7 \pm 4.7 \pm 7.4 \,\text{pb}. \qquad 4.7\%$$

$$\sigma_{\rm Z}^{\ell\ell} = 194.3 \pm 0.9 \pm 3.3 \pm 7.6 \,\text{pb} \qquad 4.3\%$$

• 1.7% experimental uncertainty!

Z Boson - x-Section in forward region @ 13 TeV						
CMS	CMS	-PAS-SMP-15-004		LHCb THCp	<u>JHEP 09 (20</u>	<u>016) 136</u>
• Acceptance: • $ \eta < 2.5, p_T > 25 \text{ GeV}$ • 60 GeV < $m_{\ell\ell}$ < 120 GeV • 60 GeV < $m_{\ell\ell}$ < 120 GeV • 60 GeV < $m_{\ell\ell}$ < 120 GeV • 60 GeV < $m_{\ell\ell}$ < 120 GeV						
		stat sve lumi t	total une	Statistical	$\frac{\Delta \sigma_Z [70]}{0.5}$	$\frac{\Delta \sigma_Z \left[70 \right]}{0.9}$
$\alpha(\Lambda/+)$	- 11270	$\pm 50 \pm 220 \pm 550$ ph	5 20/	Reconstruction efficiencies	2.4	2.4
$\sigma(M^{-})$	= 11370 = 8580	$\pm 50 \pm 230 \pm 550 \text{ pb}$ + 50 + 160 + 410 pb	5.3% 5.2%	Purity	0.2	0.5
$O(VV) = 0000 \pm 00 \pm 100 \pm 410 \text{pb}$			J.Z /0	\mathbf{FSR}	0.1	0.2
σ(Z)	= 1910	= 1910 + 10 + 40 + 90 pb		Total systematic (excl. lumi.)	2.4	2.5
- ()		po	0.270	Luminosity	3.9	3.9

- Dominating uncertainties:
 - Lumi: 4.8%
 - Lepton Reco: 2%
 - Theory: 1.5%

stat. sys. lumi. total unc.:

$$\sigma_Z^{\mu\mu} = 198.0 \pm 0.9 \pm 4.7 \pm 7.7 \,\text{pb}, \qquad 4.5\%$$

$$\sigma_Z^{\text{ee}} = 190.2 \pm 1.7 \pm 4.7 \pm 7.4 \,\text{pb}, \qquad 4.7\%$$

$$\sigma_Z^{\ell\ell} = 194.3 \pm 0.9 \pm 3.3 \pm 7.6 \,\text{pb} \qquad 4.3\%$$

• 1.7% experimental uncertainty!

W,Z - Boson Inclusive Cross-Section @ 7 TeV

W,Z - Boson Inclusive Cross-Section @ 7 TeV

W,Z - Boson Inclusive Cross-Section

Kristof Schmieden

Rencentre de Blois - Mai 2017

• W boson (pseudo-) rapidity

arXiv:1612.03016

• W boson (pseudo-) rapidity

- Measurements sensitive to PDF
 - Impact on PDF evaluated using profiling
 - Significant reduction of PDF uncertainty!
- Relative uncertainty on u-Quark PDF

W,Z - Boson Differential Measurements @ 7 TeV

• Extraction of the strange quark density:

$$r_s = \frac{s + \bar{s}}{2\bar{d}} = 1.19 \pm 0.07 \,(\text{exp}) \pm 0.02 \,(\text{mod}) \stackrel{+0.02}{_{-0.10}} \,(\text{par})$$

- Strangeness in quark sea unsuppressed!
 - Confirmed results from 2010 data

- PDF profiling used to study impact of measurement on given PDF
 - Uncertainty significantly reduced
 - Central values changed

$W \rightarrow ev$: Differential Charge Asymmetry

 $A_{\ell} = \frac{\mathrm{d}\sigma_{W+}/\mathrm{d}|\eta_{\ell}| - \mathrm{d}\sigma_{W-}/\mathrm{d}|\eta_{\ell}|}{\mathrm{d}\sigma_{W+}/\mathrm{d}|\eta_{\ell}| + \mathrm{d}\sigma_{W-}/\mathrm{d}|\eta_{\ell}|}$

- High $|\eta|$ region very sensitive to PDF effects
 - Significant deviation between data and predictions

