Automatised computations of EW corrections using Sherpa+Recola

Mathieu PELLEN

Institute for Theoretical Physics and Astrophysics, University Würzburg

Based on: [arXiv:1704.05783]

In collaboration with: B. Biedermann, S. Bräuer, A. Denner, S. Schumann, J. M. Thompson

> Rencontres de Blois - 2017 Blois, France

30^{th} of Mai 2017

Introduction

The Sherpa+Recola framework Applications Conclusion NLO EW corrections Available tools

\rightarrow Precision physics in both experiment and theory

Mathieu PELLEN

NLO EW corrections Available tools

Many effects to be taken into account ...

- NLO QCD: $\mathcal{O}(\alpha_s)$, NNLO QCD: $\mathcal{O}(\alpha_s^2)$...
- Resummation: $\mathcal{O}\left(\alpha_s^n \log^n\right)$
- Matching to parton shower: $\mathcal{O}(\alpha_s \log)$
- Merging
- Off-shell effects: $\mathcal{O}(\Gamma/m)$
- NLO EW: $\mathcal{O}(\alpha) \rightarrow \alpha \sim \alpha_s^2$

→ Automatisation of NLO EW corrections ...
 ... in publicly available Monte Carlo (MC) programs
 → example: SHERPA+RECOLA

NLO EW corrections Available tools

<u>Disclaimer:</u> no review of the recent progresses @ NLO EW \rightarrow Going towards full off-shell computation or all NLO orders

- ZZ [Biedermann et al.; 1611.05338, 1601.07787]
- WW [Biedermann et al.; 1605.03419], [Kallweit et al.; 1705.00598]
- tt [Pagani et al.; 1606.01915], [MP et al.; 1607.05571], [Czakon et al.; 1705.04105]
- tt+V [Frixione et al.; 1504.03446]
- tth [Zhang et al.; 1407.1110], [MP et al.; 1612.07138]
- VBS [MP et al.; 1611.02951]
- WWW [Dittmaier et al.; 1705.03722]
- V+ γ [Denner et al.; 1412.7421, 1510.08742]
- V+jets [Denner et al.; 1411.0916], [Chiesa et al.; 1507.08579], [Kallweit et al.; 1412.5157, 1511.08692]
- dijet [Frederix et al.; 1612.06548]

NLO EW corrections Available tools

• EW corrections:

- \rightarrow large in high energy region
- \rightarrow Sudakov logarithms: $-\frac{\alpha}{4\pi} \log^2 \left(s_{ij} / M_{\rm W}^2 \right)$

→ During run II, the tail of the distributions will be probed → New physics contributions?

Introduction

The Sherpa+Recola framework Applications Conclusion NLO EW corrections Available tools

 \rightarrow <u>Monte Carlo</u>: matrix element, parton shower, hadronisation, ... \rightarrow Tree/one-loop matrix element generator

Mathieu PELLEN

NLO EW corrections Available tools

Tools for automatised NLO EW computations

• GOSAM: not public

- MADLOOP: launchpad.net/mg5amcnlo
 - \rightarrow obtained in MADGRAPH5_AMC@NLO (MG5)
- OPENLOOPS: openloops.hepforge.org
- RECOLA: recola.hepforge.org

Generator	Monte Carlo	Processes	Availability
GoSam	private MC	generated	?
MadLoop	MG5	generated	soon
OpenLoops	SHERPA, private MC	libraries	soon
Recola	SHERPA, private MC	dynamical	soon

- RECOLA [Actis, Denner, Hofer, Lang, Scharf, Uccirati; 1605.01090]:
 - ightarrow tree and one-loop matrix element generator for QCD and EW
 - \rightarrow based on COLLIER library [Denner, Dittmaier, Hofer; 1604.06792]
 - \rightarrow NLO QCD and EW for high multiplicity processes (up to 2 \rightarrow 7)
- SHERPA [Bothmann, Hoeche, Krauss, Kuttimalai, Schönherr, Schulz, Schumann, Siegert, Zapp]: \rightarrow multi-purpose Monte Carlo, hard ME \rightarrow hadronisation \rightarrow sherpa.hepforge.org
- SHERPA+RECOLA [Biedermann, Bräuer, Denner, MP, Schumann, Thompson; 1704.05783]:
 - \rightarrow any process at NLO QCD and EW accuracy
 - \rightarrow any loop induced process
 - \rightarrow arbitrary flavour scheme

SHERPA+RECOLA [Biedermann, Bräuer, Denner, MP, Schumann, Thompson; 1704.05783]

- Phase-space point comparison vs. OPENLOOPS at NLO QCD for virtual+integrated dipole (62 processes) and for QCD loop-induced process (13 processes)
- Matching to Parton Shower for Drell-Yan+jets at NLO QCD
 → All capabilities of SHERPA can be used with RECOLA
- NLO QCD and <u>EW</u> corrections to:

