

KM3NeT/ORCA

R. Bruijn
University of Amsterdam/Nikhef
Rencontres de Blois 2017

KM3NeT Collaboration

14 Countries44 Institutes240 Scientists

Sites:

KM3NeT – FR

KM3NeT – IT

KM3NeT - GR

Large Volume Neutrino Telescopes

Cherenkov light from the charged products of neutrino interactions in sea-water are detected by a sparse array of photo-multiplier tubes

Two *general* event types:

Tracks - Charged current (CC) v_{μ} interaction

Showers - Neutral current v interaction

- v_e CC electromagnetic shower

- Vertex of CC interaction

- au decay shower

Detection Units:

18 optical modules per detection unit

9m between optical modules

Lowest optical module 40m above seabed

Two Dyneema® ropes

Backbone: 2 copper conductors; 18 fibres (+spares)

Break out of cable at each optical module

Base module with DWDM at anchor

Cable for connection to seafloor network

Cost saving design

Infrastructure:

Building block of 115 strings

Sea-bed infrastructure

(facility for long term high-bandwidth connection for

sea-science, biology etc.)

Optical data transmission

All-data-to-shore

Filtering/Trigger on-shore in computer farm

('ORCA' layout)

KM3NeT Digital Optical Module (DOM)

Segmented cathode area: 31 x 3" PMTs

- Directional Sensitivity
 - Photon Counting

Light concentrator ring

Cathode area: ~ 3 x 10-inch PMT

Less overhead

Custom low-power HV bases

LED, piezo, compass and tiltmeter inside

PMT Time-over-Threshold measurements

FPGA readout

PMT Features:

≻Timing

≻QE

➤ Collection efficiency

➤ Photon counting purity

➤ Price/cm2

≤2ns (RMS)

≥25-30%

≥90%

100% (by hits, ≤7)

≤10" PMT

ARCA & ORCA

High Energy Neutrino Astronomy:

ARCA: **A**stroparticle **R**esearch with **C**osmics in the **A**byss

Large Detector: ~1 km³ total

Sparse: 36 m vertical spacing, 100 m horizontal

TeV-PeV Energies

Astrophysical Neutrinos

Same technology & layout, dimensions scaled

See talk by S. Navas

115 Detection Units

115 Detection Units

Neutrino Physics:

ORCA: Oscillations Research with Cosmics in the Abyss

'Smaller' detector: 5.7 Mton

Dense: 9m vertical spacing, 20m horizontal

GeV energies

Atmospheric neutrinos

Current Status & Future

- KM3NeT Phase-1:
 - Fully funded
 - 24 ARCA Detection Units
 - 6 ORCA Detection Units
 - Under Construction

2 ARCA lines deployed

2 ORCA lines to be deployed!

KM3NeT 2.0 Letter of Intent

J. Phys. G: Nucl. Part. Phys. 43 (2016) 084001

- KM3NeT 2.0 :
 - ARCA: 2 x 115 Detection Units by 2020 (1 block almost funded)
 - ORCA: 115 Detection Units by 2020 (half block funded)
 - ESFRI Roadmap

ORCA Goal: Neutrino Mass Hierachy

Neutrinos can change flavour during propagation as the mass eigenstates are not their flavour eigenstates

Neutrino flavour oscillations are described by the PMNS matrix:

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \times \begin{pmatrix} c_{13} & 0 & e^{-i\delta}s_{13} \\ 0 & 1 & 0 \\ -e^{i\delta}s_{13} & 0 & c_{13} \end{pmatrix} \times \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

and two mass squared differences

Only the size (not the sign) of the large mass squared difference ΔM^2 is known. This allows for two orderings of the neutrino mass eigenstates

Neutrino Mass Hierarchy (NMH)

Also: CP violating phase δ_{CP} unknown and octant of θ_{23}

Determining the NMH with atmospheric v 's

In vacuum, neutrino oscillations are unaffected by the mass ordering. E.g: $(\Delta m_{31}^2 L)$

$$P_{3\nu}(\nu_{\mu} \rightarrow \nu_{e}) \approx \sin^{2}\theta_{23} \sin^{2}2\theta_{13} \sin^{2}\left(\frac{\Delta m_{31}^{2} L}{4E_{\nu}}\right)$$

$$P_{3\nu}(\nu_{\mu} \to \nu_{\mu}) \approx 1 - 4\cos^2\theta_{13}\sin^2\theta_{23}(1 - \cos^2\theta_{13}\sin^2\theta_{23})\sin^2\left(\frac{\Delta m_{31}^2 L}{4E_{\nu}}\right)$$

In matter $v_e(\bar{v_e})$ acquires effective potential $A=\pm\sqrt{2}G_fN_e$ through charged current elastic interactions with electrons. And oscillations probabilities are modified.

This affects phase and amplitude of oscillations and is strongest at resonance energy:

$$E_{\rm res} \equiv \frac{\Delta m_{31}^2 \cos 2\theta_{13}}{2\sqrt{2} G_F N_e} \simeq 7 \,{\rm GeV} \, \left(\frac{4.5 \,{\rm g/cm}^3}{\rho}\right) \, \left(\frac{\Delta m_{31}^2}{2.4 \times 10^{-3} \,{\rm eV}^2}\right) \, \cos 2\theta_{13}$$

Density profile of the path through the Earth depends on zenith angle

See: Akhmedov, E.K., Razzaque, S. & Smirnov, A.Y. J. High Energ. Phys. (2013) 2013: 82.