	where and and and and and the second		
LHCb THCp	(2016) 03	<u>30</u>	
		Cb, $\sqrt{s} = 8$ Data _{stat} \circ CT14 Data _{tot} \land MMF \lor NNP	FeV HT14 DF30
	°∠∞∞⊡∮		W08
-0.2 Unc. < 2.5 %	Q 2	ΔΩΦ□Į + HEK	
$-0.4 = p_{T}^{e} > 20 \text{ GeV}$			
			- + - + - -
	┛╹ ╵ ╵ ╹ ┃ 		
\vdash 2 2.5 3	3.5	2	4
$\vdash 2$ 2.5 3 Source	3.5 Unc	ertainty [%]	$4 \eta^e$
$\vdash 2$ 2.5 3 Source	3.5 Unc	$\frac{\text{ertainty } [\%]}{\sigma_{W^{-}}}$	$\frac{4}{R_{w^+}}$
$ \begin{array}{c} \vdash 2 & 2.5 & 3 \\ \hline \\ Source \\ \hline \\ \hline \\ Statistical^{\dagger} \end{array} $	3.5 Unc $\frac{\sigma_{W^+ \to e^+ \nu_e}}{0.19}$	$\frac{\text{ertainty } [\%]}{\frac{\sigma_{W^- \to e^- \overline{\nu}_e}}{0.24}}$	$\frac{4}{\eta^e}$ $\frac{R_{W^{\pm}}}{0.30}$
$ \begin{array}{c c} \vdash & 2 & 2.5 & 3 \\ \hline & \\ \hline \\ \hline$	3.5 Unc $\frac{\sigma_{W^+ \rightarrow e^+ \nu_e}}{0.19}$ 0.28	$\frac{\text{ertainty } [\%]}{\frac{\sigma_{W^- \to e^- \overline{\nu}_e}}{0.24}}$	$egin{array}{c} & \eta^e & & \ \hline R_{W^\pm} & & \ \hline 0.30 & & \ 0.48 & & \ \end{array}$
$ \begin{array}{c cccc} \vdash & 2 & 2.5 & 3 \\ \hline Source \\ \hline Statistical^{\dagger} \\ \hline Yield (statistical)^{\dagger} \\ \hline Yield (systematic) \\ \end{array} $	3.5 Unc $\sigma_{W^+ \to e^+ \nu_e}$ 0.19 0.28 1.42	$\frac{\text{ertainty } [\%]}{\sigma_{W^- \to e^- \overline{\nu}_e}}$ 0.24 0.40 1.79	$4 \eta^e \ R_{W^\pm} \ 0.30 \ 0.48 \ 0.51$
$ \begin{array}{c cccc} \vdash & 2 & 2.5 & 3 \\ \hline Source \\ \hline Statistical^{\dagger} \\ \hline Yield (statistical)^{\dagger} \\ \hline Yield (systematic) \\ \hline Efficiency (statistical)^{\dagger} \\ \end{array} $	3.5 Unc $\sigma_{W^+ \to e^+ \nu_e}$ 0.19 0.28 1.42 0.55	$\frac{\text{ertainty } [\%]}{\sigma_{W^- \to e^- \overline{\nu}_e}}$ 0.24 0.40 1.79 0.55	$\begin{array}{c} 4 \\ \eta^{e} \\ \hline R_{W^{\pm}} \\ \hline 0.30 \\ \hline 0.48 \\ \hline 0.51 \\ 0.21 \end{array}$
$ \begin{array}{c cccc} \vdash & 2 & 2.5 & 3 \\ \hline Source \\ \hline Statistical^{\dagger} \\ \hline Yield (statistical)^{\dagger} \\ \hline Yield (systematic) \\ \hline Efficiency (statistical)^{\dagger} \\ \hline Efficiency (systematic) \\ \hline \end{array} $	3.5 Unc $\sigma_{W^+ \to e^+ \nu_e}$ 0.19 0.28 1.42 0.55 1.11	$\frac{\text{ertainty } [\%]}{\sigma_{W^- \to e^- \overline{\nu}_e}} \\ 0.24 \\ 0.40 \\ 1.79 \\ 0.55 \\ 1.14$	$egin{array}{c} \eta^e & & \ \eta^e & & \ \hline R_{W^\pm} & & \ 0.30 & & \ 0.48 & & \ 0.51 & & \ 0.21 & & \ 0.54 & & \ \end{array}$
$ \begin{array}{c cccc} \vdash & 2 & 2.5 & 3 \\ \hline Source \\ \hline Statistical^{\dagger} \\ \hline Yield (statistical)^{\dagger} \\ \hline Yield (systematic) \\ \hline Efficiency (statistical)^{\dagger} \\ \hline Efficiency (systematic) \\ \hline FSR corrections^{\dagger} \\ \end{array} $	$\begin{array}{r} 3.5\\ & \\ & \\ Unc\\ \hline \sigma_{W^+ \to e^+ \nu_e} \\ \hline 0.19\\ \hline 0.28\\ \hline 1.42\\ \hline 0.55\\ \hline 1.11\\ \hline 0.05 \end{array}$	ertainty [%] $\sigma_{W^- \to e^- \overline{\nu}_e}$ 0.24 0.40 1.79 0.55 1.14 0.07	$\begin{array}{c} 4 \\ \eta^e \\ \hline R_{W^{\pm}} \\ \hline 0.30 \\ 0.48 \\ 0.51 \\ 0.21 \\ 0.54 \\ 0.09 \\ \end{array}$
$ \begin{array}{c cccc} \vdash & 2 & 2.5 & 3 \\ \hline & Source \\ \hline & Statistical^{\dagger} \\ \hline & Yield (statistical)^{\dagger} \\ \hline & Yield (systematic) \\ \hline & Efficiency (statistical)^{\dagger} \\ \hline & Efficiency (systematic) \\ \hline & FSR corrections^{\dagger} \\ \hline & Acceptance corrections (statistical)^{\dagger} \\ \end{array} $	$\begin{array}{r} 3.5\\ & \\ & \\ Unc\\ \hline \sigma_{W^+ \to e^+ \nu_e}\\ \hline 0.19\\ 0.28\\ 1.42\\ 0.55\\ \hline 1.11\\ 0.05\\ 0.00\\ \end{array}$	ertainty [%] $\sigma_{W^- \to e^- \overline{\nu}_e}$ 0.24 0.40 1.79 0.55 1.14 0.07 0.01	$\begin{array}{c} 4 \\ \eta^e \\ \hline R_{W^{\pm}} \\ 0.30 \\ 0.48 \\ 0.51 \\ 0.21 \\ 0.54 \\ 0.09 \\ 0.01 \\ \end{array}$
