Nuclear Emulsions for Wimp Search directional measurement #### Valerio Gentile GSSI - Gran Sasso Science Institute Italy on behalf of the NEWSdm Collaboration 29th Rencontres de Blois May 28 - June 2, 2017 ### LETTER OF INTENT Submitted to Gran Sasso Scientific Committee at the end of 2015 LNGS-LOI 48/15 NEWS: Nuclear Emulsions for WIMP Search Letter of Intent (NEWS Collaboration) A. Aleksandrov^b, A. Anokhinaⁿ, T. Asada^k, D. Bender^p, I. Bodnarchuk^m, A. Buonaura^{b,h}, S. Buontempo^b, M. Chernyavskii^o, A. Chukanov^m, L. Consiglio^{b,h}, N. D'Ambrosio^e, G. De Lellis^{b,h}, M. De Serio^{a,g}, A. Di Crescenzo^{b,h}, N. Di Marco^e, S. Dmitrievski^m, T. Dzhatdoevⁿ, R. A. Fini^a, S. Furuya^k, G. Galati^{b,h}, V. Gentile^{b,h}, S. Gorbunov^o, Y. Gornushkin^m, A. M. Guler^p, H. Ichiki^k, C. Kamiscioglu^p, M. Kamiscioglu^p, T. Katsuragawa^k, M. Kimura^k, N. Konovalova^o, K. Kuge^l, A. Lauria^{b,h}, P. Loverre^{d,j}, S. Machii^k, A. Managadzeⁿ, P. Monacelli^{d,j}, M. C. Montesi^{b,h}, T. Naka^k, M. Nakamura^k, T. Nakano^k, A. Pastore^{a,g}, D. Podgrudkovⁿ, N. Polukhina^o, F. Pupilli^f, T. Roganovaⁿ, G. Rosa^{d,j}, O. Sato^k, T. Shchedrina^o, S. Simone^{a,g}, C. Sirignano^{c,j}, A. Sotnikov^m, N. Starkov^o, P. Strolin^{b,h}, Y. Tawara^k, V. Tioukov^b, A. Umemoto^k, M. Vladymyrov^o, M. Yoshimoto^k, S. Zemskova^m https://arxiv.org/pdf/1604.04199.pdf ## NEWSdm Collaboration 70 physicists, 14 institutes #### **ITALY** INFN e Univ. Bari, LNGS, INFN e Univ. Napoli, INFN e Univ. Roma GSSI Institute #### **JAPAN** Chiba, Nagoya #### **RUSSIA** LPI RAS Moscow, JINR Dubna SINP MSU Moscow, INR Moscow Yandex School of Data Analysis #### **SOUTH KOREA** Gyeongsang #### **TURKEY** METU Ankara news-dm.lngs.infn.it ### **OUTLINE** - The NEWSdm idea: a novel approach to *directional* detection of Dark Matter - High Resolution Nuclear Emulsions: NIT - Detection principle - Background studies - Sensitivity - Current status of the experiment - Conclusions and perpectives #### POWER OF DIRECTIONALITY Impinging direction of DM particle is (preferentially) opposite to the velocity of the Sun in the Galaxy, i. e. from Cygnus Constellation - Unambiguous proof of the galactic origin of Dark Matter - Unique possibility to overcome the "neutrino floor", where coherent neutrino scattering creates an irreducible background #### DIRECTIONAL DARK MATTER SEARCHES #### Current approach: low pressure gaseous detector - Targets: CF4, CF4+CS2, CF4 + CHF3 - Recoil track length O(mm) - Small achievable detector mass due to the low gas density - ⇒Sensitivity limited to spin-dependent interaction **NEWAGE@ Japan** DM-TPC@ USA DRIFT @ UK MIMAC@ France #### DIRECTIONAL APPROACH #### Use solid target: - Large detector mass - Smaller recoil track length O(100 nm) - very high resolution tracking detector Nuclear Emulsion based detector acting both as target and tracking device ### THE NEWSdm PRINCIPLE - Aim: detect the direction of nuclear recoils produced in WIMP interactions - Target: nanometric nuclear emulsions acting both as target and tracking detector - Background reduction: neutron shied surrounding the target - <u>Fixed pointing</u>: target mounted on <u>equatorial telescope</u> constantly pointing to the Cygnus Constellation - Location: Underground Gran Sasso Laboratory #### NIT: NANO EMULSION IMAGING TRACKERS A long history, from the discovery of the **Pion** (1947) to the discovery of $v_{\mu} \rightarrow v_{\tau}$ oscillation in appearance mode (OPERA, 2015) - Nuclear emulsions: AgBr crystals in organic gelatine - Passage of charged particle produce latent image - Chemical treatment make Ag grains visible - New kind of emulsion for DM search - Smaller crystal size ## NIT EMULSIONS | Constituent | Mass Fraction | |-------------|---------------| | AgBr-I | 0.78 | | Gelatin | 0.17 | | PVA | 0.05 | (a) Constituents of nuclear emulsion | • | Element | Mass Fraction | Atomic Fract | ion | |---|---------------------|---------------|--------------|----------| | , | Ag | 0.44 | 0.12 | | | | Br | 0.32 | 0.12 | | | | I | 0.019 | 0.003 | | | | \mathbf{C} | 0.101 | 0.172 | | | | O | 0.074 | 0.129 | | | | N | 0.027 | 0.057 | (micron) | | | ${ m H}$ | 0.016 | 0.396 | nici | | | S | 0.003 | 0.003 | h (r | | | | I . | | 4 | (b) Elemental composition #### Lighter nuclei heavy nuclei light nuclei (longer range at same recoil energy) **Sensitivity to low WIMP mass** AgBr-I: sensitive elements Organic gelatine: retaining structure PVA to stabilise the crystal growth Each nucleus gives a different contribution to the overall sensitivity # READOUT TECHNOLOGY #### TRACK IDENTIFICATION - Challenge: detect tracks with lengths comparable/shorter than optical resolution - Strategy: two-steps approach #### STEP 1 ## CANDIDATE IDENTIFICATION WITH OPTICAL MICROSCOPES Pros: Fast scanning profiting of the improvements driven by theOPERA experiment, dedicated measurement stations in each labLimit: Resolution with standard technologies ~ 200 nm #### STEP 2 #### **CANDIDATE VALIDATION** X-ray microscope **Pros**: High resolution ~ 50 nm or better **Cons**: extremely slow and not convenient (need an external lab) New technology with optical microscopes ## READOUT STRATEGY STEP 1: CANDIDATE IDENTIFICATION - Scanning with optical microscope and shape recognition analysis - Automatic selection of candidate signals by optical microscopy - Selection of clusters with elliptical shape: major axis along track direction - Background: spherical cluster - Resolution 200 nm (one order of magnitude better than the OPERA scanning system), scanning speed 20 cm²/h OVERALL ANGULAR RESOLUTION $\sigma^2 = \sigma^2_{intrinsic} + \sigma^2_{scattering}$ $\sigma = 360 \ mrad$ #### READOUT STRATEGY STEP 2: CANDIDATE VALIDATION - Scanning with X-ray microscope of preselected zones - Pin-point check at X-ray microscope of candidate signals selected by optical readout. - Resolution ~30 nm - Slow analysis speed - Need of external X-ray guns Matching Efficiency 99% (572/579) ### RESONANT LIGHT SCATTERING - Occurring when the light is scattering off a nanometric metallic (silver) grains are dispersed in a dielectric medium (*Applied Phys Letters 80* (2002) 1826) - Sensitive to the shape of nanometric grains: when silver grains are **not spherical**, the resonant response depends on the polarization of the incident light. - Each grain is emphasized at different polarization values #### NANOMETRIC TRACK RECONSTRUCTION - Taking multiple measurements over the whole polarization range produces a displacement of the barycenter of the cluster - Application of resonant light scattering to an elliptical cluster - Measure the displacement of cluster barycentre as a function of polarization angle (dx, dy) Measurement of track slope and length #### POSITION ACCURACY Optical microscope assembled Exploiting resonant light effect Unprecedented accuracy of 10 nm achieved on both coordinates Breakthrough ## BACKGROUND STUDIES #### **BACKGROUND STUDIES** Measurement of intrinsic radioactivity: neutrons | Nuclide | Contamination [ppb] | Activity [mBq/Kg] | | | |---------------------|---------------------|-------------------|--|--| | Gelatine | | | | | | $^{232}\mathrm{Th}$ | 2.7 | 11.0 | | | | $\frac{238}{}$ U | 3.9 | 48.1 | | | | PVA | | | | | | $^{232}\mathrm{Th}$ | < 0.5 | < 2.0 | | | | ^{238}U | < 0.7 | < 8.6 | | | | AgBr-I | | | | | | -232Th | 1.0 | 4.1 | | | | ^{238}U | 1.5 | 18.5 | | | | | | | | | ²³⁸U: 1.87 ppb (23.1 mBq/kg) ²³²Th: 1.26 ppb (5.1 mBq/Kg) Background yield from the intrinsic radioactive contamination of NIT: ~1.2 n/kg year | Process | SOURCES simulation | Semi-analytical calculation | |--|----------------------------------|----------------------------------| | | $[n \cdot kg^{-1} \cdot y^{-1}]$ | $[n \cdot kg^{-1} \cdot y^{-1}]$ | | (α, n) from ²³² Th chain | 0.12 ± 0.04 | 0.10 ± 0.03 | | (α, n) from ²³⁸ U chain | $0.27 {\pm} 0.08$ | $0.26 {\pm} 0.08$ | | Spontaneous fission | 0.79 ± 0.24 | $0.82 {\pm} 0.24$ | | Total flux | 1.18 ± 0.35 | 1.18 ± 0.35 | From simulation: detectable neutron induced background $$\varepsilon \sim 1\% \rightarrow \sim 0.01 \text{ n/kg year}$$ Neutron background from intrinsic radioactivity negligible up to ~10 kg year NEWSdm Collaboration Astroparticle Physics 80 (2016) 16 ## NEWSdm SENSITIVITY ## EXPLOIT DIRECTIONALITY Evaluation of upper limit and sensitivity based on the profile likelihood ratio test Likelihood function total number of observed events set of observables - Mass= 10 kg - Exposure time = 10 years - $N_{background} = 100$ - Threshold = 100 nm #### WIMP SIGNAL IDENTIFICATION - Test anisotropy of observed signal - Unambiguous proof of WIMP origin of recoil signal - Signal/background hypothesis separation - 20 events required to prove that data are not compatible with background at 3σ CL for M_W <20 GeV/ c^2 - 130 events give 3σ CL in the whole WIMP mass range ## TOWARDS NEUTRINO FLOOR - Discrimination based on measurement of recoil direction - Unique possibility to search for WIMP signal beyond "neutrino floor" Neutrino coherent scattering indistinguishable from WIMP interactions Phys.Rev.D89 (2014) no.2, 023524 (Xe/Ge target) #### **REQUIREMENTS** - Larger mass scale detector - Reduction of track length threshold The neutrino bound is reached with: - →10 ton x year exposure if 30 nm threshold - →100 ton x year exposure if 50 nm threshold ## CURRENT STATUS OF THE EXPERIMENT ### TECHNICAL TEST - <u>Aim</u>: measure the detectable background from environmental and intrinsic sources and validate estimates from simulations - Confirmation of a negligible background will pave the way for the construction of a **pilot experiment** with an exposure on the **kg year** scale - Pilot experiment will act as a **demonstrator** to further extend the mass range - Experimental setup: - shield from environmental background - cooling system to ensure required temperature to NIT emulsions Polyethylene slabs 40 cm-thick absorb environmental and cosmogenic neutrons Lead bricks 10 cm-thick - absorb environmental photons ## TECHNICAL TEST • Installed in Underground Gran Sasso INFN Laboratories in March 2017 ## CONCLUSIONS - A novel approach for **directional Dark Matter searches** is proposed in NEWSdm - Use of fine-grained nuclear emulsion as target and tracking system - Breakthrough in readout technologies to go beyond optical resolution - Neutron background from intrinsic radioactivity negligible up to ~10 kg year - Prepare a kg scale (pilot) experiment as a demonstrator of the technology - Aim: large mass scale detector to go beyond "neutrino floor" - Status: - Letter of Intent submitted to LNGSC in 2015 - First technical test performed in March 2017 - TDR in preparation *part of the Collaboration when test started in LNGS THANK YOU FOR YOUR ATTENTION ## BACKUP SLIDES ## **EXCLUSION PLOT** • Pilot experiment: 1 kg year ### BEYOND OPTICAL RESOLUTION #### **OPTICAL MICROSCOPES** New technologies ## SELECTION OF TRACKS WITH SHAPE ANALYSIS #### SIGNAL SELECTION - Major axis/minor axis > 1.25 - minor axis > 170 nm $$\sigma^{2} = \sigma^{2}_{intrinsic} + \sigma^{2}_{scattering}$$ $$\sigma = 360 \text{ mrad}$$ ### Intrinsic Angular Resolution - Neutron test beam sample: exposure at FNS (Japan) - Compare clusters with elliptical (e > 1.1) shape with the proton recoil direction - Scattering contribution negligible INTRINSIC ANGULAR RESOLUTION $\sigma = 235 \; mrad = 13^{\circ}$