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LHC to HL-LHC 

•  Major upgrades for LHCb and ALICE come for Run 3 (2021)!

•  LHCb: 40MHz readout with upgraded electronics and full software trigger, higher output rates!

•  ALICE: Upgrades to inner tracking and time projection chamber, 50kHz trigger less readout for 
Pb-Pb; new online/offline data reduction framework O2!

•  Major upgrades for ATLAS and CMS come for Run 4 (2026)!
•  New silicon inner tracker detectors with track triggers at L0/1 rates!

•  Must adapt to very high pileup (140-200) and much higher trigger rates!

•  Recall that tracking is combinatoric: factorial with pileup!
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High Luminosity LHC 

•  Very high pile up	

•  Very high trigger 
acceptance rates	

•  Very challenging computing 	
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Architecture 

•  The wider computing picture presents other challenges.!

•  The architectures become more diverse (accelerators, 
low power chips, GPUs, FPGAs….)!

•  The means by which compute is presented will also 
change!

•  Clouds remain a buzz phrase - but this mainly means 
virtualising the private hardware!

•  Commercial clouds currently can provide good burst 
capacity; leverage means University/institute provision 
will remain important!
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Processor Evolution 

•  Moore’s Law continues!

•  Doubling transistor density every ~24 
months!

•  Exact doubling time has a significant effect 
when integrated out to LHC Run 4!

•  CPUs could be between x10 and  x30 
denser!

•  Clock speed stalled ~2005!

•  Single core performance is essentially also 
stalled!

•  Driven now by energy performance!

•  Figure of merit is nJ per instruction!

•  Mobile devices and data centres are the 
key volume markets!

•  Memory consumption is a huge driver now!
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Silicon Diversity 
•  Doubling transistor density does not double our computing throughput!

•  On the die we have more and more cores!

•  Lower memory per core!

•  Larger caches, but with decreasing payoffs !

•  Wide vector registers, ever harder to fully utilise!

•  Built in ‘specialist’ features, e.g., integrated GPUs in Intel Skylake!

•  Integrated network controllers — more System on a Chip (SoC)!

•  GPU type architectures throw away a lot of the assumptions of CPUs!

•  Banks of cores executing the same computational kernels!

•  Very fast, but very local memory (forget cache coherence)!

•  None of these features and architectures are trivial to take advantage of in our code!

•  Our frameworks and algorithms written for an earlier era and are hard to adapt!
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Modern Computing Hardware 
•  Away from the detector itself we are firmly Commodity 

Off The Shelf (COTS)!

•  Increased transistor density does not reduce all the 
other costs involved in actually building a real server!

•  Or allow us to simply build computing systems with 
higher throughput per $/£/€/CHF/Kn!

•  Disk: capacity still going up, but i/o rates are 
basically the same as ever!

•  At the moment SSDs are not an affordable 
replacement for 500PB of spinning disks!

•  Tape: Healthy progress (fewer technical challenges 
than on disks), as ever slow to read back!

•  Network: Capacity keeps rising, allowing cross site 
boundaries to become less important, but data 
needs to be read from a physical device somewhere 
- and so far the network has been ~free!
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RAL Tier1 CPU Costs with 
projection!

David Britton, Andrew Sansum, GridPP!



Software Challenge 

•  Current computing hardware evolution is not providing any more free lunches!

•  Demands on software to support our physics goals are increasing!

•  Higher trigger rates!

•  Higher pileup!

•  Need faster and better software!

•  Our software was written for a different era!

•  By people who have often now moved on to new areas!

•  We need to train a new generation of physicists in modern programming methods!

•  C++98 → C++11 → C++14!

•  Modern tools and development methods!

•  This is to say nothing of evolving our computing infrastructure on top of whatever 
software we have to meet these challenges (virtualisation, clouds etc etc)!
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Framework Upgrades 

•  LHC experiment software frameworks were developed in 
the serial processing era!

•  As multi-core CPUs became more common trivial multi-
processing was used!

•  On N core launch N jobs, coarse grained parallelism!

•  First attempt to make this better was ATLAS’s AthenaMP!
•  Start Athena in serial mode, then fork worker processes 

after initialisation!

•  Large memory structures (geometry, magnetic field) are 
shared by Linux kernel!

•  However!

•  Unlikely to scale, even to Run3 parameters!

