

Nuclear Emulsions for Wimp Search directional measurement

Valerio Gentile

GSSI - Gran Sasso Science Institute

Italy

on behalf of the NEWSdm Collaboration

29th Rencontres de Blois May 28 - June 2, 2017

LETTER OF INTENT

Submitted to Gran Sasso Scientific Committee at the end of 2015

LNGS-LOI 48/15

NEWS: Nuclear Emulsions for WIMP Search
Letter of Intent
(NEWS Collaboration)

A. Aleksandrov^b, A. Anokhinaⁿ, T. Asada^k, D. Bender^p, I. Bodnarchuk^m,
A. Buonaura^{b,h}, S. Buontempo^b, M. Chernyavskii^o, A. Chukanov^m,
L. Consiglio^{b,h}, N. D'Ambrosio^e, G. De Lellis^{b,h}, M. De Serio^{a,g}, A. Di
Crescenzo^{b,h}, N. Di Marco^e, S. Dmitrievski^m, T. Dzhatdoevⁿ, R. A. Fini^a,
S. Furuya^k, G. Galati^{b,h}, V. Gentile^{b,h}, S. Gorbunov^o, Y. Gornushkin^m,
A. M. Guler^p, H. Ichiki^k, C. Kamiscioglu^p, M. Kamiscioglu^p,
T. Katsuragawa^k, M. Kimura^k, N. Konovalova^o, K. Kuge^l, A. Lauria^{b,h},
P. Loverre^{d,j}, S. Machii^k, A. Managadzeⁿ, P. Monacelli^{d,j}, M. C. Montesi^{b,h},
T. Naka^k, M. Nakamura^k, T. Nakano^k, A. Pastore^{a,g}, D. Podgrudkovⁿ,
N. Polukhina^o, F. Pupilli^f, T. Roganovaⁿ, G. Rosa^{d,j}, O. Sato^k,
T. Shchedrina^o, S. Simone^{a,g}, C. Sirignano^{c,j}, A. Sotnikov^m, N. Starkov^o,
P. Strolin^{b,h}, Y. Tawara^k, V. Tioukov^b, A. Umemoto^k, M. Vladymyrov^o,
M. Yoshimoto^k, S. Zemskova^m

https://arxiv.org/pdf/1604.04199.pdf

NEWSdm Collaboration 70 physicists, 14 institutes

ITALY

INFN e Univ. Bari, LNGS, INFN e Univ. Napoli, INFN e Univ. Roma GSSI Institute

JAPAN

Chiba, Nagoya

RUSSIA

LPI RAS Moscow, JINR Dubna SINP MSU Moscow, INR Moscow Yandex School of Data Analysis

SOUTH KOREA

Gyeongsang

TURKEY

METU Ankara

news-dm.lngs.infn.it

OUTLINE

- The NEWSdm idea: a novel approach to *directional* detection of Dark Matter
- High Resolution Nuclear Emulsions: NIT
- Detection principle
- Background studies
- Sensitivity
- Current status of the experiment
- Conclusions and perpectives

POWER OF DIRECTIONALITY

 Impinging direction of DM particle is (preferentially) opposite to the velocity of the Sun in the Galaxy, i. e. from Cygnus Constellation

- Unambiguous proof of the galactic origin of Dark Matter
- Unique possibility to overcome the "neutrino floor", where coherent neutrino scattering creates an irreducible background

DIRECTIONAL DARK MATTER SEARCHES

Current approach:

low pressure gaseous detector

- Targets: CF4, CF4+CS2, CF4 + CHF3
- Recoil track length O(mm)
- Small achievable detector mass due to the low gas density
 - ⇒Sensitivity limited to spin-dependent interaction

NEWAGE@ Japan

DM-TPC@ USA

DRIFT @ UK

MIMAC@ France

DIRECTIONAL APPROACH

Use solid target:

- Large detector mass
- Smaller recoil track length O(100 nm)
 - very high resolution tracking detector

Nuclear Emulsion based detector acting both as target and tracking device

THE NEWSdm PRINCIPLE

- Aim: detect the direction of nuclear recoils produced in WIMP interactions
- Target: nanometric nuclear emulsions acting both as target and tracking detector
- Background reduction: neutron shied surrounding the target
- <u>Fixed pointing</u>: target mounted on <u>equatorial telescope</u> constantly pointing to the Cygnus Constellation
- Location: Underground Gran Sasso Laboratory