$ \begin{array}{c cccc} \vdash & 2 & 2.5 & 3 \\ \hline & Source \\ \hline & Statistical^{\dagger} \\ \hline & Yield (statistical)^{\dagger} \\ \hline & Yield (systematic) \\ Efficiency (statistical)^{\dagger} \\ \hline & Efficiency (systematic) \\ FSR corrections^{\dagger} \\ Acceptance corrections (statistical)^{\dagger} \\ \hline & Acceptance corrections (systematic) \\ \hline & \\ \end{array} $	$\begin{array}{r} 3.5\\ & \\ & \\ Unc\\ \hline \sigma_{W^+ \rightarrow e^+ \nu_e}\\ \hline 0.19\\ 0.28\\ \hline 1.42\\ 0.55\\ \hline 1.11\\ 0.05\\ 0.00\\ 0.15\\ \end{array}$	ertainty [%] $\sigma_{W^- \to e^- \overline{\nu}_e}$ 0.24 0.40 1.79 0.55 1.14 0.07 0.01 0.15	$\begin{array}{c} 4 \\ \eta^e \\ \hline R_{W^{\pm}} \\ 0.30 \\ 0.48 \\ 0.51 \\ 0.21 \\ 0.54 \\ 0.09 \\ 0.01 \\ 0.00 \\ \end{array}$
$ \begin{array}{c cccc} \vdash & 2 & 2.5 & 3 \\ \hline & Source \\ \hline & Statistical^{\dagger} \\ \hline & Yield (statistical)^{\dagger} \\ \hline & Yield (systematic) \\ Efficiency (statistical)^{\dagger} \\ \hline & Efficiency (systematic) \\ FSR corrections^{\dagger} \\ Acceptance corrections (statistical)^{\dagger} \\ \hline & Acceptance corrections (systematic) \\ Charge mis-identification^{\dagger} \\ \end{array} $	3.5 Unc $\sigma_{W^+ \rightarrow e^+ \nu_e}$ 0.19 0.28 1.42 0.55 1.11 0.05 0.00 0.15 	$\frac{\text{ertainty } [\%]}{\sigma_{W^- \to e^- \overline{\nu}_e}} \\ 0.24 \\ 0.40 \\ 1.79 \\ 0.55 \\ 1.14 \\ 0.07 \\ 0.01 \\ 0.15 \\$	$\begin{array}{c} 4 \\ \eta^e \\ \hline R_{W^{\pm}} \\ 0.30 \\ 0.48 \\ 0.51 \\ 0.21 \\ 0.54 \\ 0.09 \\ 0.01 \\ 0.00 \\ 0.02 \\ \end{array}$
 ► 2 2.5 3 Source Statistical[†] Yield (statistical)[†] Yield (systematic) Efficiency (statistical)[†] Efficiency (systematic) FSR corrections[†] Acceptance corrections (statistical)[†] Acceptance corrections (systematic) Charge mis-identification[†] Systematic 	3.5 Unc $\sigma_{W^+ \rightarrow e^+ \nu_e}$ 0.19 0.28 1.42 0.55 1.11 0.05 0.00 0.15 	$\frac{\text{ertainty } [\%]}{\sigma_{W^- \to e^- \overline{\nu}_e}}$ 0.24 0.40 1.79 0.55 1.14 0.07 0.01 0.15 2.23	$\begin{array}{c} 4 \\ \eta^e \\ \hline R_{W^\pm} \\ 0.30 \\ 0.48 \\ 0.51 \\ 0.21 \\ 0.54 \\ 0.09 \\ 0.01 \\ 0.00 \\ 0.02 \\ 0.91 \\ \end{array}$
 ► 2 2.5 3 Source Statistical[†] Yield (statistical)[†] Yield (systematic) Efficiency (statistical)[†] Efficiency (systematic) FSR corrections[†] Acceptance corrections (statistical)[†] Acceptance corrections (systematic) Charge mis-identification[†] Systematic Beam energy 	3.5 Unc $\sigma_{W^+ \rightarrow e^+ \nu_e}$ 0.19 0.28 1.42 0.55 1.11 0.05 0.00 0.15 1.91 1.00	$\begin{array}{r} \text{ertainty } [\%] \\ \hline \sigma_{W^- \to e^- \overline{\nu}_e} \\ \hline 0.24 \\ \hline 0.40 \\ 1.79 \\ 0.55 \\ 1.14 \\ 0.07 \\ 0.01 \\ 0.15 \\ \hline 2.23 \\ \hline 2.23 \\ \hline 0.86 \\ \end{array}$	$\begin{array}{c} 4 \\ \eta^e \\ \hline R_{W^\pm} \\ \hline 0.30 \\ 0.48 \\ 0.51 \\ 0.21 \\ 0.54 \\ 0.09 \\ 0.01 \\ 0.00 \\ 0.02 \\ 0.91 \\ 0.14 \end{array}$
 F 2 2.5 3 Source Statistical[†] Yield (statistical)[†] Yield (systematic) Efficiency (statistical)[†] Efficiency (systematic) FSR corrections[†] Acceptance corrections (statistical)[†] Acceptance corrections (systematic) Charge mis-identification[†] Systematic Beam energy Luminosity 	$\begin{array}{r} 3.5\\ & \text{Unc}\\ \hline \sigma_{W^+ \rightarrow e^+ \nu_e} \\ 0.19\\ 0.28\\ 1.42\\ 0.55\\ 1.11\\ 0.05\\ 0.00\\ 0.15\\ \hline 0.00\\ 0.15\\ \hline - \\ 1.91\\ 1.00\\ 1.16\\ \end{array}$	$\begin{array}{c} \text{ertainty } [\%] \\ \hline \sigma_{W^- \to e^- \overline{\nu}_e} \\ 0.24 \\ \hline 0.40 \\ 1.79 \\ 0.55 \\ 1.14 \\ 0.07 \\ 0.01 \\ 0.15 \\ \\ \hline 2.23 \\ \hline 0.86 \\ 1.16 \\ \end{array}$	$egin{array}{c} & \eta^e & \ & \eta^e & \ & R_{W^\pm} & \ & 0.30 & \ & 0.48 & \ & 0.51 & \ & 0.21 & \ & 0.54 & \ & 0.09 & \ & 0.01 & \ & 0.00 & \ & 0.02 & \ & 0.91 & \ & 0.14 & \ & & \ \end{array}$

