New Physics in CP violation and rare DECAYS: Where we are and what's next

Joaquim Matias
Universitat Autònoma de Barcelona

Blois conference

In collaboration with: B. Capdevila, S. Descotes-Genon, L. Hofer and J. Virto

Particle physics

Central question of QFT-based particle physics

Particle physics

Central question of QFT-based particle physics

$\Longrightarrow 3$ generations playing a particular role in the SM

$$
\mathcal{L}_{S M}=\mathcal{L}_{\text {gauge }}\left(A_{a}, \psi_{j}\right)+\mathcal{L}_{\text {Higgs }}\left(\phi, A_{a}, \psi_{j}\right)
$$

Gauge part $\mathcal{L}_{\text {gauge }}\left(A_{a}, \psi_{j}\right)$

- Highly symmetric (gauge symmetry, flavour symmetry)
- Well-tested experimentally (electroweak precision tests)
- Stable with respect to quantum corrections

Higgs part $\mathcal{L}_{\text {Higgs }}\left(\phi, A_{a}, \psi_{j}\right)$

- Ad hoc potential
- Dynamics not fully tested
- Not stable w.r.t quantum corrections
- Origin of flavour structure of the Standard Model

Flavour structure: Quark masses and CKM matrix from diagonalisation of Yukawa couplings after EWSB

Flavour-Changing Neutral Currents a tool to test the flavour structure

Forbidden in SM at tree level, and suppressed by GIM at one loop
so good place for NP to show up (tree or loops)

$$
\triangle F=1: B_{s} \rightarrow \mu \mu
$$

Experimental and theoretical effort on interesting FCNC transitions

Assessing the CKM paradigm in the SM

$C P$-violation : the four parameters

In SM weak charged transitions mix quarks of different generations
Encoded in unitary CKM matrix $V_{C K M}=\left[\begin{array}{ccc}V_{u d} & V_{u s} & V_{u b} \\ V_{c d} & V_{c s} & V_{c b} \\ V_{t d} & V_{t s} & V_{t b}\end{array}\right]$. From off-diagonal $V_{C K M}^{\dagger} V_{C K M}=1$

- 3 generations $\Longrightarrow 1$ phase, only source of $C P$-violation in SM
- Wolfenstein parametrisation, defined to hold to all orders in λ and rephasing invariant

$$
\lambda^{2}=\frac{\left|V_{u s}\right|^{2}}{\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}} \quad A^{2} \lambda^{4}=\frac{\left|V_{c b}\right|^{2}}{\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}} \quad \bar{\rho}+i \bar{\eta}=-\frac{V_{u d} V_{u b}^{*}}{V_{c d} V_{c b}^{*}}
$$

$\Longrightarrow 4$ parameters describing the CKM matrix,
to determine from data under the SM hyp.

Extracting the CKM parameters

- $C P$-invariance of QCD to build hadronic-indep. $C P$-violating asym.
or to determine hadronic inputs from data
- Statistical framework to combine data and assess uncertainties

	Exp. uncert.	Theoretical uncertainties		
Tree	$B \rightarrow D K$	γ	$B(b) \rightarrow D(c) \ell \nu$	$\left\|V_{c b}\right\|$ vs form factor (OPE)
		$B(b) \rightarrow \pi(u) \ell \nu$	$\left\|V_{u b}\right\|$ vs form factor (OPE)	
		$M \rightarrow \ell \nu$	$\left\|V_{U D}\right\|$ vs f_{M} (decay cst)	
Loop	$B \rightarrow J / \Psi K_{s}$	β	$\epsilon_{K}(K$ mixing $)$	$(\bar{\rho}, \bar{\eta})$ vs B_{K} (bag parameter)
	$B \rightarrow \pi \pi, \rho \rho$	α	$\Delta m_{d}, \Delta m_{s}\left(B_{d}, B_{s}\right.$ mixings)	$\left\|V_{t b} V_{t q}\right\|$ vs $f_{B}^{2} B_{B}$ (bag param)

CKM 2016: How to search for New Physics

Frequentist approach (CKMfitter). See also UTfit approach (Guido's talk).
Look for inconsistent determinations of UT-angles, UT- sides.
Small Yellow region: preferred region by all observables (C.L. $<95.45 \%$)

$$
\begin{gathered}
\left|V_{u d}\right|,\left|V_{u s}\right| \\
\left|V_{c b}\right| S_{S L},\left|V_{u b}\right| S L \\
B \rightarrow \tau \nu \\
\Delta m_{d}, \Delta m_{s} \\
\epsilon_{K} \\
\sin 2 \beta \\
\alpha \\
\gamma
\end{gathered}
$$

$A=0.825_{-0.012}^{+0.007}$

$$
\lambda=0.2251_{-0.0003}^{+0.000} 3
$$

$$
\bar{\rho}=0.160_{-0.007}^{+0.000}
$$

$$
\bar{\eta}=0.350_{-0.006}^{+0.0067}
$$

Consistency of the KM mechanism: Many different determinations

Validity of Kobayashi-Maskawa picture of $C P$ violation: No significant deviation observed

But two tensions: $V_{u b}$ and $V_{c b}$

$V_{u b}$ and $V_{c b}$ affects the identification of NP.
Problem: Inclusive and Exclusive determinations in tension (different theory \& experiment).

TABLE 1. Status of exclusive and inclusive $\left|V_{c b}\right|$ determinations

Exclusive decays	$\left\|V_{c b}\right\| \times 10^{3}$
$\bar{B} \rightarrow D^{*} l \bar{v}$	
FLAG 2016 [23] FNAL/MILC 2014 (Lattice $\omega=1$) [20] HFAG 2012 (Sum Rules) [27, 28, 21]	$\begin{array}{r} 39.27 \pm 0.49_{\exp } \pm 0.56_{\text {latt }} \\ 39.04 \pm 0.49_{\mathrm{exp}} \pm 0.53_{\text {latt }} \pm 0.19 \mathrm{QEDD}^{2} \\ 41.6 \pm 0.6_{\mathrm{exp}} \pm 1.9_{\mathrm{th}} \\ \hline \end{array}$
$\bar{B} \rightarrow D l \bar{v}$	
Global fit 2016 [35]	40.49 ± 0.97
Belle 2015 (CLN) [34, 29]	39.86 ± 1.33
Belle 2015 (BGL) [34, 29, 33]	40.83 ± 1.13
FNAL/MILC 2015 (Lattice $\omega \neq 1$) [29]	$39.6 \pm 1.7_{\text {exp }+\mathrm{QCD}} \pm 0.2_{\text {QED }}$
HPQCD 2015 (Lattice $\omega \neq 1$) [33]	$40.2 \pm 1.7_{\text {latt }+ \text { stat }} \pm 1.3_{\text {syst }}$
Inclusive decays	
Gambino et al. 2016 [100]	42.11 ± 0.74
HFAG 2014 [24]	42.46 ± 0.88
Indirect fits	
UTfit 2016 [101]	41.7 ± 1.0
CKMfitter 2015 (3) [102]	$41.80_{-1.64}^{+0.97}$

$$
\left|V_{c b}\right|
$$

- Most precise determinations:
- 1st) Lattice determination in exclusive $B \rightarrow D^{*}$ channel,
- 2nd) inclusive measurements,
- 3rd) semileptonic $B \rightarrow D$.
- Tension among latest inclusive and latest $B \rightarrow D^{*}$ is 3σ. NO tension if Sum Rules used.
- Indirect Fit using CKM, CPV and flavour data (except direct decays) closer to inclusive determination.

Refs from 1610.04387 (Giulia Ricciardi)

TABLE 2. Status of exclusive $\left|V_{u b}\right|$ determinations and indirect fits

Exclusive decays	$\left\|V_{u b}\right\| \times 10^{3}$
$\bar{B} \rightarrow \pi l \bar{v}_{l}$	
FLAG 2016 [23]	3.62 ± 0.14
Fermilab/MILC 2015 [138]	3.72 ± 0.16
RBC/UKQCD 2015 [139]	3.61 ± 0.32
HFAG 2014 (lattice) [24]	3.28 ± 0.29
HFAG 2014 (LCSR) [145, 24]	3.53 ± 0.29
Imsong et al. 2014 (LCSR, Bayes an.) [150]	$3.32_{-0.22}^{+0.26}$
Belle 2013 (lattice + LCSR) [133]	3.52 ± 0.29

$\bar{B} \rightarrow \omega l \bar{v}_{l}$	
Bharucha et al. 2015 (LCSR) [153]	$3.31 \pm 0.19_{\exp } \pm 0.30_{\mathrm{th}}$
$\bar{B} \rightarrow \rho l \bar{v}_{l}$	
Bharucha et al. 2015 (LCSR) [153]	$3.29 \pm 0.09_{\exp } \pm 0.20_{\text {th }}$
$\Lambda_{b} \rightarrow p \mu v_{\mu}$	
LHCb (PDG) [154]	
Indirect fits	3.27 ± 0.23
UTfit (2016) [101]	
CKMfitter $(2015,3 \sigma)[102]$	$3.71_{-0.20}^{+0.17}$

$$
\left|V_{u b}\right|
$$

- Less precise module of CKM matrix elements.
- Inclusive determination more challenging theoretically than $V_{c b}$
- Lattice best exclusive determination $B \rightarrow \pi(B \rightarrow \rho, \omega)$ systematically lower.
- Tension exclusive-inclusive at 2-3 σ.
- Indirect Fit using CKM, CPV and flavour data (except direct decays) closer to exclusive determination.
- $\left|V_{u b}\right|$ from $\mathcal{B}\left(B^{+} \rightarrow \ell^{+} \nu_{\ell}\right)$ consistent with both inclusive and exclusive (not yet competitive).
Inclusive decays $\left(\left|V_{u b}\right| \times 10^{3}\right)$

	ADFR [190, 191, 192]	BNLP [193, 194, 195]	DGE [196]	GGOU [197]
HFAG 2014 [24]	$4.05 \pm 0.13_{-0.11}^{+0.18}$	$4.45 \pm 0.16_{-0.22}^{+0.21}$	$4.52 \pm 0.16_{-0.16}^{+0.15}$	$4.51 \pm 0.16_{-0.15}^{+0.12}$

Is there a New Physics solution for those tensions exclusive/inclusive?