NIT: NANO EMULSION IMAGING TRACKERS

A long history, from the discovery of the **Pion** (1947) to the discovery of $v_{\mu} \rightarrow v_{\tau}$ oscillation in appearance mode (OPERA, 2015)

- Nuclear emulsions: AgBr crystals in organic gelatine
- Passage of charged particle produce latent image
- Chemical treatment make Ag grains visible

- New kind of emulsion for DM search
- Smaller crystal size

NIT EMULSIONS

Constituent	Mass Fraction
AgBr-I	0.78
Gelatin	0.17
PVA	0.05

(a) Constituents of nuclear emulsion

•	Element	Mass Fraction	Atomic Fract	ion
,	Ag	0.44	0.12	
	Br	0.32	0.12	
	I	0.019	0.003	
	\mathbf{C}	0.101	0.172	
	O	0.074	0.129	
	N	0.027	0.057	(micron)
	${ m H}$	0.016	0.396	nici
	S	0.003	0.003	h (r
		I .		4

(b) Elemental composition

Lighter nuclei

heavy nuclei

light nuclei

(longer range at same recoil energy)

Sensitivity to low WIMP mass

AgBr-I: sensitive elements
Organic gelatine: retaining structure
PVA to stabilise the crystal growth

Each nucleus gives a different contribution to the overall sensitivity

READOUT TECHNOLOGY

TRACK IDENTIFICATION

- Challenge: detect tracks with lengths comparable/shorter than optical resolution
- Strategy: two-steps approach

STEP 1

CANDIDATE IDENTIFICATION WITH OPTICAL MICROSCOPES

Pros: Fast scanning profiting of the improvements driven by theOPERA experiment, dedicated measurement stations in each labLimit: Resolution with standard technologies ~ 200 nm

STEP 2

CANDIDATE VALIDATION

X-ray microscope

Pros: High resolution ~ 50 nm or better

Cons: extremely slow and not convenient (need an external lab)

New technology with optical microscopes

READOUT STRATEGY STEP 1: CANDIDATE IDENTIFICATION

- Scanning with optical microscope and shape recognition analysis
- Automatic selection of candidate signals by optical microscopy
- Selection of clusters with elliptical shape: major axis along track direction
- Background: spherical cluster
- Resolution 200 nm (one order of magnitude better than the OPERA scanning system), scanning speed 20 cm²/h

OVERALL ANGULAR RESOLUTION $\sigma^2 = \sigma^2_{intrinsic} + \sigma^2_{scattering}$ $\sigma = 360 \ mrad$

READOUT STRATEGY STEP 2: CANDIDATE VALIDATION

- Scanning with X-ray microscope of preselected zones
- Pin-point check at X-ray microscope of candidate signals selected by optical readout.
- Resolution ~30 nm

- Slow analysis speed
- Need of external X-ray guns

Matching Efficiency 99% (572/579)

RESONANT LIGHT SCATTERING

- Occurring when the light is scattering off a nanometric metallic (silver) grains are dispersed in a dielectric medium (*Applied Phys Letters 80* (2002) 1826)
- Sensitive to the shape of nanometric grains: when silver grains are **not spherical**, the resonant response depends on the polarization of the incident light.
- Each grain is emphasized at different polarization values

NANOMETRIC TRACK RECONSTRUCTION

- Taking multiple measurements over the whole polarization range produces a displacement of the barycenter of the cluster
- Application of resonant light scattering to an elliptical cluster
- Measure the displacement of cluster barycentre as a function of polarization angle (dx, dy)

Measurement of track slope and length

POSITION ACCURACY

Optical microscope assembled

Exploiting resonant light effect

Unprecedented accuracy of 10 nm achieved on both coordinates

Breakthrough

BACKGROUND STUDIES

BACKGROUND STUDIES

Measurement of intrinsic radioactivity: neutrons

Nuclide	Contamination [ppb]	Activity [mBq/Kg]		
Gelatine				
$^{232}\mathrm{Th}$	2.7	11.0		
$\frac{238}{}$ U	3.9	48.1		
PVA				
$^{232}\mathrm{Th}$	< 0.5	< 2.0		
^{238}U	< 0.7	< 8.6		
AgBr-I				
-232Th	1.0	4.1		
^{238}U	1.5	18.5		

²³⁸U: 1.87 ppb (23.1 mBq/kg)

²³²Th: 1.26 ppb (5.1 mBq/Kg)