•  Use of opportunistic resources and Xeon Phi demands 
even better memory/core performance than today!

•  Multi-threading is the future!

•  True heap level memory sharing between all threads!

•  (Far greater opportunities for making mistakes)!
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CMSSW Multi-threaded 
•  Split the concept of event processing into global and stream!

•  Global sees the whole event and all transitions!

•  Stream sees some events, in a defined sequence!

•  c.f. an AthenaMP worker, on a thread!

•  Thread-safety is vital at the global level, less important at the stream level!

•  Allows for a factorisation of the problem for framework transition!

•  Good use made of static code checkers!
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Gaudi 

•  Gaudi framework was initially developed by 
LHCb and later adopted by ATLAS!

•  Now being adapted to multi-threading!

•  Designed to exploit concurrency at many 
levels!

•  Event level concurrency — multiple 
events in flight!

•  Algorithm concurrency — independent 
algorithms can run in parallel!

•  In-algorithm parallelism — heavy cpu 
consumers can exploit parallelism 
themselves (e.g., clustering, jet 
algorithms)!

Multi-threaded processing 
cartoon: each colour is a different 

event, each shape a different 
algorithm!
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Mini-Brunel and AtlasHive 
•  Scaling of GaudiHive running LHCb mini-Brunel 

reconstruction!
•  Linear scaling up to CPU core count!
•  Expected boost from hyperthreading with only 10 events in 

flight!
•  Memory consumption only rises by 7% (limited 

reconstruction however)!
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Benedikt Hegner, Danilo Piparo, CERN!

[Add ATLASHive]!

•  ATLAS Calorimeter testbed!

•  Best scaling x3.3 for 28% memory increase!

•  Concurrency was limited here due to 
some serial components — expected 
improvements seen!

•  Multi-threaded simulation close to working!

Charles Leggett, LBL!



Gaudi and ATLAS HLT 
•  The efficiency of the ATLAS HLT requires partial event processing in a region of interest (RoI)!

•  ATLAS want to manage this with unmodified offline code (currently not possible)!

•  This was not a concept in Gaudi originally!

•  The extension to manage this is called an Event View!

•  Currently assessing the impact of a design with one view per RoI…!

•  Closer to the current HLT design, easier migration; harder scheduling problem!

•  …or one view per RoI type!

•  Larger issue to migrate current code; easier for the scheduler!

Ben Wynne!
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HLTs & 
GPUs 

•  Generally GPUs are much harder to use than OpenPower, ARM64 etc!

•  Limited C++ support!

•  Compilers still developing quite fast here — beware of vendor lock-in!
•  Very different memory model!

•  However, online processing is a far more controlled environment than any generic 
grid site and has a more restricted workflow!

•  Opportunities for GPUs are greater!
•  e.g., ALICE have already deployed 50/50 split between GPU and CPU for their 

Run 2 trigger farm!

•  Raw FLOP power of GPUs does make them an option which we must take seriously !
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ATLAS HLT GPU  
demonstrator project 

•  HLT track finding in Inner Detector porting efforts!

•  Track seeding is 50% of CPU spent on full scanned 
events!

•  Careful validation of results — generally not bit for bit 
identical, so need to check physics level validity!

•  Early results show a x1.8 overall speed-up when 
running with a Tesla K80 GPU!

•  Also work to port of topo clustering, muon segment 
finding and jet reconstruction!

•  However, further speed up requires porting the ‘long 
tail’ of algorithms to GPU!

•  Diminishing returns in lines of code to port vs. 
eventual speed up!

•  Need to also factor in costs of code maintenance 
and costs of physical infrastructure!

•  Still under investigation — no decision for Run 3 yet, 
with LHCb doing similar work, similarly with no firm 
conclusion yet!

15! Dmitry Emeliyanov, John Baines!

ATLAS 
Preliminary!



LHCb Run3 — Software Trigger 
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Vava Gligorov, CERN!

•  30MHz events to be triggered in software!
•  100kB event size → software trigger processes 3TB/s!

•  Significant strain on CPU efficiency of the trigger software!
•  Need considerable software improvements!



Real Time Calibration 
•  Don’t want to discard information unless trigger 

produces “offline” quality reconstruction 
directly!

•  Requires very fast and accurate calibration 
in “real time” == a few hours!