Apparently there seems NOT to be a NP solution [A. Crivellin et al.].

- Inclusive always larger than exclusive determinations (in both $\left|V_{c b}\right|$ and $\left|V_{u b}\right|$)
- EFT approach to test it in a model independent way.

Two possibilities NP can affect CKM from tree-level B decays:
\Rightarrow four-fermion operators (generated at tree)

$$
\mathcal{O}_{R}^{S}=\bar{\ell} P_{L} \nu \bar{q} P_{R} b \quad \mathcal{O}_{L}^{S}=\bar{\ell} P_{L} \nu \bar{q} P_{L} b \quad \mathcal{O}_{L}^{T}=\bar{\ell} \sigma_{\mu \nu} P_{L} \nu \bar{q} \sigma^{\mu \nu} P_{L} b
$$

$q=u, c$. Lack of interference with SM at zero-recoil:

- Exclusive: $\left|C_{L}^{T}\right|^{2}$ (all), $\left|C_{R}^{S}+C_{L}^{S}\right|^{2}(B \rightarrow D(\pi)),\left|C_{R}^{S}-C_{L}^{S}\right|^{2}\left(B \rightarrow D^{*}(\rho)\right)$.
- Inclusive: $\left|C_{L}^{T}\right|^{2}$ (all), $\left|C_{R}^{S}\right|^{2}+\left|C_{L}^{S}\right|^{2}$.
\rightarrow No way to explain Inclusive $>$ Exclusive.
\Rightarrow modified W-qb couplings (generated via loop)

$$
\begin{gathered}
H_{e f f}=\frac{4 G_{F} V_{q b}}{\sqrt{2}} \bar{\ell} \gamma^{\mu} P_{L} \nu\left(\left(1+c_{L}^{q b}\right) \bar{q} \gamma_{\mu} P_{L} b+g_{L}^{q b} \bar{q} i \overleftrightarrow{D}_{\mu} P_{L} b+d_{L}^{q b} i \partial^{\nu}\left(\bar{q} i \sigma_{\mu \nu} P_{L} b\right)+L \rightarrow R\right) \\
V_{c b} \rightarrow V_{c b}\left(c_{L, R}^{c b}, d_{L, R}^{c b}, g_{L, R}^{c b}\right) \text { and } V_{u b} \rightarrow V_{u b}\left(c_{L, R}^{u b}, d_{L, R}^{u b}, g_{L, R}^{u b}\right)
\end{gathered}
$$

Only c_{R} can produce differences in exclusive and inclusive but not agreement between incl. (blue) and excl. $\left(B \rightarrow D^{*}(\pi)\right.$ (Red), $(B \rightarrow D(\rho)$ (Yellow), ($B \rightarrow \tau \nu$ (Green).

Also the other coefficients fail to get a global agreement, except maybe $d_{L}^{q b}$

$d_{L}^{q b}$: Agreement between INCL. and EXCL., BUT tension with $B \rightarrow \tau \nu$. Also too large $Z-b \bar{b}$ coupling.

Bounding New Physics via $\operatorname{FCNC}(\triangle F=2)$

$$
i \frac{d}{d t}\binom{\left|B_{q}(t)\right\rangle}{\left|\bar{B}_{q}(t)\right\rangle}=\left(M^{q}-\frac{i}{2} \Gamma^{q}\right)\binom{\left|B_{q}(t)\right\rangle}{\left|\bar{B}_{q}(t)\right\rangle}
$$

- Non-hermitian Hamiltonian (only 2 states)
but M and Γ hermitian
- Mixing due to non-diagonal terms $M_{12}^{q}-i \Gamma_{12}^{q} / 2$
\Longrightarrow Diagonalisation: physical $\left|B_{H, L}^{q}\right\rangle=p\left|B_{q}\right\rangle \mp q\left|\bar{B}_{q}\right\rangle$

$$
\text { of masses } M_{H, L}^{q} \text {, widths } \Gamma_{H, L}^{q}
$$

In terms of $M_{12}^{q},\left|\Gamma_{12}^{q}\right|$ and $\phi_{q}=\arg \left(-\frac{M_{12}^{q}}{\Gamma_{12}^{q}}\right)$ and determined from:

- Mass difference $\Delta m_{q}=M_{H}^{q}-M_{L}^{q}$
- Width difference $\Delta \Gamma_{q}=\Gamma_{L}^{q}-\Gamma_{H}^{q}$
- $a_{S L}^{q}=\frac{\Gamma\left(\bar{B}_{q}(t) \rightarrow \ell^{+} \nu X\right)-\Gamma\left(B_{q}(t) \rightarrow \ell^{-} \nu X\right)}{\Gamma\left(B_{q}(t) \rightarrow \ell^{+} \nu X\right)+\Gamma\left(B_{q}(t) \rightarrow \ell^{-} \nu X\right)}$ measures CP violation in mixing
- Mixing in time-dependent CP asymetries q / p

Accessible for B_{d} and B_{s} at Babar, Belle, CDF, D $\varnothing, \mathrm{LHCb} \ldots$. Model-independent parametrisation under the assumption that NP only changes modulus and phase of M_{12}^{d} and M_{12}^{s}
A. Lenz, U. Nierste, CKMfitter

$$
M_{12}^{q}=\left(M_{12}^{q}\right)_{S M} \times \Delta_{q} \quad \Delta_{q}=\left|\Delta_{q}\right| e^{i \phi_{q}^{\Delta}}=\left(1+h_{q} e^{2 i \sigma_{q}}\right)
$$

Use $\Delta m_{d}, \Delta m_{s}, \beta, \phi_{s}, a_{S L}^{d}, a_{S L}^{s}, \Delta \Gamma_{s}$ to constrain Δ_{d} and Δ_{s}

Experimental errors are still larger than theory ones for $\phi_{s} \ldots$...but no much room left for NP here.
$\Delta F=2: B_{d}$ mixing
NP phases shift $2 \beta \rightarrow 2 \beta+\phi_{d}^{\Delta}$ in mixing-induced CP asymm. in $B^{0} \rightarrow J / \psi K_{s}^{0}$ and $a_{s l}^{d}$

[Constraints @ 68\% CL]

- Dominant constraint from β and Δm_{d}
- Good agreement with other constraints $\left(\alpha, a_{S L}^{d, s}\right)$
- Compatible with SM
- Still room for NP in Δ_{d} at 3σ

$$
\Delta_{d}=0.94_{-0.15}^{+0.18}+i \cdot\left(-0.11_{-0.05}^{+0.11}\right) \quad \text { 2D SM hyp. }\left(\Delta_{d}=1+i \cdot 0\right): 0.9 \sigma
$$

NP phases shift $2 \beta_{s} \rightarrow 2 \beta_{s}-\phi_{s}^{\Delta}$ in mixing-induced CP asymm. in $B_{s}^{0} \rightarrow J / \psi \phi$ and $a_{s l}^{s}$

[Constraints @ 68\% CL]

- Dominant constraints from Δm_{s} and ϕ_{s}
- ϕ_{s} favours SM situation
- $A_{S L}$, combining $a_{S L}^{d}$ and $a_{S L}^{s}$, measured by $D \emptyset$ not included
- still room for NP in Δ_{s} at 3σ
$\Delta_{s}=1.05_{-0.13}^{+0.14}+i \cdot\left(-0.03_{-0.04}^{+0.04}\right)$
2D SM hyp $\left(\Delta_{s}=1+i \cdot 0\right): 0.3 \sigma$

What are the bounds/prospects for New Physics at Stage I: $7 \mathrm{fb}^{-1}$ LHCb data $+5 \mathrm{ab}^{-1}$ Belle II and Stage II: $50 \mathrm{fb}^{-1}$ LHCb data $+50 \mathrm{ab}^{-1}$ Belle II

$$
\Delta F=2: \text { bounds on } h_{d, s}=\left|\Delta_{d, s}-1\right|
$$

What are the bounds/prospects for New Physics at Stage I: $7 \mathrm{fb}^{-1} \mathrm{LHCb}$ data $+5 \mathrm{ab}^{-1}$ Belle II and Stage II: $50 \mathrm{fb}^{-1}$ LHCb data $+50 \mathrm{ab}^{-1}$ Belle II

Probing New Physics via Rare B decays:

Present situation

concerning New Physics in $b \rightarrow s \ell$
and in $b \rightarrow c \tau \nu$

$$
b \rightarrow s \gamma\left({ }^{*}\right): \mathcal{H}_{\Delta F=1}^{S M} \propto \sum V_{t s}^{*} V_{t b} \mathcal{C}_{i} \mathcal{O}_{i}+\ldots
$$

separate short and long distances ($\mu_{b}=m_{b}$)

- $\mathcal{O}_{7}=\frac{e}{16 \pi^{2}} m_{b} \bar{s} \sigma^{\mu \nu}\left(1+\gamma_{5}\right) F_{\mu \nu} b \quad$ [real or soft photon]
- $\mathcal{O}_{9}=\frac{e^{2}}{16 \pi^{2}} \bar{s} \gamma_{\mu}\left(1-\gamma_{5}\right) b \bar{\ell} \gamma^{\mu} \ell[b \rightarrow s \mu \mu$ via $Z /$ hard $\gamma \ldots]$
- $\mathcal{O}_{10}=\frac{e^{2}}{16 \pi^{2}} \bar{s} \gamma_{\mu}\left(1-\gamma_{5}\right) b \bar{\ell} \gamma^{\mu} \gamma_{5} \ell \quad[b \rightarrow s \mu \mu$ via $Z]$

$$
\mathcal{C}_{7}^{\mathrm{SM}}=-0.29, \mathcal{C}_{9}^{\mathrm{SM}}=4.1, \mathcal{C}_{10}^{\mathrm{SM}}=-4.3
$$