- Largest uncertainties:
 - Momentum scale: 1.8%
 - PID, FSR modeling: 0.6%
 - Track reconstruction: 0.5%

$Z p_T spectrum - \Phi^* measurement$

- Instead of direct transverse momentum measurement:
- Related quantity: $\Phi^* \quad \sqrt{2}m_Z \phi^*_\eta \approx p_T^{ll}$
- Depends only on measured angles
 - Better resolution compared to momentum measurements

$$\phi_{\eta}^{*} = \tan(\frac{\pi - \Delta \phi}{2}) \cdot \sin(\theta_{\eta}^{*})$$

$$\theta_{\eta}^{*} = \arccos(\tanh(\frac{\eta^{-} - \eta^{+}}{2}))$$

TeV measurements

Kristof Schmieden

0.9

10⁻³

 10^{-2}

10⁻¹

 $\phi_{\!\eta}$

$Z p_T$ spectrum - Φ^* Measurement

- Low range dominated by:
 - Non perturbative effects
 - Parton shower
- High range dominated by:
 - Hard parton emission
 - Matrix element generator
- Good agreement: Pythia8 & MG w.r.t data

$Z p_T$ spectrum - Φ^* Measurement

PowHeg + Pythia prediction below measurement for low Φ^* values

- Low range dominated by:
 - Non perturbative effects
 - Parton shower
- High range dominated by:
 - Hard parton emission
 - Matrix element generator
- Good agreement: Pythia8 & MG w.r.t data

Rencentre de Blois - Mai 2017

W,Z pT spectrum - Φ^* Measurement Uncertainties

Impact on theory developments

- Tuning of NNLOJET to describe LHC data
 - Nov. 2016
 - Latest LHC results included from May 2016:

A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, A. Huss and T.A. Morgan

JHEP11(2016)094

• Fast feedback into MC :-)

Z-Boson: Forward Backward asymmetry, angular distributions & weak mixing angle

Intro

- Polarization of Z Bosons:
 - Accessible via angular distributions of decay leptons
 - Difficult to model in Monte Carlo simulation
 - ME & Spin correlations of FS particles
- Weak mixing angle accessible
 - Fundamental parameter of EWK standard model sector
- Several Measurements at colliders:
 - Forward Backward asymmetry (AFB)
 - Weak mixing angle
 - Angular coefficients \rightarrow Z polarisation
 - Input to m(W) measurement
 - Not well modeled by several MC generators

Angles in Collins-Soper Frame:

- Rest frame of di-lepton system
- Z-axis bisecting directions of incoming proton momenta
- Direction of z-axis defined by longitudinal boost of di-lepton system

Angular coefficients:

