Background free search for neutrinoless double beta decay with GERDA Phase II

Anne Wegmann for the GERDA collaboration

Max-Planck Institut für Kernphysik

Rencontres de Blois, Blois, 30 May 2017

Doube beta decays

- second order process
- allowed by Standard Model (SM)
- half-life: $T_{1/2}^{2\nu}({}^{76}Ge) =$ (1.926 ± 0.094) 10²¹ yr [EPJC 75 (2015) 416]

 $0\nu\beta\beta$:

- hypothetical process predicted by several extensions of SM
- △L = 2: lepton number violation
 → BSM (talk by W. Rodejohann)
- ν has Majorana mass component

- possible realization: light Majorana neutrino exchange
- $\Rightarrow \text{ access to effective} \\ \text{Majorana neutrino} \\ \text{mass } m_{\beta\beta}$

Signature and experimental challenges

- \bullet observable: $(\mathit{T}^{0\nu}_{1/2})^{-1}\propto \mathit{N}_{0\nu}$
- need to achieve
 - $\mathbf{0}$ < 1 background event in ROI
 - excellent energy resolution

• zero background regime

$$T_{1/2}^{0
u} \propto M \cdot t$$

 background, i.e. statistical fluctuation limited scenario

$$T_{1/2} \propto a \cdot \epsilon \cdot \sqrt{\frac{M \cdot t}{\Delta E \cdot B I}}$$

ϵ: detection efficiency,
 a: abundance of ⁷⁶Ge
 Mt: exposure,
 BI: background index,

 ΔE : energy resolution in ROI at Q_{etaeta}

Search for neutrinoless double beta decay of ⁷⁶Ge

High purity Germanium (HPGe) detectors

- 3-4 keV FWHM at $Q_{\beta\beta} = 2039 \text{ keV} (0.2\%)$
- isotopically enriched in ⁷⁶Ge ($\sim 87\%$)
- high detection efficiency of $\beta\beta$ -events: source = detector
- no intrinsic background [Astropart.Phys. 91 (2017) 15-21] ۰
- discrimination of signal- from background like events using pulse shape analysis

Anne Wegmann (MPIK)

GERDA Phase II results

The GERDA appraoch

- background reduction by
 - material selection/passive shielding
 - active background suppression

\Rightarrow bare Ge detectors in LAr

Active background suppression

discriminate point-like (SSE) $\beta\beta$ interaction in bulk from background processes by event topology

- AC: detector anti-coincidence
- LAr veto: scintillation light read-out (Phase II)

The Gerda collaboration

Anne Wegmann (MPIK)

GERDA Phase II results

Blois, 30 May 2017 6 / 18

The Gerda experiment @ LNGS

3500 m.w.e rock overburden ightarrow cosmic μ -flux reduced by a factor $\sim 10^6$ $ightarrow 1\mu/m^2/h$

The Gerda experiment

Anne Wegmann (MPIK)

From Phase I to Phase II

Phase I $(T_{1/2}^{0\nu} \propto \epsilon \cdot a \cdot \sqrt{\frac{M \cdot t}{BI \cdot \Delta E}})$

• exposure: $17.9 \, \mathrm{kg} \cdot \mathrm{yr}$ enr. semi-coaxial (golden) $+ 1.3 \, \mathrm{kg} \cdot \mathrm{yr}$ enr. semi-coaxial (silver) $+ 2.4 \, \mathrm{kg} \cdot \mathrm{yr}$ enriched BEGe

• BI
$$\sim 10^{-2}\,\mathrm{cts}/(\mathrm{kg\,keV\,yr})$$

•
$$T_{1/2}^{0\nu} > 2.1 \cdot 10^{25} \,\mathrm{yr}$$
 90% C.L.
sensitivity 2.4 $\cdot 10^{25} \,\mathrm{yr}$
(PRL 111 (2013) 122503)

goals:

 $\bullet~\mbox{reach}~100~\mbox{kg} \cdot \mbox{yr}$ exposure

• BI
$$< 10^{-3}\,\mathrm{cts}/(\mathrm{kg\,keV\,yr})$$

- \Rightarrow stay background free
- $\Rightarrow \text{ reach sensitivity} > 10^{26}\,\mathrm{yr}$

strategy: increase mass / exposure and reduce BI

- mass: 20 kg (30) enr BEGe 15 kg (7) enr coaxial
- Novel detector technology with improved resolution
- BI: Background
 - \rightarrow material screening/reduction
 - \rightarrow enhanced PSD
 - \rightarrow LAr veto