$A=\mathcal{C}_{i}$ (short dist) \times Hadronic quantities (long dist)

NP changes short-distance \mathcal{C}_{i} for SM or involve additional operators \mathcal{O}_{i}

- Chirally flipped $\left(W \rightarrow W_{R}\right)$

$$
\mathcal{O}_{7^{\prime}} \propto \bar{s} \sigma^{\mu \nu}\left(1-\gamma_{5}\right) F_{\mu \nu} b
$$

- (Pseudo)scalar ($W \rightarrow H^{+}$)
$\mathcal{O}_{S} \propto \bar{s}\left(1+\gamma_{5}\right) b \bar{\ell} \ell, \mathcal{O}_{P}$
- Tensor operators $(\gamma \rightarrow T)$

$$
\mathcal{O}_{T} \propto \bar{s} \sigma_{\mu \nu}\left(1-\gamma_{5}\right) b \bar{\ell} \sigma_{\mu \nu} \ell
$$

175 observables in total (LHCb, Belle, ATLAS and CMS, no CP-violating obs)

- $B \rightarrow K^{*} \mu \mu\left(P_{1,2}, P_{4,5,6,8}^{\prime}, F_{L}\right.$ in 5 large-recoil bins + 1 low-recoil bin)+available electronic observables.
...April's update of $\operatorname{Br}\left(B \rightarrow K^{*} \mu \mu\right)$ showing now a deficit in muonic channel.
...April's new result from LHCb on R_{K}^{*}
- $B_{s} \rightarrow \phi \mu \mu\left(P_{1}, P_{4,6}^{\prime}, F_{L}\right.$ in 3 large-recoil bins +1 low-recoil bin)
- $B^{+} \rightarrow K^{+} \mu \mu, B^{0} \rightarrow K^{0} \ell \ell(\mathrm{BR})(\ell=e, \mu)\left(R_{K}\right.$ is implicit)
- $B \rightarrow X_{s} \gamma, B \rightarrow X_{s} \mu \mu, B_{s} \rightarrow \mu \mu(\mathrm{BR})$.
- Radiative decays: $B^{0} \rightarrow K^{* 0} \gamma\left(A_{I}\right.$ and $\left.S_{K^{*} \gamma}\right), B^{+} \rightarrow K^{*+} \gamma, B_{s} \rightarrow \phi \gamma$
- New Belle measurements for the isospin-averaged but lepton-flavour dependent $\left(Q_{4,5}\right)$:

$$
P_{i}^{\prime \ell}=\sigma_{+} P_{i}^{\prime \ell}\left(B^{+}\right)+\left(1-\sigma_{+}\right) P_{i}^{\prime \ell}\left(\bar{B}^{0}\right)
$$

- New ATLAS and CMS measurements on P_{i} (details later)

Various tools

- inclusive: OPE
- excl large-meson recoil: QCD fact, Soft-collinear effective theory
- excl low-meson recoil: Heavy quark eff th, Lattice QCD, Quark-hadron duality

175 observables in total (LHCb, Belle, ATLAS and CMS, no CP-violating obs)

- $B \rightarrow K^{*} \mu \mu\left(P_{1,2}, P_{4,5,6,8}^{\prime}, F_{L}\right.$ in 5 large-recoil bins +1 low-recoil bin)+available electronic observables.
...April's update of $\operatorname{Br}\left(B \rightarrow K^{*} \mu \mu\right)$ showing now a deficit in muonic channel.
...April's new result from LHCb on R_{K}^{*}
- $B_{s} \rightarrow \phi \mu \mu\left(P_{1}, P_{4,6}^{\prime}, F_{L}\right.$ in 3 large-recoil bins +1 low-recoil bin $)$
- $B^{+} \rightarrow K^{+} \mu \mu, B^{0} \rightarrow K^{0} \ell \ell(\mathrm{BR})(\ell=e, \mu)\left(R_{K}\right.$ is implicit)
- $B \rightarrow X_{s} \gamma, B \rightarrow X_{s} \mu \mu, B_{s} \rightarrow \mu \mu$ (BR).
- Radiative decays: $B^{0} \rightarrow K^{* 0} \gamma\left(A_{I}\right.$ and $\left.S_{K^{*} \gamma}\right), B^{+} \rightarrow K^{*+} \gamma, B_{s} \rightarrow \phi \gamma$
- New Belle measurements for the isospin-averaged but lepton-flavour dependent ($Q_{4,5}$):

$$
P_{i}^{\prime \ell}=\sigma_{+} P_{i}^{\prime \ell}\left(B^{+}\right)+\left(1-\sigma_{+}\right) P_{i}^{\prime \ell}\left(\bar{B}^{0}\right)
$$

- New ATLAS and CMS measurements on P_{i} (details later)

Various tools

- inclusive: OPE
- excl large-meson recoil: QCD fact, Soft-collinear effective theory
- excl low-meson recoil: Heavy quark eff th, Lattice QCD, Quark-hadron duality

Type-I: Main anomalies currently observed in $b \rightarrow s \mu^{+} \mu^{-}$transitions:

- Optimized observables: P_{5}^{\prime}
- FFD observables: Systematic deficit of muonic modes at large and low-recoil of several BR

$$
B \rightarrow K^{*} \mu^{+} \mu^{-}, B^{+} \rightarrow K^{*+} \mu^{+} \mu^{-}, B_{s} \rightarrow \phi \mu^{+} \mu^{-}, B^{+, 0} \rightarrow K^{+0} \mu^{+} \mu^{-} .
$$

Largest pulls	$\left\langle P_{5}^{\prime}\right\rangle_{[4,6]}$	$\left\langle P_{5}^{\prime}\right\rangle_{[6,8]}$	$\mathcal{B}_{B_{s} \rightarrow \phi \mu^{+} \mu^{-}}^{[2,5]}$	$\mathcal{B}_{B_{s} \rightarrow \phi \mu^{+} \mu^{-}}^{[5,8]}$	$\mathcal{B}_{B_{s} \rightarrow \phi \mu^{+} \mu^{-}}^{[15,18.8]}$	$\mathcal{B}_{B+\rightarrow K^{*+} \mu^{+} \mu^{-}}^{[15,19]}$
Exp.	-0.30 ± 0.16	-0.51 ± 0.12	0.77 ± 0.14	0.96 ± 0.15	1.62 ± 0.20	1.60 ± 0.32
SM	-0.82 ± 0.08	-0.94 ± 0.08	1.55 ± 0.33	1.88 ± 0.39	2.20 ± 0.17	2.59 ± 0.25
Pull (σ)	-2.9	-2.9	+2.2	+2.2	+2.2	+2.5

\Rightarrow New Physics in muonic Wilson coefficients.
Type-II: Anomalies in LFUV observables: Ratios of BR $\left(B \rightarrow[P, V] \mu^{+} \mu^{-}\right) / \mathrm{BR}\left(B \rightarrow[P, V] e^{+} e^{-}\right)$.

Largest pulls	$R_{K}^{[1,6]}$	$R_{K^{*}}^{[0.045,1.1]}$	$R_{K^{*}}^{[1.1,6]}$
Exp.	$0.745_{-0.082}^{+0.097}$	$0.66_{-0.074}^{+0.113}$	$0.685_{-0.083}^{+0.122}$
SM	1.00 ± 0.01	0.92 ± 0.02	1.00 ± 0.01
Pull (σ)	+2.6	+2.3	+2.6

\Rightarrow Hints that Nature does not treat electrons and muons in the same way (opposite to SM predictions).
$P_{5}^{\prime} \ldots .$. the most tested anomaly (Type-l)

P_{5}^{\prime} was proposed in DMRV, JHEP 1301(2013)048
Idea: all FF $\rightarrow \xi_{\perp, \|}$, cancel leading $\xi_{\perp, \|}$ term.

$$
P_{5}^{\prime}=\sqrt{2} \frac{\operatorname{Re}\left(A_{0}^{L} A_{\perp}^{L *}-A_{0}^{R} A_{\perp}^{R *}\right)}{\sqrt{\left|A_{0}\right|^{2}\left(\left|A_{\perp}\right|^{2}+\left|A_{\|}\right|^{2}\right)}}=P_{5}^{\infty}\left(1+\mathcal{O}\left(\alpha_{\mathrm{s}} \xi_{\perp}\right)+\text { p.c. }\right)
$$

Optimized Obs.: Soft form factor $\left(\xi_{\perp}\right)$ cancellation at LO.

- 2013: $1 \mathrm{fb}^{-1}$ dataset LHCb found 3.7σ.
- 2015: 3fb ${ }^{-1}$ dataset LHCb (black) found 3σ in 2 bins.
\Rightarrow Predictions (in orange) from DHMV.
- Belle (red) confirmed it in a bin $[4,8]$ few months ago.

1 Computed in i-QCDF + KMPW+ 4-types of corr. $F^{f u l l}\left(q^{2}\right)=F^{s o f t}\left(\xi_{\perp}, \xi_{\|}\right)+\triangle F^{\alpha_{s}}\left(q^{2}\right)+\triangle F^{\text {p.c. }}\left(q^{2}\right)$

type of correction	Factorizable	Non-Factorizable
α_{s}-QCDF	$\triangle F^{\alpha_{s}}\left(q^{2}\right)$	
power-corrections	$\triangle F^{p . c .}\left(q^{2}\right)$	LCSR with single soft gluon contribution

Projections from LHCb for P_{5}^{\prime} in Phase-II Upgrade. [Taken from LHCb]

P_{4}^{\prime} was proposed in DMRV, JHEP 1301(2013)048

$$
P_{4}^{\prime}=\sqrt{2} \frac{\operatorname{Re}\left(A_{0}^{L} A_{\|}^{L *}+A_{0}^{R} A_{\|}^{R *}\right)}{\sqrt{\left|A_{0}\right|^{2}\left(\left|A_{\perp}\right|^{2}+\left.\left|A_{\|}\right|\right|^{2}\right)}}=P_{4}^{\infty}\left(1+\mathcal{O}\left(\alpha_{s} \xi_{\perp}\right)+\text { p.c. }\right) .
$$

Optimized Obs.: Soft form factor (ξ_{\perp}) cancellation at LO.