•  HLT1 runs — first pass reconstruction!

•  All events then buffered to disks on the HLT 
farm!

•  Real time calibration runs to assess calibration 
and alignment!

•  HLT2 runs with updated alignment to produce 
final outputs!

•  Most of farm occupied with HLT1 during data 
taking!

•  Needs to be tuned to LHC data taking 
efficiency!
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Alignment Workflow!

RICH Alignment!
Silvia Borghi, Chris Parkes!



Turbo Stream 

•  Write ‘analysis-ready’ outputs DSTs directly online!

•  Calculate luminosity information and resurrect trigger candidates!

•  70kB/event → 5kB/event!

•  Ideal for analyses with very high signal yields!

•  Already running and producing physics during Run 2!

•  Full deployment in Run 3!

•  Trigger stops being binary, but discriminates different signals and selects 
information to keep based on ultimate constraint of rate to offline!

•  N_events x N_event_size = data rate!

•  Can play with these parameters based on analysis needs!

•  Reduce offline resources, e.g., less need for reprocessing!

18!



Tracking — On the road… 

•  HL LHC means high pileup ATLAS and CMS!

•  Track reconstruction rates go from 1M tracks/s to 60M tracks/s!

•  Combinatorics of charged particle tracking become extremely challenging for GPDs!

•  Even smart approaches have worse than linear scaling"

•  Impressive improvements for Run 2!

•  Option to throw more and more events in flight for Run 3, but memory is not free!

•  Current strategies will actually just not work for Run 4!
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Run3 → Run4!

Run1! LS1! Run2!



Future Tracking 
•  Tricks for better scaling!

•  Truth tracking for MC!

•  Data: could seed tracks from track triggers (but track triggers are extremely difficult to simulate)!

•  Tracking from cellular automata parallelises much better!

•  Local problem, instead of global!

•  However, can the physics performance be maintained for ATLAS and CMS?!

•  Conformal mapping techniques (Hough transform) can parallelise much better!

•  But they don’t cope so well with material scattering!

•  Need recovery strategies for kinked tracks!

•  Maybe that will be machine learning!

•  Also want to vectorise!

•  Could give x8 speed up on 512bit registers !

•  Difficult and technically tricky work!

•  ACTS project factorises ATLAS tracking for FCC and other studies!
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Event Generation, 
Simulation, etc. 

•  Simulation eats up much of our distributed computing 
resources!

•  Event generation becoming also important (NLO and 
beyond generators are expensive)!

•  Pileup scaling does not really apply to simulation!

•  Digitisation scaling is ~linear with pileup!

•  But mixing-in pileup events is a nasty problem — either it’s 
memory hungry or i/o intensive!

•  Fast simulation is increasingly important (ATLAS ISF 
pioneered mixing fast and full simulation)!

•  Supported by fast tracking and reconstruction!

•  Some more radical approaches may bear fruit for HL-LHC!

•  GeantV prototype attempts to bring vectorisable code to 
simulation!

•  Transport many particles in each vector register!

•  Bit it will require huge work to get the physics right in 
GeantV and for experiments to manage to adopt it!
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Distributed Computing: 
Layered Service Structure 

●  Experiment applications  
(running jobs) 
■  Written by physicists 

●  Experiment production and data 
management infrastructure 

■  Written by computing experts 
in the experiments 

●  Common HEP application layer 

■  Written by computing 
specialists at CERN and other 
laboratories 

●  Grid middleware 

■  Funded by EU FP6/7+H2020, 
US DoE/NSF, national projects 
and academic institutions 

●  Local resources 

■  Storage, batch, operating 
system 
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Batch System Storage System 

Computing Element Storage Element 

Job Submission 
System Data Catalogue 

File Transfer 
System 

Monitoring and 
Accounting Tools 

Job definition, 
distribution, 
monitoring,  

book-keeping 

Data Management 
Tools 

Analysis applications 
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Does it all work? Yes! 
●  Managed timely processing of all data without accumulating 

backlog 

●  Export of raw and processed data from CERN to Tier-1s 
and Tier-2s 

●  Production of Monte-Carlo simulated data samples at all 
sites and replication to other locations for analysis 
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●  Data replication between ATLAS sites peaked at  
1 PB/day at the end of 2012 when all year's data were 
reprocessed and many people accessed them for analysis 

