SHiP

Direct Search for Hidden Particles at the CERN SPS

J. Chauveau

LPNHE IN2P3/CNRS and UPMC Paris 6
On behalf of the SHiP Collaboration

29th Rencontres de Blois May 28 – June 2, 2017

Outline

- Hidden sector portals
- SHiP: a proton beam dump experiment
- Experimental reach
- Optimization and current efforts
- SHiP in the GDR
- Outlook

Hidden Sector

- A New Physics beyond the Standard Model must be there,
 - At what scale ?
- To discover it, look for the messengers (portals) of new interactions between the SM fields and the hidden fields.
- Possible portals:
 - Neutrino, Vector, Scalar, Axial.
- If the messengers are light,
 a direct detection is possible
 - > Via **decay** or **scattering**.
- Very feeble interactions
 - > A source with high intensity
 - > They easily traverse matter
 - > They are long-lived
 - Very rare events

SHiP Physics Paper: 1504.04855

SHiP a proton beam dump experiment

Requirements (Decay)

- Heavy flavor
- \triangleright N with high P_T

 $P+A \rightarrow D \text{ or } B X, D \text{ or } B \rightarrow N I (X)$

 $N \rightarrow 2/3$ -body

✓ Decays:

Models	Final states
Neutrino portal, SUSY neutralino	$\ell^{\pm}\pi^{\mp}, \ell^{\pm}K^{\mp}, \ell^{\pm}\rho^{\mp}, \rho^{\pm} \to \pi^{\pm}\pi^{0}$
Vector, scalar, axion portals, SUSY sgoldstino	$\ell^+\ell^-$
Vector, scalar, axion portals, SUSY sgoldstino	$\pi^{+}\pi^{-}, K^{+}K^{-}$
Neutrino portal ,SUSY neutralino, axino	$\ell^+\ell^- u$
Axion portal, SUSY sgoldstino	$\gamma\gamma$
SUSY sgoldstino	$\pi^0\pi^0$

- Decay vessel close to target
- Muon shield as short as possible

The SHiP experiment at SPS

(as implemented in Geant4 for TP)

SHiP Technical Proposal: 1504.04956

- "Zero background" experiment
- Muon shield

150m

- Surrounding Veto detectors

- Dump
- Vacuum
- Timing, PID

>10¹⁸D, >10¹⁶ τ , >10²⁰ γ for 2×10²⁰ pot (in 5 years)

Hidden Sector decay volume

Spectrometer

Target/ hadron absorber

Active muon shield

Emulsion spectrometer

Search for Hidden Sector particles (decays in the decay volume)

Particle ID

Search for DM (scattering on atoms) v_{τ} physics (specific event topology)

Beyond Collider Physics, CERN

6

Kinematic Selection

Very simple selection reduces the bkg to only a few in 5 years:

- Fiducial volume
- DOCA
- IP wrt target
- Vetos

Realistic to reach 0.1 expected bkg events for exclusive channels we have been studying so far

Nico Serra - CERN Theory Institute

23

February 2017

Detector reoptimization

Muon shield

The active muon shield in the SHiP experiment arXiv:1703.03612v2 [physics.ins-det] 2017_JINST_12_P05011

- Pyramidal shape
- PID, timing
- Technology choices for the subdetectors

PID, timing

In the TP:

Shashlik ECAL (+HCAL)

- Square cells (38.2 mm)².
- 22.5 X0
- $\frac{6.5\%}{\sqrt{E}} + 1\%$

Conceptual studies in progress, like:

A possible setup with preshower (Feb 2017)

J. Chauveau -- SHiP calorimete

- Upstream point S₁ via tracking
 - Use 2 tracking stations
 - Reconstruct 3D track segments in each
 - · Match them: form track candidates
 - Clean them/remove satellites using
 - · energy of clusters,
 - · angles
 - Vertex track candidates to determine position of the shower starting point S₁.
- Downstream point S₂
 - Use z of the shower maximum inferred from energy
 - obtain (x,y) from the lateral shower profile
 - · Which longitudinal segmentation if any?

02/02/2017

J. Chauveau - SHiP calorimeter

σq 02/02/2017

The v_{τ} Detector (Scattering)

- Only 9 v_{τ} events recorded to date
- $\overline{\mathbf{v}}_{\tau}$ yet to be discovered
- $v_{\tau}/\overline{v}_{\tau}$ cross sections to be measured
- Charm physics with τ 's
- Proton structure functions
- $\bullet \quad \text{Large } \nu_e \, \text{flux to measure charm production}$ And also,

decay channel		ν_{τ}		_ _	$\overline{\nu}_{\tau}$	
-	N^{exp}	N^{bg}	R	N^{exp}	N^{bg}	R
$ au o \mu$	570	30	19	290	140	2
au o h	990	80	12	500	380	1.3
$\tau \to 3h$	210	30	7	110	140	0.8
total	1770	140	13	900	660	1.4

 \triangleright Probe LFUV comparing v_{μ} and v_{τ} CC events ? to be further studied.