- 2013: $1 \mathrm{fb}^{-1}$ dataset LHCb found consistency with SM
- 2015: $3 \mathrm{fb}^{-1}$ dataset LHCb found consistency with SM. \Rightarrow Predictions (in red) from DHMV.
- Belle also found consistency with SM and with LHCb.

1 Computed in i-QCDF + KMPW + 4-types of corr. $\mathrm{F}^{\text {full }}\left(\mathbf{q}^{2}\right)=F^{\text {soft }}\left(\xi_{\perp}, \xi_{\|}\right)+\triangle F^{\alpha_{s}}\left(q^{2}\right)+\triangle F^{\text {p.c. }}\left(q^{2}\right)$

type of correction	Factorizable	Non-Factorizable
α_{s}-QCDF	$\triangle F^{\alpha_{s}}\left(q^{2}\right)$	
power-corrections	$\triangle F^{p . c .}\left(q^{2}\right)$	LCSR with single soft gluon contribution

\Rightarrow ATLAS \& CMS proven able to measure optimized observables. Method: folding technique. Plots include two theory predictions and a fit CFFMPSV (not a prediction) to LHCb:

- The full basis (except P_{2}) is measured P_{1}, P_{4}^{\prime}, $P_{5}^{\prime}, P_{6}^{\prime}, P_{8}^{\prime}$ and F_{L} (large-recoil).
- ATLAS observe a large deviation in P_{5}^{\prime} in agreement with LHCb and Belle.
- Also a large deviation in P_{4}^{\prime} is observed in disagreement with LHCb and Belle.

- Only P_{1} and $P_{5}^{\prime}, P_{5}^{\prime}$ seems consistent with SM (except [6-8]). CMS in tension with LHCb, Belle, ATLAS.
- Suggestions to test the robustness of analysis:
- extract F_{L}, P_{1} and P_{5}^{\prime} from same folding like ATLAS and LHCb. Important to test correct normalization.
- Implement directly the constraint: $P_{5}^{\prime 2}-1 \leq P_{1}$

LFUV Anomalies in $B \rightarrow K \ell \ell$ and $B \rightarrow K^{*} \mu^{+} \mu^{-}$(Type-II)

- q^{2} invariant mass of $\ell \ell$ pair
- $\operatorname{Br}(B \rightarrow K \mu \mu)$ too low compared to SM
- $R_{K}=\left.\frac{B r(B \rightarrow K \mu \mu)}{B r(B \rightarrow K e e)}\right|_{[1,6]}=0.745_{-0.074}^{+0.090} \pm 0.036$
- equals to 1 in SM (universality of lepton coupling), $2.6 \sigma \mathrm{dev}$
- NP coupling \neq to μ and e

pulls	$R_{K^{*}}^{[0.045,1.1]}$	$R_{K^{*}}^{[1.1,6]}$
Exp.	$0.66_{-0.074}^{+0.113}$	$0.685_{-0.083}^{+0.122}$
SM	0.92 ± 0.02	1.00 ± 0.01

- Both R_{K} and $R_{K^{*}}$ are very clean but ONLY in the SM and for $q^{2} \geq 1 \mathbf{G e V}^{2}$.
- Long distance charm is universal and cannot explain the tensions.
- Lepton mass effects even in the SM are important in the first bin.
\rightarrow Our error size in 1st and 2nd bin in agreement with Isidori et al. (including QED $\rightarrow 0.03$).
- In presence of New Physics or for $q^{2}<1 \mathrm{GeV}^{2}$ hadronic uncertainties return.
- Typical wrong statement " $R_{K, K^{*}}$ are ALWAYS very clean observable", indeed is substantially less clean and more FF dependent than any optimized observable.

There have been some attempts by a few groups to try to explain a subset of the previous anomalies using two arguments:

- factorizable power corrections (easy to discard arg (see back-up))

- They have to be included in a correct way. DHMV included them and also BSZ (full-FF) and results agree.
- In [Jaeger-Camalich'12,'14] emphatic claims of large impact but two important missing points:
- scheme choice inflates artificially error $x 4$
- correlations among FPP of observables. Leading P_{5}^{\prime} FPP missing in JC14. Summary: [JC] present now two sizes of errors(small/large) but two problems mention above not addressed.
- or unknown charm contributions... (more difficult to discard but also possible with a global fit)

A detailed explanation of where those "'explanations" fails in [JHEP 1412 (2014) 125, JHEP 1704 (2017) 016]

Problem: Charm-loop yields q^{2} - and hadronic-dependent contribution with $O_{7,9}$ structures that may mimic New Physics.

$$
C_{9 i}^{\mathrm{eff}}\left(q^{2}\right)=C_{9 \text { SMpert }}+C_{9}^{\mathrm{NP}}+\mathrm{C}_{9 \dot{i}}^{\mathrm{c}}\left(\mathbf{q}^{2}\right) . \quad \mathrm{i}=\perp, \|, 0
$$

How to disentangle? Is our long-dist $c \bar{c}$ estimate using KMPW as order of magnitude correct?
1 Fit to $C_{9}^{N P}$ bin-by-bin of $b \rightarrow s \mu \mu$ data:

- NP is universal and q^{2}-independent.
- Hadronic effect associated to $c \bar{c}$ dynamics is (likely) q^{2}-dependent.

- The excellent agreement of bins [2,5], [4,6], [5,8]: $C_{9}^{N P[2,5]}=-1.6 \pm 0.7$, $C_{9}^{N P[4,6]}=-1.3 \pm 0.4, C_{9}^{N P[5,8]}=-1.3 \pm 0.3$ shows no indication of additional $q^{2}-$ dependence.
[Ciuchini et al.] introduced a polynomial in each amplitudes and fitted the $h_{i}^{(K)}(i=\perp, \|, 0$ and $K=0,1,2)$:

$$
A_{L, R}^{0}=A_{L, R}^{0}\left(Y\left(q^{2}\right)\right)+\frac{N}{q^{2}}\left(h_{0}^{(0)}+\frac{q^{2}}{1 G e V^{2}} h_{0}^{(1)}+\frac{q^{4}}{1 G e V^{4}} h_{0}^{(2)}\right)
$$

THIS IS A FIT to LHCb of only $B \rightarrow K^{*} \mu \mu$ large-recoil data NOT A COMPUTATION They use BSZ-FF for predictions so form factors must no be an issue for them...

a Unconstrained Fit finds constant contribution similar for all helicity-amplitudes.
\rightarrow In full agreement with our global fit.
\rightarrow Problem: They interpret this constant universal contribution as of unknown hadronic origin?? Interestingly: the same constant also explains R_{K} ONLY if it is of NP origin and NOT if hadronic origin.
\boxed{b} Constrained Fit: Imposing $\mathrm{SM}+C_{9 i}^{c \bar{c}}$ (from KMPW) at $q^{2}<1 \mathrm{GeV}^{2}$ is highly controversial:
\rightarrow arbitrary choice that tilts the fit, inducing spurious large q^{4}-dependence.
\rightarrow fit to first bin that misses the lepton mass approximation by LHCb
\rightarrow Imposing $\operatorname{Re}\left[\left|C_{9 i}^{c \bar{c}}\right|_{\text {fitted }}\right]^{2}+\operatorname{Im}\left[\left|C_{9 i}^{c \bar{c}}\right|_{\text {fitted }}\right]^{2}=\operatorname{Re}\left[\left.C_{9 i}^{c \bar{c}}\right|_{K M P W}\right]^{2}+\operatorname{Im}\left[\left.C_{9 i}^{c \bar{c}}\right|_{K M P W}\right]^{2}$, is inconsistent since $\operatorname{Im}\left[C_{9 i}^{c \bar{c}}\right]$ was never computed in KMPW!!

Same authors have repeated their analysis but using more data besides $B \rightarrow K^{*} \mu^{+} \mu^{-}$and the result...

From Mauro Valli's talk of Silvestrini et al. group.

NOT SO LONG TIME BACK ...

[Ciuchini et al'15] "SM gives a very good description of data and h_{-}^{2} near 2σ from 0 ."

[Ciuchini et al'17] in unconstrained fit find up to 7σ on $C_{9}^{N P}$ even missing low-recoil! and $h_{\lambda}^{(1,2)}$ now compatible with 0 . Alternative NP solution C_{10}^{e} proposed unable to explain any Type-I.

Frequentist analysis: $\mathcal{C}_{i}\left(\mu_{r e f}\right)=\mathcal{C}_{i}^{S M}+\mathcal{C}_{i}^{N P}$, with $\mathcal{C}_{i}^{N P}$ assumed to be real (no CPV)

- Experimental correlation + theoretical inputs (form factors...) with correlation matrix computed treating all theo errors as Gaussian random variables
- Hypotheses "NP in some \mathcal{C}_{i} only" (1D, 2D, 6D) to be compared with SM

Pull $_{S M}$ tells you how much the SM is disfavoured w.r.t. a New Physics hypothesis to explain data.
\rightarrow A scenario with a large SM-pull \Rightarrow big improvement over SM and better description of data.