Determining the NMH with atmospheric v 's

Relative difference in event numbers between normal and inverted hierarchy $(N_{IH}-N_{NH})/N_{NH}$

At relevant energies, neutrino/lepton scattering angle dominates

Sensitivity for Neutrino mass ordering

Sensitivity to distinguish between normal and inverted hierarchy:

3 σ in 3 years (median sensitivity)

Normal hierarchy + upper octant θ_{23} gives more sensitivity (5 σ in 3 years)

Δm^2_{32} and $sin^2 heta_{23}$

Competitive measurements of Δm^2_{32} (2-3%) and $sin^2\theta_{23}$ (4-10 %)

Indirect Dark Matter detection

Gravitationally trapped relic WIMPs (Sun, Galactic center) annihilate and resulting products are measured.

Supernova detection \(\frac{\frac{\frac{N}{2}}{2}}{2} \)

~10 MeV supernova neutrinos can not be resolved individually

Detection of Galactic supernovae by enhanced collective coincidence rates between PMTs in DOMs

SN1987A - like supernova at 10 kpc, $3 \cdot 10^{53}$ erg, $\overline{v_e}$ component (1/6) with 25% in first 100 ms

At >= 6 coincidences per DOM, SN signal exceeds background.

ORCA: 5 σ discovery distance 16 (24) kpc at $\langle E_{\nu} \rangle$ = 12 (16) MeV (ARCA: up to 37 kpc)

(Note: neutrino fluxes from SN are influenced by mass-hierarchy!)

Coincidence Level

τappearance

Early physics result

3k tau events/year

Rate constrained to 10% in one year

Other ORCA Physics Topics

- Non-Standard interactions and Sterile Neutrinos
 - J. Coelho, Neutrino 2016, P 2.026
- Neutrino Beam from Protvino to ORCA
 - CP & NMH
 - J. Brunner, AHEP, Volume 2013 (2013), Article ID 782538
- Low Energy Neutrino Astrophysics
 - J. Becker Tjus, arXiv: 1405.0471
- Earth Tomography and Composition
 - S. Bourret, Procs. Neutrino 2016, arXiv:1702.03723
- Earth and Sea Sciences

First (ARCA) lines and prototypes

- In-situ prototypes 2013 (1 DOM) & 2015 (3 DOMs)
- Two ARCA lines deployed in December 2015 and May 2016
- Identical technology, except for vertical and horizontal spacing
 - Calibration procedures and systematic studies relevant for ORCA

Selected result: Atmospheric muons

Atmospheric muons

Residual between predicted and measured photon arrival time

Summary

- ORCA can measure the neutrino mass hierarchy within a few years of operation (3 sigma in 3 years)
 - And, competitive measurement of other oscillation parameters
- Many other physics opportunities
 - Sterile neutrinos/Non-standard interactions
 - Dark Matter
 - Supernovae
 - Beam options explored (CP?)
- ORCA Phase 1 with 6 detection units being constructed
 - ORCA phase 2 with 115 detection units is partially funded
- Data from ARCA lines validate understanding of detector and simulations

Backup

Sensitivity study

- Generate many pseudo-experiments
 - A set of 'true' values for oscillation parameters and systematics
 - Both normal and inverted hierarchy
 - Calculate oscillation probabilites
 - Apply resolutions, particle ID etc. (determined from simulations)
- Determine likelihood for both NH and IH cases
 - Maximize w.r.t. free parameters
- Calculate log-likelihood ratio L_{IH}/L_{NH}
- Calculate median sensitivity for hypothesis and time

A simpler approach based on Asimov-sets yields similar results

Log-Likelihood ratio distributions from pseudoexperiments

parameter	true value distr.	initial value distr.	treatment	prior
θ ₂₃ [°]	{40, 42,, 50}	uniform over [35, 55] †	fitted	no
θ_{13} [°]	8.42	$\mu = 8.42$, $\sigma = 0.26$	fitted	yes
θ_{12} [°]	34	$\mu = 34$, $\sigma = 1$	nuisance	N/A
$\Delta M^2 [10^{-3} \text{ eV}^2]$	$\mu = 2.4$, $\sigma = 0.05$	$\mu = 2.4$, $\sigma = 0.05$	fitted	no
$\Delta m^2 [10^{-5} \text{ eV}^2]$	7.6	$\mu = 7.6$, $\sigma = 0.2$	nuisance	N/A
δ _{CP} [°]	0	uniform over [0, 360]	fitted	no
overall flux factor	1	$\mu=1$, $\sigma=0.1$	fitted	yes
NC scaling	1	$\mu = 1$, $\sigma = 0.05$	fitted	yes
$\nu/\bar{\nu}$ skew	0	$\mu = 0$, $\sigma = 0.03$	fitted	yes
μ/e skew	0	$\mu = 0$, $\sigma = 0.05$	fitted	yes
energy slope	0	$\mu = 0$, $\sigma = 0.05$	fitted	yes

Photon counting and direction

Photon counting

(muons cause higher multiplicity coincidences)

(photons from muons come from above)

(data in these plots is from prototypes PPM-DOM (Eur. Phys. J. C (2014) 74:3056) and PPM-DU (Eur. Phys. J. C76 (2016) no. 2, 54)

K40 time calibration

Time difference distribution between two PMTs in a DOM

Time offset between the two PMTs

Information from k40 decay:

- time offset
- efficiency
- time spread

Photons from individual decays on different PMTs

Structure modifies efficiency of individual PMTs

PMT in DOM

Particle Identification