Orthogonal polynomials used to **Differential cross section** parametrize angular distribution: $pp \to Z/\gamma^* + X \to l^+l^- + X$ $\left\langle P(\cos\theta,\phi)\right\rangle = \frac{\int P(\cos\theta,\phi)d\sigma(\cos\theta,\phi)d\cos\theta\,d\phi}{\int d\sigma(\cos\theta,\phi)d\cos\theta\,d\phi}$ $<\frac{1}{2}(1-3\cos^2\theta)>=\frac{3}{20}(A_0-\frac{2}{3})$ $<\sin 2\theta \cos \phi >= \frac{1}{5}A_1$ normalization of unpolarized cross section, also applied to all other P $<\sin\theta\cos\phi >= \frac{1}{4}A_3$ $< 1 + \cos^2 \theta >$ $<\frac{1}{2}(1-3\cos^{2}\theta) >= \frac{3}{20}(A_{0}-\frac{2}{3})$ $<\sin 2\theta \ \cos \phi >= \frac{1}{5}A_{1}$ longitudinal polarization interference term: $\sin^2\theta \sin 2\phi \ge \frac{1}{5}A_5$ longitudinal^{*} fransværse $<\sin^2\theta$ $\cos 2\phi >= \frac{1}{10}A_2$ $<\sin\theta\sin\phi>=\frac{1}{4}A_7$ transverse polarization $<\sin\theta \ \cos\phi >= \frac{1}{4}A_3$ $<\cos\theta >= \frac{1}{4}A_4$ product of v-a couplings, sensitive to Weinberg angle 8/3 * forward backward asymmetry A_{FB} , sensitive to Weinberg angle non-zero already at LO $q\bar{q} \rightarrow Z/\gamma^* \rightarrow l^+l^ <\sin^2\theta$ $\sin 2\phi >= \frac{1}{5}A_5$ Predicted to be 0 @ NLO $<\sin 2\theta \sin \phi >= \frac{1}{5}A_6$ Non zero contributions @ NNLO for large $p_T(Z)$ $<\sin\theta$ $\sin\phi>=\frac{1}{4}A_7$

Kristof Schmieden

Angular coefficients:

Orthogonal polynomials used to **Differential cross section** parametrize angular distribution: $pp \to Z/\gamma^* + X \to l^+l^- + X$ $\left\langle P(\cos\theta,\phi)\right\rangle = \frac{\int P(\cos\theta,\phi)d\sigma(\cos\theta,\phi)d\cos\theta\,d\phi}{\int d\sigma(\cos\theta,\phi)d\cos\theta\,d\phi}$ $<\frac{1}{2}(1-3\cos^2\theta)>=\frac{3}{20}(A_0-\frac{2}{3})$ $<\sin 2\theta \cos \phi >= \frac{1}{5}A_1$ normalization of unpolarized cross section, also applied to all other P $<\sin\theta \cos\phi >= \frac{1}{4}A_3$ $< 1 + \cos^2 \theta >$ $<\frac{1}{2}(1 - 3\cos^{2}\theta) >= \frac{3}{20}(A_{0} - \frac{2}{3})$ $<\sin 2\theta \ \cos \phi >= \frac{1}{5}A_{1}$ longitudinal polarization interference term: $\sin^2\theta \sin 2\phi \ge \frac{1}{5}A_5$ A_i are neither input to theory longitudinal^{*} fransværse calculations, nor simulations! $<\sin^2\theta$ $\cos 2\phi >= \frac{1}{10}A_2$ $<\sin\theta\sin\phi>=\frac{1}{4}A_7$ transverse polarization $<\sin\theta\,\cos\phi>=\frac{1}{4}A_3$ $<\cos\theta>=\frac{1}{4}A_4$ product of v-a couplings, sensitive to Weinberg angle 8/3 * forward backward asymmetry A_{FB}, sensitive to Weinberg angle non-zero already at LO $q\bar{q} \rightarrow Z/\gamma^* \rightarrow l^+l^ <\sin^2\theta$ $\sin 2\phi >= \frac{1}{5}A_5$ Predicted to be 0 @ NLO $<\sin 2\theta \sin \phi >= \frac{1}{5}A_6$ Non zero contributions @ NNLO for large $p_T(Z)$ $<\sin\theta$ $\sin\phi>=\frac{1}{4}A_7$

Kristof Schmieden

Z boson Forward Backward Asymmetry (A_{FB})

Sensitive to PDFs at low / high masses

• up - down quark distributions

 Sensitive to weak mixing angle around the Z-pole

Forward - Backward asymmetry

Kristoi schmieden

Rencentre de Blois - Mai 2017

Weak mixing angle

DØ note 6497-CONF

Z Boson Polarisation

<u>JHEP08(2016)159</u>

- Significant differences between simulations!
- Sherpa & PowHegBox show statistical unc. only
- DYNNLO gives best description of measured A₀
- No generator describes A0-A2
 - (Best: Sherpa 2.1)
- Improvement from Sherpa 1.4 to
 2.1
 - Included feedback from this Measurement

Rencentre de Blois - Mai 2017

Summary

Kristof Schmieden

Summary

- Rich physics program using W & Z Bosons at hadron colliders
- Experimental precision achieved:
 - ~ % or better on many inclusive & differential observables!
 - Largest uncertainties:
 - Reconstruction efficiencies
 - Momentum Scales
 - Model uncertainties

Need improved calculations

Can be further reduced

- More precise than current theory calculations for several observables
 - Tensions with several theory calculations observed
 - Interesting development expected!
- Adding constrains to PDFs
 - Dominant uncertainty for many collider measurements

Results on standard model EWK sector passing LEP precision!