●  Excellent data transfer efficiency 
●  Success rate ~100% 

2 GB/s  

30 PB 

1 PB/day 

Daily average export rate from 
CERN 

Total export volume from CERN 

Daily average data movement in 2012 

●  Periodic reprocessing of all 
data with better software, 
calibrations and alignments 

●  Distribution of reprocessed 
data 

●  Automatic increase and 
decrease of the number 
of replicas depending on 
data popularity for 
analysis (request rate for 
each dataset by analysis 
tasks) 



 2016 Grid Production and Analysis 
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Concurrently Used CPU Cores by ATLAS Grid Jobs (daily average) 

250k 



An analysis example: Higgs search 

  Online selection          Offline selection      Statistical 
     and individual         combination 
             channel analysis   analysis 

Rate:  1 PB/s    1 GB/s 
Total: 3 1013 GB   3 107 GB                105 GB              1 GB 
People:        many thousand                        100-200   10-20 
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Computing Infrastructure Evolution  
●  Computing infrastructures are never static 

●  Since LHC experiments started developing their computing models 10 years ago, many  

conditions have changed: 

■  Much increased network bandwidth in Europe and North America 

!  Also increased digital divide with respect to the South of the world 

■  The unit cost of CPUs decrease faster than storage and network costs 

!  Good for High-Performance Computing applications but trouble for Data Intensive ones 

■  Commercial providers started offering virtualised ("cloud") computing services 

!  If the market is moving towards the cloud technology our community needs to adapt 

■  Distributed file systems can be deployed across the WAN 

!  If the bandwidth is sufficient of course 
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Evolution of the Computing Models 
●  Network bandwidth allows breaking the  

hierarchical site topology 

●  Distributed Storage Evolution: 

■  Federated storage started in  
ATLAS and CMS, now nearing production  
use as a lightweight distributed file  
access and caching system  

●  Cloud Computing: 
■  Potential to complement and augment  

the grid 
■  Adoption of virtualization by computing 

facilities has begun 
●  Web services + local caches 

■  Software distribution to sites 
■  Access to Oracle resident data 
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Hierarchy Mesh 
Wide area networks  
are very stable now 

Grids and 
Clouds 



What about Storage ?  

Even in the optimistic scenario, 
we are still far from solving the 
problem 

Analysis data formats are the 
main consumers.  

With no AOD on disk (run Train 
Analysis from AODs on TAPE) 
you get x4 above the resource 
projection 

Optimistic Scenario!  

The remaining gain must come from re-thinking of distributed data management, distributed 
storage and data access.  

A network driven data model allows to reduce the amount of storage, particularly for disk. 
Tape today costs at least 4 times less than disk.   



Computing infrastructure in HL-LHC 

1 to 10 Tb links 

Storage and Network Backbone 2026  

10 to 100 Gb links 

Storage and Network Backbone 2016  

1 to 10 Tb links 

Storage 

Storage 

Storage 
Compute Compute 

Compute 

Compute 

cache 

cache 

cache 
Compute 

•  Network-centric 
infrastructure 

•  Storage and Compute 
loosely coupled 

•  Storage on fewer data 
centers in WLCG 

•  Heterogeneous 
computing facilities (Grid/
Cloud/HPC/ …) 
everywhere  

•  I/O optimisation and 
pervasive caching 

WLCG 



Conclusions and Prospects 
•  Experiments are all progressing on significant upgrades for Run 3!

•  Frameworks are evolving to multi-threading!
•  Migration of millions of lines of existing C++ will not be easy at all!

•  Need to train a new generation of coders in modern methods!

•  LHCb planning a software only trigger for Run 3!

•  Real time alignment system and Turbo Stream!
•  Still needs a large boost in software performance!

•  Study of GPGPUs might improve event selection at reduced costs!

•  Tracking for ATLAS and CMS must adapt to HL-LHC!

•  Very likely to bring revolutionary changes in software!
•  Event generation, simulation and digitisation all need to be improved as well!

•  Effort in these areas is critical to LHC experiments’ success!

•  Great software will increase physics return; poor software will hamper it!
•  Funding & effort are not significant!

•  Hope that HEP Software Foundation triggers efficiencies and new funding opportunities !

•  White Paper due 2017, rather late for Run 3!
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