
IT Challenges for the
LHC Experiments

Dario Barberis!

with the help of Roger Jones and !
many colleagues in the LHC experiments!

1!

LHC to HL-LHC

•  Major upgrades for LHCb and ALICE come for Run 3 (2021)!

•  LHCb: 40MHz readout with upgraded electronics and full software trigger, higher output rates!

•  ALICE: Upgrades to inner tracking and time projection chamber, 50kHz trigger less readout for
Pb-Pb; new online/offline data reduction framework O2!

•  Major upgrades for ATLAS and CMS come for Run 4 (2026)!
•  New silicon inner tracker detectors with track triggers at L0/1 rates!

•  Must adapt to very high pileup (140-200) and much higher trigger rates!

•  Recall that tracking is combinatoric: factorial with pileup!

2!

High Luminosity LHC

•  Very high pile up	

•  Very high trigger
acceptance rates	

•  Very challenging computing 	

3	

Event Complexity
x Rate	

Architecture

•  The wider computing picture presents other challenges.!

•  The architectures become more diverse (accelerators,
low power chips, GPUs, FPGAs….)!

•  The means by which compute is presented will also
change!

•  Clouds remain a buzz phrase - but this mainly means
virtualising the private hardware!

•  Commercial clouds currently can provide good burst
capacity; leverage means University/institute provision
will remain important!

4!

Processor Evolution

•  Moore’s Law continues!

•  Doubling transistor density every ~24
months!

•  Exact doubling time has a significant effect
when integrated out to LHC Run 4!

•  CPUs could be between x10 and x30
denser!

•  Clock speed stalled ~2005!

•  Single core performance is essentially also
stalled!

•  Driven now by energy performance!

•  Figure of merit is nJ per instruction!

•  Mobile devices and data centres are the
key volume markets!

•  Memory consumption is a huge driver now!

5!

Our software
developed here!

Silicon Diversity
•  Doubling transistor density does not double our computing throughput!

•  On the die we have more and more cores!

•  Lower memory per core!

•  Larger caches, but with decreasing payoffs !

•  Wide vector registers, ever harder to fully utilise!

•  Built in ‘specialist’ features, e.g., integrated GPUs in Intel Skylake!

•  Integrated network controllers — more System on a Chip (SoC)!

•  GPU type architectures throw away a lot of the assumptions of CPUs!

•  Banks of cores executing the same computational kernels!

•  Very fast, but very local memory (forget cache coherence)!

•  None of these features and architectures are trivial to take advantage of in our code!

•  Our frameworks and algorithms written for an earlier era and are hard to adapt!

6!

Modern Computing Hardware
•  Away from the detector itself we are firmly Commodity

Off The Shelf (COTS)!

•  Increased transistor density does not reduce all the
other costs involved in actually building a real server!

•  Or allow us to simply build computing systems with
higher throughput per $/£/€/CHF/Kn!

•  Disk: capacity still going up, but i/o rates are
basically the same as ever!

•  At the moment SSDs are not an affordable
replacement for 500PB of spinning disks!

•  Tape: Healthy progress (fewer technical challenges
than on disks), as ever slow to read back!

•  Network: Capacity keeps rising, allowing cross site
boundaries to become less important, but data
needs to be read from a physical device somewhere
- and so far the network has been ~free!

7!

RAL Tier1 CPU Costs with
projection!

David Britton, Andrew Sansum, GridPP!

Software Challenge

•  Current computing hardware evolution is not providing any more free lunches!

•  Demands on software to support our physics goals are increasing!

•  Higher trigger rates!

•  Higher pileup!

•  Need faster and better software!

•  Our software was written for a different era!

•  By people who have often now moved on to new areas!

•  We need to train a new generation of physicists in modern programming methods!

•  C++98 → C++11 → C++14!

•  Modern tools and development methods!

•  This is to say nothing of evolving our computing infrastructure on top of whatever
software we have to meet these challenges (virtualisation, clouds etc etc)!

8!

Framework Upgrades

•  LHC experiment software frameworks were developed in
the serial processing era!

•  As multi-core CPUs became more common trivial multi-
processing was used!

•  On N core launch N jobs, coarse grained parallelism!

•  First attempt to make this better was ATLAS’s AthenaMP!
•  Start Athena in serial mode, then fork worker processes

after initialisation!