VBFW,Z production

Ratio of cross sections: ttbar / Z at \sqrt{s} of 7,8 and 13 TeV

• Many experimental systematics cancel in ratio measurements

- ttbar and Z analyses harmonized to maximize cancellation of uncertainties!
- Ratio ttbar / Z:
 - Luminosity cancels
- Ratio same processes at different \sqrt{s}
 - Reco & selection efficiencies,
- Allows precise comparisons to predictions
 - ABM12 disfavored by measurement
- ttbar / Z ratio sensitive to PDFs
 - Contribution of Gluons
- Eventually: double ratios

• Significant impact on **gluon PDF** uncertainty

Good agreement, predictions with ABM12 differs w.r.t. other PDFs

Significant discrepancy between data & prediction. Origin lies in 7 TeV measurement / prediction.

CERN

Kristof Schmieden

W,Z - Boson Inclusive Cross-Section

W,Z @ 7 TeV - Uncertainties

• Electron channel

• Muon channel

	$\delta\sigma_{W}$	$\delta\sigma_{W_{-}}$	δσz	$\delta\sigma_{\text{forward }7}$		δσιικ	δσικ	δσα
	[%]	[%]	[%]	[%]		[07.]	[07]	[07]
Trigger efficiency	0.03	0.03	0.05	0.05		[70]	[70]	
Reconstruction efficiency	0.12	0.12	0.20	0.13	Trigger efficiency	0.08	0.07	0.05
Identification efficiency	0.09	0.09	0.16	0.12	Reconstruction efficiency	0.19	0.17	0.30
Forward identification efficiency	_	_	_	1.51	Isolation efficiency	0.10	0.09	0.15
Isolation efficiency	0.03	0.03	_	0.04	Muon $p_{\rm T}$ resolution	0.01	0.01	< 0.01
Charge misidentification	0.04	0.06	_	_	Muon $p_{\rm T}$ scale	0.18	0.17	0.03
Electron $p_{\rm T}$ resolution	0.02	0.03	0.01	0.01	F^{miss} soft torm scale	0.10	0.10	
Electron $p_{\rm T}$ scale	0.22	0.18	0.08	0.12	$E_{\rm T}$ solution scale	0.19	0.19	—
Forward electron $p_{\rm T}$ scale + resolution	_	_	_	0.18	$E_{\rm T}$ soft term resolution	0.10	0.09	_
$E_{\rm T}^{\rm miss}$ soft term scale	0.14	0.13	_	_	Jet energy scale	0.09	0.12	—
$E_{\rm T}^{\rm miss}$ soft term resolution	0.06	0.04	_	_	Jet energy resolution	0.11	0.16	—
Jet energy scale	0.04	0.02	_	_	Signal modelling (matrix-element generator)	0.12	0.06	0.04
Jet energy resolution	0.11	0.15	_	_	Signal modelling (parton shower and hadronization)	0.14	0.17	0.22
Signal modelling (matrix-element generator)	0.57	0.64	0.03	1.12	PDF	0.00	0.12	0.07
Signal modelling (parton shower and hadronization)	0.24	0.25	0.18	1.25		0.03	0.14	0.01
PDF	0.10	0.12	0.09	0.06	Boson $p_{\rm T}$	0.18	0.14	0.04
Boson $p_{\rm T}$	0.22	0.19	0.01	0.04	Multijet background	0.33	0.27	0.07
Multijet background	0.55	0.72	0.03	0.05	Electroweak+top background	0.19	0.24	0.02
Electroweak+top background	0.17	0.19	0.02	0.14	Background statistical uncertainty	0.03	0.04	0.01
Background statistical uncertainty	0.02	0.03	< 0.01	0.04	Unfolding statistical uncertainty	0.03	0.03	0.02
Unfolding statistical uncertainty	0.03	0.04	0.04	0.13	Deta statistical uncertainty	0.00	0.00	0.02
Data statistical uncertainty	0.04	0.05	0.10	0.18		0.04	0.04	0.08
Total experimental uncertainty	0.94	1.08	0.35	2.29	Total experimental uncertainty	0.61	0.59	0.43
Luminosity			1.8		Luminosity		1.8	

W,Z - Boson Differential Measurements @ 7 TeV

• Differential measurements in (pseudo-) rapidity

- Sensitive to PDF
- Impact on PDF evaluated using profiling

- Comparison in 3 regions of m_{II}
- 2 individual Pythia tunes:
 - AZNLO done on 7 TeV data at Zpeak
 AU2
- Significant disagreement between simulation & data in peak region
- Also significant disagreement between PowHeg and Sherpa
 - Particularly for large ϕ^* values

CERN

JHEP 02 (2017) 117

- Discrepancy observed in super-ratio including 7TeV data:
 Origin in ttbar(8 TeV) / ttbar(7 TeV) ratio
 - Suspected to lie in 7 TeV ttbar measurement

Drell-Yan measurements @ 8 TeV

Agreement with SM over 3 orders of magnitude in mass 9 order in cross section

Uncertainties at few % level for m < 500 GeV

Kristof Schmieden

Rencentre de Blois - Mai 2017

High mass DY measurement @ 8 TeV

- Only masses above Z-peak considered
 - Comparison to various PDFs
 - Rapidity distribution very sensitive
 - Significant deviations observed