 $\begin{array}{l} \mathbf{pp} \rightarrow \mathbf{t} \overline{\mathbf{t}} \mathbf{H} \\ \mathbf{pp} \rightarrow V + \mathrm{jets} \\ \mathbf{pp} \rightarrow \mathbf{e}^+ \mathbf{e}^- \mu^+ \mu^- \end{array}$

$pp \to t \overline{t} H$

- Evidence Run-I at $\sqrt{s}=7$ and $8\,\text{TeV}$ [ATLAS+CMS, 1606.02266]
 - \rightarrow Yukawa coupling, new physics contributions, ...
- State-of-the art @ NLO EW: [Frixione et al.; 1504.03446], [Zhang et al.; 1407.1110], [Denner, Lang, MP, Uccirati; 1612.07138]
- Massive coloured final state
- Interference of EW and QCD processes at $\mathcal{O}\left(\alpha_{\rm s}^2\alpha^2\right)$

- Validation: Les Houches report [1605.04692], comparison of OPENLOOPS and MG5
- Fully inclusive

Mathieu PELLEN

 $\begin{array}{l} \mathsf{pp} \to \mathsf{t}\overline{\mathsf{t}}\mathsf{H} \\ \mathsf{pp} \to V + \mathrm{jets} \\ \mathsf{pp} \to \mathsf{e}^+\mathsf{e}^-\mu^+\mu^- \end{array}$

 \rightarrow Typical behaviour of Sudakov logarithms

Mathieu PELLEN

 $\begin{array}{l} \mathrm{pp} \rightarrow \mathrm{t\bar{t}H} \\ \mathrm{pp} \rightarrow \mathbf{V} + \mathrm{jets} \\ \mathrm{pp} \rightarrow \mathrm{e^+e^-}\mu^+\mu^- \end{array}$

$pp \rightarrow V + jets$

- Background for new physics searches [Lindert at al.; 1705.04664]
- State-of-the art @ NLO EW: [Denner et al.; 1411.0916],

[Kallweit et al.; 1412.5157, 1511.08692]

• Computed with SHERPA+RECOLA:

 $pp \to W^+ + 1/2j$ with both on- and off-shell W $pp \to Z + 1/2j$ with both on- and off-shell Z

- Mixture of EW and QCD final states, Interferences
- Many partonic channels
- Validation vs. [Kallweit et al.; 1412.5157, 1511.08692]

 $\begin{array}{c} \text{Introduction} \\ \text{The Sherpa+Recola framework} \\ \begin{array}{c} \text{Applications} \\ \text{Conclusion} \end{array} \\ \begin{array}{c} \text{pp} \rightarrow t \tilde{t} H \\ \text{pp} \rightarrow V + jets \\ \text{pp} \rightarrow e^+ e^- \mu^+ \end{array}$

 $pp \rightarrow W^+j$

 $\rightarrow \Delta \Phi (j_1 j_2) < 3\pi/4$ removes back-to-back topologies \rightarrow Typical behaviour of Sudakov logarithms recovered

Mathieu PELLEN

 $\begin{array}{l} pp \rightarrow t\bar{t}H \\ pp \rightarrow V + jets \\ pp \rightarrow e^+e^-\mu^+\mu^- \end{array}$

$$\mathsf{pp} o \mathsf{e}^+ \mathsf{e}^- \mu^+ \mu^-$$

- Final state dominated by ZZ pair production: $pp \to Z^{\star}Z^{\star} \to e^+e^-\mu^+\mu^-$
- Background for Higgs searches, triple gauge coupling, ...
- State-of-the art at NLO EW: [Biedermann et al.; 1601.07787, 1611.05338],

[Kallweit et al.; 1705.00598]

- Complicated purely EW process
- Validation vs. [Biedermann et al.; 1611.05338]

Introduction The Sherpa+Recola framework Applications Conclusion $pp \rightarrow t\bar{t}$ $pp \rightarrow v$

$$\begin{array}{l} \mathrm{pp} \to \mathrm{t\bar{t}H} \\ \mathrm{pp} \to V + \mathrm{jets} \\ \mathrm{pp} \to \mathrm{e^+e^-} \mu^+ \mu^- \end{array}$$

$m pp ightarrow m e^+ e^- \mu^+ \mu^-$

→ Non-trivial kinematic edges

Mathieu PELLEN

Summary

- Automatisation of NLO EW corrections soon publicly available
 - \rightarrow Allows for systematic study of EW corrections
- SHERPA+RECOLA [MP et al.; 1704.05783]
 - \rightarrow any process at NLO QCD and EW accuracy
 - \rightarrow any loop induced process
 - \rightarrow examples: pp \rightarrow V + jets, pp \rightarrow ttH, pp \rightarrow e⁺e⁻ $\mu^+\mu^-$

These corrections are particularly relevant for SM measurements as well as BSM searches

Back-up slides

BACK-UP

Mathieu PELLEN