Background yield from the intrinsic radioactive contamination of NIT:

~1.2 n/kg year

Process	SOURCES simulation	Semi-analytical calculation
	$[n \cdot kg^{-1} \cdot y^{-1}]$	$[n \cdot kg^{-1} \cdot y^{-1}]$
(α, n) from ²³² Th chain	0.12 ± 0.04	0.10 ± 0.03
(α, n) from ²³⁸ U chain	$0.27 {\pm} 0.08$	$0.26 {\pm} 0.08$
Spontaneous fission	0.79 ± 0.24	$0.82 {\pm} 0.24$
Total flux	1.18 ± 0.35	1.18 ± 0.35

From simulation: detectable neutron induced background

$$\varepsilon \sim 1\% \rightarrow \sim 0.01 \text{ n/kg year}$$

Neutron background from intrinsic radioactivity negligible up to ~10 kg year

NEWSdm Collaboration Astroparticle Physics 80 (2016) 16

NEWSdm SENSITIVITY

EXPLOIT DIRECTIONALITY

 Evaluation of upper limit and sensitivity based on the profile likelihood ratio test

Likelihood function

total number of observed events

set of observables

- Mass= 10 kg
- Exposure time = 10 years
- $N_{background} = 100$
- Threshold = 100 nm

WIMP SIGNAL IDENTIFICATION

- Test anisotropy of observed signal
- Unambiguous proof of WIMP origin of recoil signal
- Signal/background hypothesis separation

- 20 events required to prove that data are not compatible with background at 3σ CL for M_W <20 GeV/ c^2
- 130 events give 3σ CL in the whole WIMP mass range

TOWARDS NEUTRINO FLOOR

- Discrimination based on measurement of recoil direction
- Unique possibility to search for WIMP signal beyond "neutrino floor"

Neutrino coherent scattering indistinguishable from WIMP interactions

Phys.Rev.D89 (2014) no.2, 023524 (Xe/Ge target)

REQUIREMENTS

- Larger mass scale detector
- Reduction of track length threshold

The neutrino bound is reached with:

- →10 ton x year exposure if 30 nm threshold
- →100 ton x year exposure if 50 nm threshold

CURRENT STATUS OF THE EXPERIMENT

TECHNICAL TEST

- <u>Aim</u>: measure the detectable background from environmental and intrinsic sources and validate estimates from simulations
- Confirmation of a negligible background will pave the way for the construction of a **pilot experiment** with an exposure on the **kg year** scale
- Pilot experiment will act as a **demonstrator** to further extend the mass range
- Experimental setup:
- shield from environmental background
- cooling system to ensure required temperature to NIT emulsions

Polyethylene slabs 40 cm-thick absorb environmental and cosmogenic neutrons Lead bricks 10 cm-thick - absorb environmental photons

TECHNICAL TEST

• Installed in Underground Gran Sasso INFN Laboratories in March 2017

CONCLUSIONS

- A novel approach for **directional Dark Matter searches** is proposed in NEWSdm
- Use of fine-grained nuclear emulsion as target and tracking system
- Breakthrough in readout technologies to go beyond optical resolution
- Neutron background from intrinsic radioactivity negligible up to ~10 kg year
- Prepare a kg scale (pilot) experiment as a demonstrator of the technology
- Aim: large mass scale detector to go beyond "neutrino floor"
- Status:
 - Letter of Intent submitted to LNGSC in 2015
 - First technical test performed in March 2017
 - TDR in preparation

*part of the Collaboration when test started in LNGS

THANK YOU FOR YOUR ATTENTION

BACKUP SLIDES

EXCLUSION PLOT

• Pilot experiment: 1 kg year

BEYOND OPTICAL RESOLUTION

OPTICAL MICROSCOPES

New technologies

SELECTION OF TRACKS WITH SHAPE ANALYSIS

SIGNAL SELECTION

- Major axis/minor axis > 1.25
- minor axis > 170 nm

$$\sigma^{2} = \sigma^{2}_{intrinsic} + \sigma^{2}_{scattering}$$
$$\sigma = 360 \text{ mrad}$$

Intrinsic Angular Resolution

- Neutron test beam sample: exposure at FNS (Japan)
- Compare clusters with elliptical (e > 1.1)
 shape with the proton recoil direction
- Scattering contribution negligible

INTRINSIC ANGULAR RESOLUTION $\sigma = 235 \; mrad = 13^{\circ}$