•  Large memory structures (geometry, magnetic field) are
shared by Linux kernel!

•  However!

•  Unlikely to scale, even to Run3 parameters!

•  Use of opportunistic resources and Xeon Phi demands
even better memory/core performance than today!

•  Multi-threading is the future!

•  True heap level memory sharing between all threads!

•  (Far greater opportunities for making mistakes)!

9!

Memory!
Saving!

CMSSW Multi-threaded
•  Split the concept of event processing into global and stream!

•  Global sees the whole event and all transitions!

•  Stream sees some events, in a defined sequence!

•  c.f. an AthenaMP worker, on a thread!

•  Thread-safety is vital at the global level, less important at the stream level!

•  Allows for a factorisation of the problem for framework transition!

•  Good use made of static code checkers!

10! Christopher Jones, FNAL!

Gaudi

•  Gaudi framework was initially developed by
LHCb and later adopted by ATLAS!

•  Now being adapted to multi-threading!

•  Designed to exploit concurrency at many
levels!

•  Event level concurrency — multiple
events in flight!

•  Algorithm concurrency — independent
algorithms can run in parallel!

•  In-algorithm parallelism — heavy cpu
consumers can exploit parallelism
themselves (e.g., clustering, jet
algorithms)!

Multi-threaded processing
cartoon: each colour is a different

event, each shape a different
algorithm!

11!

Mini-Brunel and AtlasHive
•  Scaling of GaudiHive running LHCb mini-Brunel

reconstruction!
•  Linear scaling up to CPU core count!
•  Expected boost from hyperthreading with only 10 events in

flight!
•  Memory consumption only rises by 7% (limited

reconstruction however)!

12!

Benedikt Hegner, Danilo Piparo, CERN!

[Add ATLASHive]!

•  ATLAS Calorimeter testbed!

•  Best scaling x3.3 for 28% memory increase!

•  Concurrency was limited here due to
some serial components — expected
improvements seen!

•  Multi-threaded simulation close to working!

Charles Leggett, LBL!

Gaudi and ATLAS HLT
•  The efficiency of the ATLAS HLT requires partial event processing in a region of interest (RoI)!

•  ATLAS want to manage this with unmodified offline code (currently not possible)!

•  This was not a concept in Gaudi originally!

•  The extension to manage this is called an Event View!

•  Currently assessing the impact of a design with one view per RoI…!

•  Closer to the current HLT design, easier migration; harder scheduling problem!

•  …or one view per RoI type!

•  Larger issue to migrate current code; easier for the scheduler!

Ben Wynne!

13!

HLTs &
GPUs

•  Generally GPUs are much harder to use than OpenPower, ARM64 etc!

•  Limited C++ support!

•  Compilers still developing quite fast here — beware of vendor lock-in!
•  Very different memory model!

•  However, online processing is a far more controlled environment than any generic
grid site and has a more restricted workflow!

•  Opportunities for GPUs are greater!
•  e.g., ALICE have already deployed 50/50 split between GPU and CPU for their

Run 2 trigger farm!

•  Raw FLOP power of GPUs does make them an option which we must take seriously !

14!

ATLAS HLT GPU
demonstrator project

•  HLT track finding in Inner Detector porting efforts!

•  Track seeding is 50% of CPU spent on full scanned
events!

•  Careful validation of results — generally not bit for bit
identical, so need to check physics level validity!

•  Early results show a x1.8 overall speed-up when
running with a Tesla K80 GPU!

•  Also work to port of topo clustering, muon segment
finding and jet reconstruction!

•  However, further speed up requires porting the ‘long
tail’ of algorithms to GPU!

•  Diminishing returns in lines of code to port vs.
eventual speed up!

•  Need to also factor in costs of code maintenance
and costs of physical infrastructure!

•  Still under investigation — no decision for Run 3 yet,
with LHCb doing similar work, similarly with no firm
conclusion yet!

15! Dmitry Emeliyanov, John Baines!

ATLAS
Preliminary!

LHCb Run3 — Software Trigger

16!

Vava Gligorov, CERN!

•  30MHz events to be triggered in software!
•  100kB event size → software trigger processes 3TB/s!

•  Significant strain on CPU efficiency of the trigger software!
•  Need considerable software improvements!

Real Time Calibration
•  Don’t want to discard information unless trigger

produces “offline” quality reconstruction
directly!