	All				
1D Hyp.	Best fit	1σ	2σ	Pull σ p-value	
$\mathcal{C}_{9 \mu}^{\mathrm{NP}}$	-1.10	$[-1.27,-0.92]$	$[-1.43,-0.74]$	5.7	72
$\mathcal{C}_{9 \mu}^{\mathrm{NP}}=-\mathcal{C}_{10 \mu}^{\mathrm{NP}}$	-0.61	$[-0.73,-0.48]$	$[-0.87,-0.36]$	5.2	61
$\mathcal{C}_{9 \mu}^{\mathrm{NP}}=-\mathcal{C}_{9 \mu}^{\prime}$	-1.01	$[-1.18,-0.84]$	$[-1.33,-0.65]$	5.4	66
$\mathcal{C}_{9 \mu}^{\mathrm{NP}}=-3 \mathcal{C}_{9 e}^{\mathrm{NP}}$	-1.06	$[-1.23,-0.89]$	$[-1.39,-0.71]$	5.8	74

	LFUV				
1D Hyp.	Best fit	1σ	2σ	Pull	p-value
$\mathcal{C}_{9 \mu}^{\mathrm{NP}}$	-1.76	$[-2.36,-1.23]$	$[-3.04,-0.76]$	3.9	69
$\mathcal{C}_{9 \mu}^{\mathrm{NP}}=-\mathcal{C}_{10}^{\mathrm{NP}}$	-0.66	$[-0.84,-0.48]$	$[-1.04,-0.32]$	4.1	78
$\mathcal{C}_{9 \mu}^{\mathrm{NP}}=-\mathcal{C}_{9 \mu}^{\prime}$	-1.64	$[-2.12,-1.05]$	$[-2.52,-0.49]$	3.2	31
$\mathcal{C}_{9 \mu}^{\mathrm{NP}}=-3 \mathcal{C}_{9 e}^{\mathrm{NP}}$	-1.35	$[-1.82,-0.95]$	$[-2.38,-0.59]$	4.0	71

Global fit test the coherence of a set of deviations with a NP hypothesis versus SM hyp.

2D hypothesis

Figure: Allowed regions with all available data (upper) and only LFUV (lower) in good agreement. Constraints from $b \rightarrow s \gamma$ observables, $\mathcal{B}\left(B \rightarrow X_{s} \mu \mu\right)$ and $\mathcal{B}\left(B_{s} \rightarrow \mu \mu\right)$ always included. Experiments at 3σ.

	$\mathcal{C}_{7}^{\mathrm{NP}}$	$\mathcal{C}_{9 \mu}^{\mathrm{NP}}$	$\mathcal{C}_{10 \mu}^{\mathrm{NP}}$	$\mathcal{C}_{7^{\prime}}$	$\mathcal{C}_{9^{\prime} \mu}$	$\mathcal{C}_{10^{\prime} \mu}$
Best fit	+0.017	-1.12	+0.33	+0.03	+0.59	+0.07
1σ	$[-0.01,+0.05]$	$[-1.34,-0.85]$	$[+0.09,+0.59]$	$[+0.00,+0.06]$	$[+0.01,+1.12]$	$[-0.23,+0.37]$
2σ	$[-0.03,+0.07]$	$[-1.51,-0.61]$	$[-0.10,+0.80]$	$[-0.02,+0.08]$	$[-0.50,+1.56]$	$[-0.50,+0.64]$

The SM pull moved from $3.6 \sigma \rightarrow 5.0 \sigma$ (fit "All' with the latest CMS data at 8 TeV included)

The pattern (very similar to DHMV15):

$$
\mathcal{C}_{7}^{\mathrm{NP}} \gtrsim 0, \mathcal{C}_{9 \mu}^{\mathrm{NP}}<0, \mathcal{C}_{10 \mu}^{\mathrm{NP}}>0, \mathcal{C}_{7}^{\prime} \gtrsim 0, \mathcal{C}_{9 \mu}^{\prime}>0, \mathcal{C}_{10 \mu}^{\prime} \gtrsim 0
$$

$\mathcal{C}_{9 \mu}$ is compatible with the SM beyond 3σ, all the other coefficients at 1-2 σ.

Looking into the near future: New LFUV to come (Disentangling)

Observables sensitive to the difference between $b \rightarrow s \mu \mu$ and $b \rightarrow$ see:
1 They cannot be explained by neither factorizable power corrections nor long-distance charm.
2 They share same explanation than P_{5}^{\prime} anomaly, assuming NP in e-mode is suppressed (OK with fit).

- Other ratios of Branching Ratios

$$
\begin{equation*}
R_{\phi}=\frac{\operatorname{BR}\left(B_{s} \rightarrow \phi \mu \mu\right)}{\operatorname{BR}\left(B_{s} \rightarrow \phi e e\right)} \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
& C_{9 \mu}^{\mathrm{NP}}=-1.1, C_{9 e}^{\mathrm{NP}}=0 \text { and } \\
& C_{9 \mu}^{\mathrm{NP}}=-C_{10 \mu}^{\mathrm{NP}}=-0.65, C_{9,10 e}^{\mathrm{NP}}=0
\end{aligned}
$$

- Difference of Optimized observables: $Q_{i}=P_{i}^{\mu}-P_{i}^{e}$.
\rightarrow Inheritate the excellent properties of optimized observables
- Ratios of coefficients of angular distribution.

All are useful to find deviations from SM with tiny uncertainty, but to disentangle different NP scenarios Q_{i} and B_{i} (maybe T_{i}) are key observables.

Disentangling New Physics: Ratios of Branching Ratios

ATTENTION: In presence of NP $R_{K, K^{*}, \phi}$ are largely sensitive to FF choices

Disentangling New Physics: Differences of Optimized observables

Q_{i} observables are better to disentangle NP: Q_{i} inheritates the properties of optimized observables.
$[0.045,1.1] \mathrm{GeV}^{2} \quad[1.1,6.0] \mathrm{GeV}^{2}$

$$
Q_{i}=P_{i}^{\mu}-P_{i}^{e}
$$

SM-[BLACK] and dashed-red [BELLE data] Five "good" scenarios:

- Sc. 1 [GREEN]: $C_{9 \mu}^{\mathrm{NP}}=-1.1$,
- Sc. 2 [BLUE]: $C_{9 \mu}^{\mathrm{NP}}=-C_{10 \mu}^{\mathrm{NP}}=-0.61$,
- Sc. 3 [YELLOW]: $C_{9 \mu}^{\mathrm{NP}}=-C_{9 \mu}^{\prime}=-1.01$,
- Sc. 4 [ORANGE]: $C_{9 \mu}^{\mathrm{NP}}=-3 C_{9 e}^{\mathrm{NP}}=-1.06$,
- Sc. 5:[GRAY]: The best fit point in the six-dimensional fit.

A precise measurement of Q_{5} in [1,6] can discard the solution $C_{9}=-C_{10}$ in front of all other sols.

Also LFUV anomalies in $b \rightarrow c \tau \nu$

SM

NP

Semi-tauonic B decays are charged current processes that can probe also New Physics. Experimentally (in analogy to $R_{K, K^{*}}$) a LFUV ratio:

$$
R_{D^{(*)}}=\frac{\mathcal{B}\left(\bar{B} \rightarrow D^{(*)} \tau^{-} \bar{\nu}_{\tau}\right)}{\mathcal{B}\left(\bar{B} \rightarrow D^{(*)} \ell^{-} \bar{\nu}_{\ell}\right)}
$$

The ratio:

- differs in lepton mass: τ versus $\ell=\mu, e$ mass.
- cancels: form factors, $V_{c b}$, experimental systematics

- Excess that becomes significant 3.9σ after combining experiments:

Babar and Belle $(\ell=\mu, e)$, $\operatorname{LHCb}(\ell=\mu)$.

- Intriguing since this is a tree level process contrary to $b \rightarrow$ sll related ones.

- (HFAG) $R_{D}^{e x p}=0.403 \pm 0.040 \pm 0.024$
- Lattice computation of $B \rightarrow D$ FF: F^{+}, F^{0} (precise).
- (FLAG 2016): 0.300 ± 0.008
- Latest SM prediction: combined fit HQET (incl. $\left.\mathcal{O}\left(\Lambda / m_{c, b}, \alpha_{s}\right)\right)+$ measured $B \rightarrow D \ell \nu$ distributions together with LQCD and QCDSR inputs: $R_{D}^{S M}=0.299 \pm 0.003$ ([Bernlochner et al.'17]) (2.2 σ)

- (HFAG) $R_{D^{*}}^{e x p}=0.310 \pm 0.015 \pm 0.008$
- Lattice computation of $B \rightarrow D$ FF: $V, A_{0,1,2}, T_{1,2,3}$. (no non-zero recoil LQCD)
- Latest SM prediction: combined fit HQET (incl. $\left.\mathcal{O}\left(\Lambda / m_{c, b}, \alpha_{s}\right)\right)+$ measured $B \rightarrow D^{*} \ell \nu$ distributions together with LQCD and QCDSR inputs:

$$
\left.R_{D^{*}}^{S M}=0.257 \pm 0.003 \text { ([Bernlochner et al.'17]) (3.1 } \sigma\right)
$$

Scale of New physics

Flavour observables are sensitive to higher scales than direct searches at colliders
... if NP affects flavour it is not surprising that we detect it first.
What is the scale of NP for $b \rightarrow s \ell \ell$? Reescaling the Hamiltonian by $H_{e f f}^{\mathrm{NP}}=\sum \frac{\mathcal{O}_{i}}{\Lambda_{i}^{2}}$

- Tree-level induced (semi-leptonic) with $\mathcal{O}(1)$ couplings $\left(\times \sqrt{g_{b s} g_{\mu \mu}}\right)$:

$$
\Lambda_{i}^{\mathrm{Tree}}=\frac{4 \pi v}{s_{w} g} \frac{1}{\sqrt{2\left|V_{t b} V_{t s}^{*}\right|}} \frac{1}{\left|C_{i}^{\mathrm{NP}}\right|^{1 / 2}} \sim \frac{35 \mathrm{TeV}}{\left|C_{i}^{\mathrm{NP}}\right|^{1 / 2}}
$$

- Loop level-induced (semi-leptonic) with $\mathcal{O}(1)$ couplings:

$$
\Lambda_{i}^{\mathrm{Loop}} \sim \frac{35 \mathrm{TeV}}{4 \pi\left|C_{i}^{\mathrm{NP}}\right|^{1 / 2}}=\frac{2.8 \mathrm{TeV}}{\left|C_{i}^{\mathrm{NP}}\right|^{1 / 2}}
$$

- MFV with CKM-SM, extra suppression $\sqrt{\left|V_{t b} V_{t s}^{*}\right|} \sim 1 / 5$