H. Liu, A. Rashed, A. Datta 1505.04594, Phys. Rev. D 92, 073016 (2015)

Accelerator-based direct (L)DM search SHIP

- χ could be lighter than HS mediator (e.g. V)
- \triangleright V \rightarrow $\chi\chi$ allowed
- With 10²⁰ photons in SHiP:
- ➤ A LDM beam downstream the dump
- Scattering experiment χe → χe on the atoms of the SHiP detector (emulsions)
- Feasibility studies in progress (v background)
- LDM search beyond relic density

Pioneered in: de Niverville et al., Phys. Rev. D 95, 035006 (2017)

MiniBoonE: arXiv:1702.02688v2 [hep-ex]

Physics proposal plots

Not yet approved, but a leading project for the future of CERN fixed target program

- 2013-2015
 - EOI, formation of the Collaboration, T&P proposals
- 2016 SPSC/RB/ decisions by CERN management
 - > SHiP in the 2017_2021 MTP,
 - > **PBC study group** (the 3rd of F. Gianotti's 3 pillars)
 - > ~5 MCHF funding for Beam Dump Facility feasibility study
 - > CDS (Comprehensive Design Study) report end 2018
 - > Approval path in time with ESPP : **TDRs, Module-0's**
- ~ 5 years construction,
 - ➤ installation during LS3,
 - data while LHC Run4 (2027)

SHiP a recognized project in the greybook since 2016

Busy times

Perspectives

- SHiP is a proton beam dump facility
- to take data 5 years starting in 2027, assuming approval ≤ 2020
- to reach the best sensivity for many hidden sector particles (MeV-GeV)
- with an apparatus currently being reoptimized to search for unknown neutral particle
 - decays, scattering, also v_{τ} physics.
- The SHiP beamline is to be seen as a facility:
 - $-\tau \rightarrow 3 \mu ?..$
- > Time to join (creative period).

Extra

Physics Case

✓ SHiP will directly search for weakly interacting New Physics. Will exceed the sensitivity of previous experiments by a few orders of magnitude

For example, probe HNL couplings close to the ultimate see-saw limit

Table 2.1: Summary of the main decay modes of hidden particles in various models ($\ell = e, \mu$)

Models	Final states		
Neutrino portal, SUSY neutralino	$\ell^{\pm}\pi^{\mp}, \ell^{\pm}K^{\mp}, \ell^{\pm}\rho^{\mp}, \rho^{\pm} \to \pi^{\pm}\pi^{0}$		
Vector, scalar, axion portals, SUSY sgoldstino	$\ell^+\ell^-$		
Vector, scalar, axion portals, SUSY sgoldstino	$\pi^{+}\pi^{-}, K^{+}K^{-}$		
Neutrino portal ,SUSY neutralino, axino	$\ell^+\ell^-\nu$	11-1	
Axion portal, SUSY sgoldstino	$\gamma\gamma$	Under discussion: improve photon	
SUSY sgoldstino	$\pi^{0}\pi^{0}$	detection (with Preshower), and	

letection (with Preshower), and PID in general

20

Sensitivity to $A' \rightarrow visible$: SHiP vs HPS, APEX and Belle-II

SHiP will have sensitivity in a range that cannot be covered by any current or planned experiment

Caveat: these limits are valid in the assumption that A' does not decay in dark matter

G. Lanfranchi at SLAC April workshop

Sensitivity to $A' \rightarrow visible$: SHiP vs Mu3e phase-II and phase-II

SHiP will have sensitivity in a range that cannot be covered by any current or planned experiment

Caveat: these limits are valid in the assumption that A' does not decay in dark matter

G. Lanfranchi at SLAC April workshop

Experimental landscape

Dark Photons in visible modes: past and future sensitivities

Heavy Neutral Leptons: past and future sensitivities

Dark Scalars in visible modes: past and future sensitivities

Secluded annihilation via mediators (only possibility compatible with CMB and rare mesons decays constraints), mediators decay to SM particles

ALPS contour limit from past and future beam-dump experiments in the "high" mass region (0.1-1.0) GeV)

20

The Fixed-target facility at the SPS: Prevessin North Area site

Very intense proton beam with highest in the world energy delivered to fixed target exp. at CERN SPS. The aim is to deliver with 4×10¹³ protons / spill (at slow extraction)

Sharing of pot between current fixed target exp. and planned Beam Dump Facility (BDF)

Proposed implementation is based on minimal modification to the current SPS complex

LDMA 2017 5

Global SHiP schedule

✓ Planning very well aligned with

- Update of European strategy 2019/2020
- Accelerator schedule (to be followed closely)
- Production Readiness Reviews (PRR) 2020Q1 →
- Construction / production 2020 →
- Data taking (pilot run) 2026 (start of LHC Run 4)

✓ Main current priority: Comprehensive Design Study by 2018

LDMA 2017 15