•  Requires very fast and accurate calibration
in “real time” == a few hours!

•  HLT1 runs — first pass reconstruction!

•  All events then buffered to disks on the HLT
farm!

•  Real time calibration runs to assess calibration
and alignment!

•  HLT2 runs with updated alignment to produce
final outputs!

•  Most of farm occupied with HLT1 during data
taking!

•  Needs to be tuned to LHC data taking
efficiency!

17!

Alignment Workflow!

RICH Alignment!
Silvia Borghi, Chris Parkes!

Turbo Stream

•  Write ‘analysis-ready’ outputs DSTs directly online!

•  Calculate luminosity information and resurrect trigger candidates!

•  70kB/event → 5kB/event!

•  Ideal for analyses with very high signal yields!

•  Already running and producing physics during Run 2!

•  Full deployment in Run 3!

•  Trigger stops being binary, but discriminates different signals and selects
information to keep based on ultimate constraint of rate to offline!

•  N_events x N_event_size = data rate!

•  Can play with these parameters based on analysis needs!

•  Reduce offline resources, e.g., less need for reprocessing!

18!

Tracking — On the road…

•  HL LHC means high pileup ATLAS and CMS!

•  Track reconstruction rates go from 1M tracks/s to 60M tracks/s!

•  Combinatorics of charged particle tracking become extremely challenging for GPDs!

•  Even smart approaches have worse than linear scaling"

•  Impressive improvements for Run 2!

•  Option to throw more and more events in flight for Run 3, but memory is not free!

•  Current strategies will actually just not work for Run 4!

19!

Run3 → Run4!

Run1! LS1! Run2!

Future Tracking
•  Tricks for better scaling!

•  Truth tracking for MC!

•  Data: could seed tracks from track triggers (but track triggers are extremely difficult to simulate)!

•  Tracking from cellular automata parallelises much better!

•  Local problem, instead of global!

•  However, can the physics performance be maintained for ATLAS and CMS?!

•  Conformal mapping techniques (Hough transform) can parallelise much better!

•  But they don’t cope so well with material scattering!

•  Need recovery strategies for kinked tracks!

•  Maybe that will be machine learning!

•  Also want to vectorise!

•  Could give x8 speed up on 512bit registers !

•  Difficult and technically tricky work!

•  ACTS project factorises ATLAS tracking for FCC and other studies!

20!

Common Efforts: HEP Software Foundation Reconstruction Algorithm Forum!

Event Generation,
Simulation, etc.

•  Simulation eats up much of our distributed computing
resources!

•  Event generation becoming also important (NLO and
beyond generators are expensive)!

•  Pileup scaling does not really apply to simulation!

•  Digitisation scaling is ~linear with pileup!

•  But mixing-in pileup events is a nasty problem — either it’s
memory hungry or i/o intensive!

•  Fast simulation is increasingly important (ATLAS ISF
pioneered mixing fast and full simulation)!

•  Supported by fast tracking and reconstruction!

•  Some more radical approaches may bear fruit for HL-LHC!

•  GeantV prototype attempts to bring vectorisable code to
simulation!

•  Transport many particles in each vector register!

•  Bit it will require huge work to get the physics right in
GeantV and for experiments to manage to adopt it!

21!

ATLAS ISF!

Sim!EvtGen!

Distributed Computing:
Layered Service Structure

●  Experiment applications
(running jobs)
■  Written by physicists

●  Experiment production and data
management infrastructure

■  Written by computing experts
in the experiments

●  Common HEP application layer

■  Written by computing
specialists at CERN and other
laboratories

●  Grid middleware

■  Funded by EU FP6/7+H2020,
US DoE/NSF, national projects
and academic institutions

●  Local resources

■  Storage, batch, operating
system

22

Batch System Storage System

Computing Element Storage Element

Job Submission
System Data Catalogue

File Transfer
System

Monitoring and
Accounting Tools

Job definition,
distribution,
monitoring,

book-keeping

Data Management
Tools

Analysis applications

I
n
f
o
r
m
a
t
i
o
n
S
y
s
t
e
m

A
u
t
h
e
n
ti
c
a
ti
o
n
/
A
u
t
h
o
ri
z
a
ti
o
n

Does it all work? Yes!
●  Managed timely processing of all data without accumulating

backlog

●  Export of raw and processed data from CERN to Tier-1s
and Tier-2s

●  Production of Monte-Carlo simulated data samples at all
sites and replication to other locations for analysis