Solution $C_{9}^{\mathrm{NP}} \sim-1.1$ (scale is \sim numerator) or $C_{9}^{\mathrm{NP}}=-C_{10}^{\mathrm{NP}} \sim-0.6$ (30% higher scale).
Similar exercise for $b \rightarrow c \tau \nu$ taking a 15\% enhancement over SM:

$$
\Lambda^{\mathrm{NP}} \sim 1 /\left(\sqrt{2} G_{F}\left|V_{c b}\right| 0.15\right)^{1 / 2} \sim 3.2 \mathrm{TeV}
$$

$b \rightarrow$ slौ	$R(D)-R\left(D^{*}\right)$	a_{μ}
Z^{\prime}	Charged scalars (problems with B_{c} lifetime)	Z^{\prime}
Leptoquarks	Leptoquarks (strong impact on $q q \rightarrow \tau \tau)$	Leptoquarks
Loop effects	W^{\prime} (fine-tunning required)	MSSM
Compositeness...	Compositeness...	Scalars

- Z^{\prime} solution:
- Heavy: LOOP (no FVQ coupling req.) and TREE (require FVQ couplings)
- Light (easy to discard if low-recoil tensions confirmed)
- Leptoquarks solution:
- Vector (Tree)
- Scalar (Tree or Loop with a fermion)

- CP-violation: No significant deviation observed from the CKM paradigm.
.... still inclusive/exclusive tensions in $\left|V_{c b}\right|$ and $\left|V_{u b}\right|$ persist.
- B meson Rare decays: A global analysis of $b \rightarrow s \ell \ell$ observables shows a clear pattern of deviations w.r.t. SM:
- Systematic exp. deficit in muonic modes versus $\mathrm{SM}: P_{5}^{\prime}$ and branching ratios.
- Hints of ULFV in R_{K}, R_{K}^{*} and $Q_{4,5}^{B E L L E}$ at 4σ level.

GLOBAL Pull $_{\text {SM }}$ at 1,2 and 6D disfavour the SM solution versus NP mainly in C_{9} by $>5 \sigma$.

- Also $b \rightarrow c \tau \nu$ points at LFUV at 3.9σ significance with $R(D)-R\left(D^{*}\right)$ observables.
....exciting times finally coming
- Soon LHCb may provide new results on LFUV observables $\left(Q_{i}=P_{i}^{\prime \mu}-P_{i}^{\prime e}\right.$ and R_{ϕ} and more) that may help to disentangle the precise scenario beyond C_{9}.
\rightarrow important implications/guideline for direct searches.

BACK-UP slides

"It is not possible to get a large significance from a set of 2-3 sigma tensions".
This misleading statement confuses and mixes:
the pulls of data versus SM predictions WITH the Pull ${ }_{\text {SM }}$ that TEST an hyp. of NP versus SM hyp.

- A global fit can help to distinguish a set of statistical fluctuations from a coherent set of deviations consistent with a NP hypothesis. Example:
\rightarrow A set of 2-3 σ pulls taken together gives a 5.7σ of Pull ${ }_{\text {SM }}$ for a solution with $C_{9}^{\mathrm{NP}}=-1.1$.
\rightarrow SAME set of 2-3 σ but only changing the SIGN of a few of them the significance of Pull ${ }_{\text {SM }}$ drops to 0.7σ.
- A large deviation in one single observable (or a few) may be not significant. One out of 175 observables having a tension of 5σ w.r.t the SM is not very significant ("Look-elsewhere effect"). The global fit accounts for this automatically and the Pull ${ }_{S M}$ could be in the range 1-2 σ.
- Theory+experimental correlations are fundamental. Example: the fit with no correlations gives a Pull ${ }_{S M}>8 \sigma$ for many NP hypothesis.

Semi/leptonic

Penguins

Semi/leptonic
Process
NP sensitiv.
B
D
$K \quad K \rightarrow \pi \ell \nu, \tau \rightarrow K \nu$
$\triangle F=1$ FCCC Small

$$
B \rightarrow D \ell \nu, B \rightarrow \tau \nu
$$

$$
D \rightarrow K \ell \nu, D_{s} \rightarrow \mu \nu
$$

$$
K \rightarrow \pi \ell \nu, \tau \rightarrow K \nu
$$

Penguins

$\triangle F=1$ FCCC Large?
 $\triangle F=2$ FCNC Large

$B \rightarrow \pi \pi$
$D \rightarrow K \pi$
$K \rightarrow \pi \pi$
Mixing
$\triangle m_{d}, \Delta m_{s}$

$$
\begin{gathered}
x, y, \phi \\
\epsilon_{K}
\end{gathered}
$$

Mixing

Radiative
$\triangle F=1$ FCNC Large
$B \rightarrow K^{*} \mu \mu, B_{s} \rightarrow \mu \mu$
$D \rightarrow X_{u} \ell \ell$
$K \rightarrow \pi \nu \nu, K \rightarrow \mu \mu$

B-meson distribution amplitudes.

FF-KMPW	$F_{B K^{(*)}}^{i}(0)$	b_{1}^{i}
$f_{B K}^{+}$	$0.34_{-0.02}^{+0.05}$	$-2.1_{-1.6}^{+0.9}$
$f_{B K}^{0}$	$0.34_{-0.02}^{+0.05}$	$-4.3_{-0.9}^{+0.8}$
$f_{B K}^{T}$	$0.39_{-0.03}^{+0.05}$	$-2.2_{-2.00}^{+1.0}$
$V^{B K^{*}}$	$\mathbf{0 . 3 6 _ { - 0 . 1 2 } ^ { + 0 . 2 3 }}$	$-4.8_{-0.4}^{+0.8}$
$A_{1}^{B K^{*}}$	$\mathbf{0 . 2 5 _ { - 0 . 1 0 } ^ { + 0 . 1 6 }}$	$0.34_{-0.80}^{+0.86}$
$A_{2}^{B K^{*}}$	$0.23_{-0.10}^{+0.19}$	$-0.85_{-1.35}^{+2.88}$
$A_{0}^{B K^{*}}$	$0.29_{-0.07}^{+0.10}$	$-18.2_{-3.0}^{+1.3}$
$T_{1}^{B K^{*}}$	$0.31_{-0.10}^{+0.18}$	$-4.6_{-0.41}^{+0.81}$
$T_{2}^{B K^{*}}$	$0.31_{-0.10}^{+0.18}$	$-3.2_{-2.2}^{+2.1}$
$T_{3}^{B K^{*}}$	$0.22_{-0.10}^{+0.17}$	$-10.3_{-3.1}^{+2.5}$

Table: The $B \rightarrow K^{(*)}$ form factors from LCSR and their z-parameterization.

Light-meson distribution amplitudes+EOM (NOT LATEST).

- Interestingly in BSZ (update from BZ) most relevant FF from BZ moved towards KMPW. For example:

$$
V^{B Z}(0)=0.41 \rightarrow 0.37 \quad T_{1}^{B Z}(0)=0.33 \rightarrow 0.31
$$

- The size of uncertainty in $B S Z=$ size of error of p.c.

FF-BSZ	$B \rightarrow K^{*}$	$B_{s} \rightarrow \phi$	$B_{s} \rightarrow K^{*}$
$A_{0}(0)$	0.391 ± 0.035	0.433 ± 0.035	0.336 ± 0.032
$A_{1}(0)$	$\mathbf{0 . 2 8 9} \pm \mathbf{0 . 0 2 7}$	0.315 ± 0.027	0.246 ± 0.023
$A_{12}(0)$	0.281 ± 0.025	0.274 ± 0.022	0.246 ± 0.023
$V(0)$	$\mathbf{0 . 3 6 6} \pm \mathbf{0 . 0 3 5}$	0.407 ± 0.033	0.311 ± 0.030
$T_{1}(0)$	0.308 ± 0.031	0.331 ± 0.030	0.254 ± 0.027
$T_{2}(0)$	0.308 ± 0.031	0.331 ± 0.030	0.254 ± 0.027
$T_{23}(0)$	0.793 ± 0.064	0.763 ± 0.061	0.643 ± 0.058

Table: Values of the form factors at $q^{2}=0$ and their uncertainties.

UT-angles: Angle α, β, γ

$$
\Rightarrow \beta:
$$

- Mode $B^{0} \rightarrow J / \psi K_{S}^{0}$ access to φ_{d} (phase between decay and mixing+decay):

SM: decay dominated by single CKM phase (neglect penguins)+ B_{0}-mixing: top-top box diagram.

$$
\begin{aligned}
\sin 2 \beta^{\text {meas }}= & 0.691 \pm 0.017<\sin 2 \beta^{\text {indirect }}=0.740_{-0.025}^{+0.020} \\
& \rightarrow \text { fit to } B \rightarrow J / \psi P+\operatorname{SU}(3) \text { and SCET } \Rightarrow \text { penguin small. } \\
& \rightarrow \text { 2nd solution of } \beta \text { disfavoured from } B^{0} \rightarrow J / \psi K^{* 0} \\
\rightarrow \sin 2 \beta^{q \bar{q} s}= & 0.655 \pm 0.032 \text { from loop-induced } b \rightarrow q \bar{q} s \text { transitions. }
\end{aligned}
$$

$$
\Rightarrow \alpha
$$

- $b \rightarrow u$ transitions $(B \rightarrow \rho \rho, \pi \pi, \pi \rho)$ polluted by $b \rightarrow s$ penguins.
- Challenging for th \& exp. Unitary used. Isospin analysis for $B \rightarrow \pi \pi$ using all channels.

$$
\alpha^{\text {measured }}=\left(88.8_{-2.3}^{+2.3}\right)^{0} \quad \text { versus } \quad \alpha^{\text {fit }}=\left(92.1_{-1.1}^{+1.5}\right)^{0}
$$

$$
\Rightarrow \gamma
$$

- Less precisely known angle. Tree $B \rightarrow D K$ decays; interference between $b \rightarrow c$ (CA) and $b \rightarrow u$ (CS) topologies. Important test of CKM paradigm. Different methods (GLW,GGSZ,ADS).