Phase II upgrade

Phase II: Data set, energy scale and resolution

- data set: December 2015 May 2016, 85% duty cycle
- exposure: BEGes $5.8 \, \mathrm{kg} \cdot \mathrm{yr}$, coaxials $5.0 \, \mathrm{kg} \cdot \mathrm{yr}$

Physics data: LAr veto performance

Physics data: PSD performance

BEGes

- based on mono-parametric *A*/*E* value
- tuned with calibration data
- $\Rightarrow 0
 uetaeta$ -acceptance (87 ± 2)%

coaxial detectors

- artificial neural network
- MSE recognication tuned with calibration data (same as in Phase I)
- new α -event cut, tested/trained with sample from data
- $\Rightarrow 0
 uetaeta$ -acceptance (79 \pm 5)%

New $0\nu\beta\beta$ -decay $T_{1/2}$ limit

extended unbinned profile likehood:

- $\bullet~$ flat background in $1930-2190\,\rm keV$
- signal = Gaussian with mean at $Q_{\beta\beta}$ and standard deviation σ_E
- 7 parameters: 6 BI + common $T_{1/2}$
- best fit for $N_{0\nu} = 0$
- lower limit $T_{1/2}^{0\nu} > 5.3 \cdot 10^{25} \text{ yr}$ with $T_{1/2}^{0\nu}$ sensitivity $4.0 \cdot 10^{25} \text{ yr}$ (90% C.L.)

Current status (preliminary)

	exposure [kg yr]	BI [10 ⁻³ cts/(kg keV yr)]	after LAr	after PSD	after LAr + PSD
BEGe Coax	15.1 13.4	$12.3^{+2.3}_{-1.8}\\16.7^{+2.7}_{-2.3}$	$\begin{array}{c} 3.9^{+1.3}_{-1.0} \\ 8.0^{+1.9}_{-1.6} \end{array}$	$\begin{array}{c} 3.2^{+1.2}_{-0.9} \\ 8.0^{+1.9}_{-1.6} \end{array}$	$\begin{array}{c} 0.6^{+0.6}_{-0.4} \\ 2.2^{+1.1}_{-0.8} \end{array}$

Anne \	Negmann ((MPIK	.)
--------	-----------	-------	----

GERDA Phase II results

Conclusions

• GERDA sets a new limit on the half-life of $0\nu\beta\beta$ decay of $^{76}{\rm Ge}$

 $T_{1/2}^{0\nu} > 5.3 \cdot 10^{25} \,\mathrm{yr}$ 90% C.L.

 $m_{etaeta} < (150 - 330)\,\mathrm{meV}$

- best energy resolution: FWHM = 3.0 keV (4.0 keV) BEGe(coax) at $Q_{\beta\beta}$
- flat background in ROI
- lowest background at $Q_{\beta\beta}$ $10^{-3} \operatorname{cts}/(\operatorname{keV kg yr})$
- \Rightarrow first background-free experiment
- \Rightarrow best conditions for a discovery

Anne Wegmann (MPIK)

Blois, 30 May 2017 16 / 18

$\mathsf{Beyond}\ \mathrm{Gerd}{A}$

- LEGEND (Large Enriched Germanium Experiment for Neutrinoless Double Beta Decay)
- new collaboration formed in Oct. 2016 (=GERDA + Majorana + new groups)
- goals:
 - > LEGEND-200: 1^{st} phase w/ 200 kg in existing infrastructure @ LNGS sensitivity $\approx 1 \cdot 10^{27}$ yr (exclusion + discovery)
 - > LEGEND-1000: 1 t enriched Ge sensitivity $\approx 1 \cdot 10^{28} \, \mathrm{yr}$
 - \Rightarrow remain background-free
 - $\Leftrightarrow \ \mbox{LEGEND-1000: reduce background} \\ to \le 0.1\, \rm cts/(FWHM\,t\,yr) \label{eq:expectation}$

[[]Eur.Phys.J.C76 (2016)

Thank you for your attention !