High mass DY measurement @ 8 TeV

W mass @ 7 TeV - uncertainty details

Higher order EWK corrections

Decay channel	И	$V \to e\nu$	W	$\nu \to \mu \nu$
Kinematic distribution	p_{T}^{ℓ}	m_{T}	p_{T}^{ℓ}	m_{T}
$\delta m_W [{ m MeV}]$				
FSR (real)	< 0.1	< 0.1	< 0.1	< 0.1
Pure weak and IFI corrections	3.3	2.5	3.5	2.5
FSR (pair production)	3.6	0.8	4.4	0.8
Total	4.9	2.6	5.6	2.6

Recoil corrections

W-boson charge	И	V+	И	7-	Com	bined
Kinematic distribution	p_{T}^{ℓ}	m_{T}	p_{T}^{ℓ}	m_{T}	p_{T}^{ℓ}	m_{T}
$\delta m_W [{\rm MeV}]$						
$\langle \mu \rangle$ scale factor	0.2	1.0	0.2	1.0	0.2	1.0
$\Sigma \bar{E_{\mathrm{T}}}$ correction	0.9	12.2	1.1	10.2	1.0	11.2
Residual corrections (statistics)	2.0	2.7	2.0	2.7	2.0	2.7
Residual corrections (interpolation)	1.4	3.1	1.4	3.1	1.4	3.1
Residual corrections $(Z \rightarrow W \text{ extrapolation})$	0.2	5.8	0.2	4.3	0.2	5.1
Total	2.6	14.2	2.7	11.8	2.6	13.0

Muons experimental

$ \eta_{\ell} $ range	[0.	[0, 0.8]	[0.3	8,1.4]	[1.4	[4, 2.0]	[2	[.0, 2.4]	Com	bined
Kinematic distribution	$p_{\mathrm{T}}^{\check{\ell}}$	m_{T}	$p_{\mathrm{T}}^{\check{\ell}}$	m_{T}	$p_{\mathrm{T}}^{\check{\ell}}$	m_{T}	p_{T}^{ℓ}	m_{T}	$p_{\rm T}^\ell$	m_{T}
$\delta m_W [{ m MeV}]$										
Momentum scale	8.9	9.3	14.2	15.6	27.4	29.2	111.0	115.4	8.4	8.8
Momentum resolution	1.8	2.0	1.9	1.7	1.5	2.2	3.4	3.8	1.0	1.2
Sagitta bias	0.7	0.8	1.7	1.7	3.1	3.1	4.5	4.3	0.6	0.6
Reconstruction and										
isolation efficiencies	4.0	3.6	5.1	3.7	4.7	3.5	6.4	5.5	2.7	2.2
Trigger efficiency	5.6	5.0	7.1	5.0	11.8	9.1	12.1	9.9	4.1	3.2
Total	11.4	11.4	16.9	17.0	30.4	31.0	112.0	116.1	9.8	9.7

Electrons experimental

$ \eta_{\ell} $ range	[0.0, 0.6]		[0.	6, 1.2]	[1.82, 2.4]		Com	oined
Kinematic distribution	p_{T}^{ℓ}	m_{T}	p_{T}^{ℓ}	m_{T}	p_{T}^ℓ	m_{T}	p_{T}^{ℓ}	m_{T}
$\delta m_W [{ m MeV}]$								
Energy scale	10.4	10.3	10.8	10.1	16.1	17.1	8.1	8.0
Energy resolution	5.0	6.0	7.3	6.7	10.4	15.5	3.5	5.5
Energy linearity	2.2	4.2	5.8	8.9	8.6	10.6	3.4	5.5
Energy tails	2.3	3.3	2.3	3.3	2.3	3.3	2.3	3.3
Reconstruction efficiency	10.5	8.8	9.9	7.8	14.5	11.0	7.2	6.0
Identification efficiency	10.4	7.7	11.7	8.8	16.7	12.1	7.3	5.6
Trigger and isolation efficiencies	0.2	0.5	0.3	0.5	2.0	2.2	0.8	0.9
Charge mismeasurement	0.2	0.2	0.2	0.2	1.5	1.5	0.1	0.1
Total	19.0	17.5	21.1	19.4	30.7	30.5	14.2	14.3
QCD modeling								
W-boson charge				W^+	V	V^{-}	Com	bined
Kinematic distribution			p_r^t	$_{\Gamma}^{\ell}$ m_{T}	p_{T}^ℓ	m_{T}	p_{T}^{ℓ}	m_{T}
$\delta m_W [{ m MeV}]$								
Fixed-order PDF uncertainty			13.	1 14.9	12.0	14.2	8.0	8.7
AZ tune			3.	0 3.4	3.0	3.4	3.0	3.4
Charm-quark mass			1.	2 1.5	1.2	1.5	1.2	1.5
Parton shower $\mu_{\rm F}$ with heavy-flavor	ur deco	rrelatio	n 5.	0 6.9	5.0	6.9	5.0	6.9
Parton shower PDF uncertainty			3.	6 4.0	2.6	2.4	1.0	1.6
Angular coefficients			5.	8 5.3	5.8	5.3	5.8	5.3
Total			15.	9 18.1	14.8	17.2	11.6	12.9