$$
\gamma^{\text {measured }}=\left(72.1_{-5.8}^{+5.4}\right)^{0}(\mathrm{~B}-\text { factories }+\mathrm{LHCb}) \quad \text { versus } \quad \gamma^{\text {fit }}=\left(65.31_{-2.5}^{+1.0}\right)^{0}
$$

Long-distance contributions from $c \bar{c}$ loops where the lepton pair is created by an electromagnetic current.
1 The γ couples universally to $\mu^{ \pm}$and $e^{ \pm}: R_{K}$ nor any LFVU cannot be explained by charm-loops.
2 KMPW is the only real computation of long-distance charm.

$$
C_{9}^{\mathrm{eff} \mathrm{i}}=C_{9}^{\mathrm{eff}}{ }_{\text {SM pert }}\left(q^{2}\right)+C_{9}^{\mathrm{NP}}+s_{i} \delta C_{9}^{\mathrm{c}(i)}{ }_{\mathrm{KMPW}}\left(q^{2}\right)
$$

KMPW implies $s_{i}=1$, but we vary $s_{i}=0 \pm 1, i=0, \perp, \|$.

$$
\begin{aligned}
\delta C_{9}^{\mathrm{LD},(\perp, \|)}\left(q^{2}\right) & =\frac{a^{(\perp, \|)}+b^{(\perp, \|)} q^{2}\left[c^{(\perp, \|)}-q^{2}\right]}{b^{(\perp, \|)} q^{2}\left[c^{(\perp, \|)}-q^{2}\right]} \\
\delta C_{9}^{\mathrm{LD}, 0}\left(q^{2}\right) & =\frac{a^{0}+b^{0}\left[q^{2}+s_{0}\right]\left[c^{0}-q^{2}\right]}{b^{0}\left[q^{2}+s_{0}\right]\left[c^{0}-q^{2}\right]}
\end{aligned}
$$

CKM matrix within a frequentist framework ($\simeq \chi^{2}$ minim.) + specific scheme for theory uncertainties (Rfit)

	data $=$ weak \otimes QCD	\Longrightarrow Need for hadronic inputs (mostly lattice)
	superallowed β decays	PRC91, 025501 (2015)
$\left\|V_{u d}\right\|$	$K \rightarrow \pi \ell \nu$ (Flavianet)	$f_{+}(0)=0.9681 \pm 0.0014 \pm 0.0022$
$\left\|V_{u s}\right\|$	$K \rightarrow \ell \nu, \tau \rightarrow K \nu_{\tau}$	$f_{K}=155.2 \pm 0.2 \pm 0.6 \mathrm{MeV}$
$\left\|V_{u s} / V_{u d}\right\|$	$K \rightarrow \ell \nu / \pi \rightarrow \ell \nu, \tau \rightarrow K \nu_{\tau} / \tau \rightarrow \pi \nu_{\tau}$	$f_{K} / f_{\pi}=1.1959 \pm 0.0010 \pm 0.0029$
ϵ_{K}	PDG	$\hat{B}_{K}=0.7567 \pm 0.0021 \pm 0.0123$
$\left\|V_{u b}\right\|$	inclusive and exclusive	(see later)
$\left\|V_{c b}\right\|$	inclusive and exclusive	(see later)
Δm_{d}	last WA $B_{d}-\bar{B}_{d}$ mixing	$B_{B_{s} / B_{B_{d}}=1.007 \pm 0.014 \pm 0.014} \quad B_{B_{s}}=1.320 \pm 0.016 \pm 0.030$
Δm_{s}	last WA $B_{s}-\bar{B}_{s}$ mixing	isospin
β	last WA $J / \psi K^{(*)}$	GLW/ADS/GGSZ $^{\alpha}$
α	last WA $\pi \pi, \rho \pi, \rho \rho$	$f_{B_{s}} / f_{B_{d}}=1.205 \pm 0.003 \pm 0.006$
γ	last WA $B \rightarrow D^{(*)} K^{(*)}$	$f_{B_{s}}=225.1 \pm 1.5 \pm 2.0 \mathrm{MeV}$
$B \rightarrow \tau \nu$	$(1.08 \pm 0.21) \cdot 10^{-4}$	

Can factorizable power corrections be an acceptable explanation?

NO. Two main reasons:
$\mathbf{F}^{\text {full }}\left(\mathbf{q}^{2}\right)=F^{s o f t}\left(\xi_{\perp}, \xi_{\|}\right)+\triangle F^{\alpha_{s}}\left(q^{2}\right)+\triangle \mathbf{F}^{\wedge}\left(\mathbf{q}^{2}\right) \quad \triangle F^{\wedge}=\left(a_{F}+\triangle a_{F}\right)+\left(b_{F}+\triangle b_{F}\right) q^{2} / m_{B}^{2}+\ldots$
1 Scheme dependence: choice of definition of SFF $\xi_{\perp, \|}$ in terms of full-FF.
ALERT: Observables are scheme independent only if all correlations (including correlations of $\triangle \mathrm{a}_{\mathrm{F}} \ldots$) are included.
Not including the later ones [Jaeger et.al. and DHMV] $\triangle F^{\mathrm{PC}}=F \times \mathcal{O}\left(\Lambda / m_{B}\right)$ require careful scheme choice:
\rightarrow risk to inflate artificially the error in observables.
2 Correlations among observables via (a_{F}, \ldots) power corrections. Require a global view.

Two methods:

- Our I-QCDF using SFF+corrections+KMPW-FF [Descotes-Genon, Hofer, Matias, Virto]
- Full-FF + eom using BSZ-FF [Bharucha, Straub, Zwicky]
radically different treatment of factorizable p.c. give SM-predictions for P_{5}^{\prime} in very good agreement
(1 σ or smaller).

Can factorizable power corrections be an acceptable explanation?

NO. Two main reasons:
$\mathrm{F}^{\text {full }}\left(\mathbf{q}^{2}\right)=F^{\text {soft }}\left(\xi_{\perp}, \xi_{\|}\right)+\triangle F^{\alpha_{s}}\left(q^{2}\right)+\triangle \mathbf{F}^{\wedge}\left(\mathbf{q}^{2}\right) \quad \triangle F^{\wedge}=\left(a_{F}+\triangle a_{F}\right)+\left(b_{F}+\triangle b_{F}\right) q^{2} / m_{B}^{2}+\ldots$
1 Scheme dependence: choice of definition of SFF $\xi_{\perp, \|}$ in terms of full-FF.
ALERT: Observables are scheme independent only if all correlations (including correlations of $\triangle \mathrm{a}_{\mathrm{F}} \ldots$) are included.
Not including the later ones [Jaeger et.al. and DHMV] $\triangle F^{\mathrm{PC}}=F \times \mathcal{O}\left(\Lambda / m_{B}\right)$ require careful scheme choice:
\rightarrow risk to inflate artificially the error in observables.
2 Correlations among observables via (a_{F}, \ldots) power corrections. Require a global view.

Two methods:

- Our I-QCDF using SFF+corrections+KMPW-FF [Descotes-Genon, Hofer, Matias, Virto]
- Full-FF + eom using BSZ-FF [Bharucha, Straub, Zwicky]
radically different treatment of factorizable p.c. give SM-predictions for P_{5}^{\prime} in very good agreement (1σ or smaller).

About size

Compare the ratio A_{1} / V (that controls P_{5}^{\prime}) computed using BSZ (including correlations) and computed with our approach for different size of power corrections.

Assigning a 5% error (we take 10%) to the power correction error reproduces the full error of the full-FF!!! Let's illustrate now points 1 and 2 with two examples.

Scheme-dependence (illustrative example-l)

$\star \Delta F^{\mathrm{PC}}=F \times \mathcal{O}\left(\Lambda / m_{B}\right)$ $\sim F \times 10 \%$
\star correlations from large-recoil sym.

$$
\rightarrow \xi_{\perp, \|}, \triangle F^{\mathrm{PC}} \text { uncorr. }
$$

$P_{5}^{\prime}[4.0,6.0]$	scheme 1 [CDHM]	scheme 2 [JC]
1	$-0.72 \pm \mathbf{0 . 0 5}$	$-0.72 \pm \mathbf{0 . 1 2}$
2	-0.72 ± 0.03	-0.72 ± 0.03
2	-0.72 ± 0.03	-0.72 ± 0.03
3	$-0.72 \pm \mathbf{0 . 0 3}$	

errors only from pc with BSZ form factors
[Capdevila, Descotes, Hofer, JM]

Full LCSR

information
$\star \triangle F^{\mathrm{PC}}$ from fit to LCSR
\star correlations from large-recoil sym.
$\rightarrow \xi_{\perp, \|}, \triangle F^{\mathrm{PC}}$ uncorr.
$\star \triangle F^{\mathrm{PC}}$ from fit to LCSR

* correlations from LCSR
$\rightarrow \xi_{\perp, \|}, \triangle F^{\mathrm{PC}}$ corr.
- [Bharucha, Straub, Zwicky] as example (correlation provided)
- scheme indep. restored if $\triangle F^{\mathrm{PC}}$ from fit to LCSR, with expected magnitude
- sensitivity to scheme can be understood analytically
- no uncontrolled large power corrections for P_{5},

Correlations (illustrative example-II)

- How much I need to inflate the errors from factorizable p.c. to get 1- σ agreement with data for $P_{5[4,6]}^{\prime}$ and $P_{1[4,6]}$ individually?
\star One needs near 40% p.c. for $P_{5[4,6]}^{\prime}$ and 0% for $P_{1[4,6]}$.
* This would be in direct conflict with the two existing LCSR computations: KMPW and BSZ.
- But including the strong correlation between p.c. of $P_{5[4,6]}^{\prime}$ and $P_{1[4,6]}$ [CDHM] more than 60% ($>80 \%$ in bin $[6,8]$) is required!!!