23

●  Data replication between ATLAS sites peaked at
1 PB/day at the end of 2012 when all year's data were
reprocessed and many people accessed them for analysis

●  Excellent data transfer efficiency
●  Success rate ~100%

2 GB/s

30 PB

1 PB/day

Daily average export rate from
CERN

Total export volume from CERN

Daily average data movement in 2012

●  Periodic reprocessing of all
data with better software,
calibrations and alignments

●  Distribution of reprocessed
data

●  Automatic increase and
decrease of the number
of replicas depending on
data popularity for
analysis (request rate for
each dataset by analysis
tasks)

 2016 Grid Production and Analysis

24

Concurrently Used CPU Cores by ATLAS Grid Jobs (daily average)

250k

An analysis example: Higgs search

 Online selection Offline selection Statistical
 and individual combination
 channel analysis analysis

Rate: 1 PB/s 1 GB/s
Total: 3 1013 GB 3 107 GB 105 GB 1 GB
People: many thousand 100-200 10-20

25

…

Great
Discovery

Computing Infrastructure Evolution
●  Computing infrastructures are never static

●  Since LHC experiments started developing their computing models 10 years ago, many

conditions have changed:

■  Much increased network bandwidth in Europe and North America

!  Also increased digital divide with respect to the South of the world

■  The unit cost of CPUs decrease faster than storage and network costs

!  Good for High-Performance Computing applications but trouble for Data Intensive ones

■  Commercial providers started offering virtualised ("cloud") computing services

!  If the market is moving towards the cloud technology our community needs to adapt

■  Distributed file systems can be deployed across the WAN

!  If the bandwidth is sufficient of course

26

Evolution of the Computing Models
●  Network bandwidth allows breaking the

hierarchical site topology

●  Distributed Storage Evolution:

■  Federated storage started in
ATLAS and CMS, now nearing production
use as a lightweight distributed file
access and caching system

●  Cloud Computing:
■  Potential to complement and augment

the grid
■  Adoption of virtualization by computing

facilities has begun
●  Web services + local caches

■  Software distribution to sites
■  Access to Oracle resident data

27

Hierarchy Mesh
Wide area networks
are very stable now

Grids and
Clouds

What about Storage ?

Even in the optimistic scenario,
we are still far from solving the
problem

Analysis data formats are the
main consumers.

With no AOD on disk (run Train
Analysis from AODs on TAPE)
you get x4 above the resource
projection

Optimistic Scenario!

The remaining gain must come from re-thinking of distributed data management, distributed
storage and data access.

A network driven data model allows to reduce the amount of storage, particularly for disk.
Tape today costs at least 4 times less than disk.

Computing infrastructure in HL-LHC

1 to 10 Tb links

Storage and Network Backbone 2026

10 to 100 Gb links

Storage and Network Backbone 2016

1 to 10 Tb links

Storage

Storage

Storage
Compute Compute

Compute

Compute

cache

cache

cache
Compute

•  Network-centric
infrastructure

•  Storage and Compute
loosely coupled

•  Storage on fewer data
centers in WLCG

•  Heterogeneous
computing facilities (Grid/
Cloud/HPC/ …)
everywhere

•  I/O optimisation and
pervasive caching

WLCG

Conclusions and Prospects
•  Experiments are all progressing on significant upgrades for Run 3!

•  Frameworks are evolving to multi-threading!
•  Migration of millions of lines of existing C++ will not be easy at all!

•  Need to train a new generation of coders in modern methods!

•  LHCb planning a software only trigger for Run 3!

•  Real time alignment system and Turbo Stream!
•  Still needs a large boost in software performance!

•  Study of GPGPUs might improve event selection at reduced costs!

•  Tracking for ATLAS and CMS must adapt to HL-LHC!

•  Very likely to bring revolutionary changes in software!
•  Event generation, simulation and digitisation all need to be improved as well!

•  Effort in these areas is critical to LHC experiments’ success!

•  Great software will increase physics return; poor software will hamper it!
•  Funding & effort are not significant!

•  Hope that HEP Software Foundation triggers efficiencies and new funding opportunities !

•  White Paper due 2017, rather late for Run 3!

30!