Kristof Schmieden

Rencentre de Blois - Mai 2017

W mass @ LHC - consistency of SM

• Test for consistency of standard model:

<u>arXiv:1701.07240</u>

W,Z inclusive @ 7 TeV => W mass

CERN

Choosing the PDF to be used in simulations for W mass extraction
 Best agreement with 7 TeV W,Z data: CT PDF sets

PDF uncertainties: included | excluded

Data set	n.d.f.	ABM12	CT14	MMHT14	NNPDF3.0	ATLAS-epWZ12
$W^+ \to \ell^+ \nu$	11	11 21	10 26	11 37	11 18	12 15
$W^- \to \ell^- \bar{\nu}$	11	12 20	8.9 27	8.1 31	12 19	7.8 17
$Z/\gamma^* \to \ell\ell \ (m_{\ell\ell} = 46 - 66 \text{ GeV})$	6	17 21	11 30	18 24	21 22	28 36
$Z/\gamma^* \to \ell\ell \ (m_{\ell\ell} = 66 - 116 \text{ GeV})$	12	24 51	16 66	20 116	14 109	18 26
Forward $Z/\gamma^* \to \ell\ell \ (m_{\ell\ell} = 66 - 116 \text{ GeV})$	9	7.3 9.3	10 12	12 13	14 18	6.8 7.5
$Z/\gamma^* \to \ell\ell \ (m_{\ell\ell} = 116 - 150 \text{ GeV})$	6	6.1 6.6	6.3 6.1	5.9 6.6	6.1 8.8	6.7 6.6
Forward $Z/\gamma^* \to \ell\ell \ (m_{\ell\ell} = 116 - 150 \text{ GeV})$	6	4.2 3.9	5.1 4.3	5.6 4.6	5.1 5.0	3.6 3.5
Correlated χ^2		57 90	39 123	43 167	69 157	31 48
Total χ^2	61	136 222	103 290	118 396	147 351	113 159

W,Z - Boson Differential Measurements @ 7 TeV

- Predictions:
 - NNLO QCD using DYNNLO
 - NLO EWK corrections using
 - PHOTOS (QED FSR)
 - MCSANC (other)
 - Various PDFs

- Predicted cross section too low
 - (except HERA 2.0 PDF)
- Discrepancy in shape

Z - Boson Differential Measurements

LHCb: forward spectrometer

Access to high rapidity regime!

- NLO qQCD using FEWZ 3.1
- LO EWK
- Various PDFs
- Predicted cross section slightly below measurement for low rapidities
 - Consistent with other LHC measurements

LHCh

$Z p_T$ spectrum - Φ^* measurement

- Depends only on measured angles
 - Better resolution compared to momentum measurements
 - $\sqrt{2}m_Z\phi_\eta^* \approx p_{\rm T}^{ll}$
- Significant deviations observed
 - MadGraph: best agreement
 - Deviations up to 5%
 - PowHeg + Pythia 6
 - Deviations up to 18%

<u>CMS-PAS-SMP-15-002</u>

Z pT spectrum - Φ^* measurement

- Before: MC / Data!
- Low range dominated by:
 - Non perturbative effects
 - Parton shower
- High range dominated by hard parton emission
 - Matrix element generator
- Good agreement of Pythia 8 prediction with data

compared to previous results

$Z p_T$ spectrum - Φ^* measurement

- Before: MC / Data!
- Low range dominated by:
 - Non perturbative effects
 - Parton shower
- High range dominated by hard parton emission
 - Matrix element generator
- Good agreement of Pythia 8 prediction with data
- Dominating **experimental uncertainty**:
 - Reconstruction efficiency (2.4% on total cross section)

Z Boson - x-Section in forward region @ 13 TeV

JHEP 09 (2016) 136

• Acceptance in forward region:

- 2.0 < |η_ℓ| < 4.5, p_T > 20 GeV
- 60 GeV < m_{ℓℓ} < 120 GeV

- Achieved precision (combined):
 - < 4.3% total uncertainty
 - 1.7% experimental
 - (3.9% luminosity)

Source	$\Delta \sigma^{\mu\mu}_Z$ [%]	$\Delta \sigma^{ee}_{Z} [\%]$
Statistical	0.5	0.9
Reconstruction efficiencies	2.4	2.4
Purity	0.2	0.5
FSR	0.1	0.2
Total systematic (excl. lumi.)	2.4	2.5
Luminosity	3.9	3.9

stat.sys.lumi.total unc.:
$$\sigma_Z^{\mu\mu} = 198.0 \pm 0.9 \pm 4.7 \pm 7.7 \,\mathrm{pb},$$
4.5% $\sigma_Z^{\mathrm{ee}} = 190.2 \pm 1.7 \pm 4.7 \pm 7.4 \,\mathrm{pb}.$ 4.7% $\sigma_Z^{\ell\ell} = 194.3 \pm 0.9 \pm 3.3 \pm 7.6 \,\mathrm{pb}$ 4.3%