$$
\begin{aligned}
P_{5}^{\prime}=\left.P_{5}^{\prime}\right|_{\infty}(1 & +\frac{2 a_{V_{-}}-2 a_{T_{-}}}{\xi_{\perp}} \frac{C_{7}^{\mathrm{eff}}\left(C_{9, \perp} C_{9, \|}-C_{10}^{2}\right)}{\left(C_{9, \perp}+C_{9, \|}\right)\left(C_{9, \perp}^{2}+C_{10}^{2}\right)} \frac{m_{b} m_{B}}{q^{2}} \\
& -\frac{2 \mathrm{a}_{\mathrm{V}_{+}}}{\xi_{\perp}} \frac{\mathbf{C}_{9, \|}}{\mathbf{C}_{9, \perp}+\mathbf{C}_{9, \|}}+\ldots \\
P_{1}= & -\frac{2 \mathrm{av}_{+}}{\xi_{\perp}} \frac{\left(\mathbf{C}_{9}^{\mathrm{eff}} \mathbf{C}_{9, \perp}+\mathbf{C}_{10}^{2}\right)}{\mathbf{C}_{9, \perp}^{2}+\mathbf{C}_{10}^{2}}+\ldots
\end{aligned}
$$

The leading term in red in P_{5}^{\prime} is missing in $\mathrm{JC}{ }^{\prime} 14$.

$$
\mathbf{F}^{\text {full }}\left(\mathbf{q}^{2}\right)=F^{\text {soft }}\left(\xi_{\perp}, \xi_{\|}\right)+\Delta F^{\alpha_{s}}\left(q^{2}\right)+\triangle \mathbf{F}^{\wedge}\left(\mathbf{q}^{2}\right) \quad \Delta F^{\wedge}=\left(a_{F}+\triangle a_{F}\right)+\left(b_{F}+\Delta b_{F}\right) q^{2} / m_{B}^{2}+\ldots
$$

- [Our approach]: We determine p.c. from conservative KMPW-FF and assign an error of $\mathcal{O}\left(\Lambda / m_{b}\right) \times F F$. Correlations included from symmetries not from LCSR to be more conservative.
- [BSZ approach]: Full form factor using BSZ, power corrections included. Correlations from LCSR. Result with good agreement with us but smaller error.
[Jaeger-Camalich]: Emphatic claims of large errors obtained. Two fundamental points missing:
\rightarrow Error estimate sensitive to definition of SFF $\left(\xi_{\perp, \|}\right)$ in terms of full FF (scheme dependence).
Bad choice of scheme in [JC] inflate error $x 4$ or more if worst schemes are taken.
\rightarrow Correlations among observables:

$$
\begin{gathered}
P_{5}^{\prime}=\left.P_{5}^{\prime}\right|_{\infty}\left(1+\frac{2 a_{V_{-}}-2 a_{T_{-}}}{\xi_{\perp}} \frac{C_{7}^{\text {eff }}\left(C_{9, \perp} C_{9, \|}-C_{10}^{2}\right)}{\left(C_{9, \perp}+C_{9, \|}\right)\left(C_{9, \perp}^{2}+C_{10}^{2}\right)} \frac{m_{b} m_{B}}{q^{2}}-\frac{2 \mathrm{a}_{+}}{\xi_{\perp}} \frac{\mathbf{C}_{9, \|}}{\mathbf{C}_{9, \perp}+\mathbf{C}_{\mathbf{9}, \|}}+\ldots\right. \\
P_{1}=-\frac{2 \mathrm{a}_{\mathbf{v}_{+}}}{\xi_{\perp}} \frac{\left(\mathbf{C}_{9}^{\mathrm{eff}} \mathbf{C}_{9, \perp}+\mathbf{C}_{10}^{2}\right)}{\mathbf{C}_{9, \perp}^{2}+\mathbf{C}_{10}^{2}}+\ldots
\end{gathered}
$$

Surprisingly the leading term in red in P_{5}^{\prime} missing in [JC'14].

	All			LFUV		
2D Hyp.	Best fit	Pull ${ }_{\text {SM }}$	p-value	Best fit	Pull ${ }_{\text {SM }}$	p -value
$\left(\mathcal{C}_{9 \mu}^{\mathrm{NP}}, \mathcal{C}_{10 \mu}^{\mathrm{NP}}\right)$	(-1.17,0.15)	5.5	74	(-1.13,0.40)	3.7	75
$\left(\mathcal{C}_{9 \mu}^{\mathrm{NP}}, \mathcal{C}_{7}^{\prime}\right)$	(-1.05,0.02)	5.5	73	(-1.75,-0.04)	3.6	66
$\left(\mathcal{C}_{9_{\mu}}^{\mathrm{NP}}, \mathcal{C}_{9^{\prime} \mu}\right)$	(-1.09,0.45)	5.6	75	$(-2.11,0.83)$	3.7	73
$\left(\mathcal{C}_{9 \mu}^{\mathrm{NP}}, \mathcal{C}_{10^{\prime} \mu}\right)$	(-1.10,-0.19)	5.6	76	(-2.43,-0.54)	3.9	85
$\left(\mathcal{C}_{9 \mu}^{\mathrm{NP}}, \mathcal{C}_{9 e}^{\mathrm{NP}}\right)$	(-0.97,0.50)	5.4	72	(-1.09,0.66)	3.5	65
Hyp. 1	$(-1.08,0.33)$	5.6	77	(-1.74,0.53)	3.8	77
Hyp. 2	(-1.00, 0.15)	4.9	61	(-1.89,0.27)	3.1	39
Hyp. 3	(-0.65,-0.13)	4.9	61	(0.58,2.53)	3.7	73
Hyp. 4	(-0.65,0.21)	4.8	59	(-0.68,0.28)	3.7	72

Table: Most prominent patterns of New Physics in $b \rightarrow s \mu \mu$ with high significances. The last four rows corresponds to hypothesis 1: $\left(\mathcal{C}_{9_{\mu}}^{\mathrm{NP}}=-\mathcal{C}_{9^{\prime} \mu}, \mathcal{C}_{10 \mu}^{\mathrm{NP}}=\mathcal{C}_{10^{\prime} \mu}\right)$, 2: $\left(\mathcal{C}_{9_{\mu}}^{\mathrm{NP}}=-\mathcal{C}_{9^{\prime} \mu}, \mathcal{C}_{10 \mu}^{\mathrm{NP}}=-\mathcal{C}_{10^{\prime} \mu}\right)$, 3: $\left(\mathcal{C}_{9_{\mu}}^{\mathrm{NP}}=-\mathcal{C}_{10 \mu} \mathcal{C}_{10}^{\mathrm{NP}}, \mathcal{C}_{9^{\prime} \mu}=\mathcal{C}_{10^{\prime} \mu}\right)$ and 4: ($\mathcal{C}_{9 \mu}^{\mathrm{NP}}=-\mathcal{C}_{10 \mu}^{\mathrm{NP}}, \mathcal{C}_{9^{\prime} \mu}=-\mathcal{C}_{10^{\prime} \mu}$). The "All" columns include all available data from LHCb, Belle, ATLAS and CMS, whereas the "LFUV" columns are restricted to $R_{K}, R_{K^{*}}$ and $Q_{4,5}$ (see text for more detail). The p-values are quoted in \% and Pull ${ }_{\text {SM }}$ in units of standard deviation.

P_{5}^{\prime} was proposed in DMRV, JHEP 1301(2013)048

$$
P_{5}^{\prime}=\sqrt{2} \frac{\operatorname{Re}\left(A_{0}^{L} A_{\perp}^{L *}-A_{0}^{R} A_{\perp}^{R *}\right)}{\sqrt{\left|A_{0}\right|^{2}\left(\left|A_{\perp}\right|^{2}+\left|A_{\|}\right|^{2}\right)}}=P_{5}^{\infty}\left(1+\mathcal{O}\left(\alpha_{\mathrm{s}} \xi_{\perp}\right)+\text { p.c. }\right)
$$

Optimized Obs.: Soft form factor $\left(\xi_{\perp}\right)$ cancellation at LO.

- 2013: $1 \mathrm{fb}^{-1}$ dataset LHCb found 3.7σ (yellow).
- 2015: $3 \mathrm{fb}^{-1}$ dataset LHCb (green) found 3σ in 2 bins.
\Rightarrow Predictions (in red) from DHMV.
- Belle (black) confirmed it in a bin [4,8] few months ago.

$\Delta F=2$: computation of the observables

Eff. Hamiltonian integrating out heavy W, Z, t

$$
A_{\Delta B=2}=\langle\bar{B}| \mathcal{H} \psi_{\mathrm{eff}}^{\Delta B=2}|B\rangle-\frac{1}{2} \int d^{4} x d^{4} y\langle\bar{B}| T \mathcal{H}_{\mathrm{eff}}^{\Delta B=1}(x) \mathcal{H}_{\mathrm{eff}}^{\Delta B=1}(y)|B\rangle
$$

- M_{12}^{q} dominated by dispersive part of top boxes
[Re[loops]]
- related to heavy virtual states ($t \bar{t} . .$.)
- easily affected by NP, e.g., if heavy new particles in the box
- Γ_{12}^{q} dominated by absorptive part of charm boxes
- common B and \bar{B} decay channels into final states with $c \bar{c}$ pair
- affected by NP if changes in (constrained) tree-level decays

Model-independent parametrisation under the assumption that NP only changes modulus and phase of M_{12}^{d} and M_{12}^{s}
A. Lenz, U. Nierste, CKMfitter

$$
M_{12}^{q}=\left(M_{12}^{q}\right)_{S M} \times \Delta_{q} \quad \Delta_{q}=\left|\Delta_{q}\right| e^{i \phi_{q}^{\Delta}}=\left(1+h_{q} e^{2 i \sigma_{q}}\right)
$$

Use $\Delta m_{d}, \Delta m_{s}, \beta, \phi_{s}, a_{S L}^{d}, a_{S L}^{s}, \Delta \Gamma_{s}$ to constrain Δ_{d} and Δ_{s}

