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1. The main aim of this talk is to apply our maximum inequality  and 

transference theorem [1,2] - presented in the next section – to the following 

problem which is an important subtask of many problems  of machine learning, 

scheduling theory and discrepancy theory [3-8]. 

Find or estimate the minimum in       the Steinitz functional 


k

inkx x
1 )(1 ||,||max)(   

where ),...,( 1 nxxx      is a fixed collection of elements  of a normed space  

X ,  and  }...,,1{}...,,1{: nn   is a permutation. 

The peculiarity of the related applied problems is that   n, the dimension of X ,   

is very large, so that the brute force idea as a rule does not work.  

The problem was posed by E.Steinitz  [9] who was solving the question on sum 

range of a conditionally convergent series in a finite dimensional space (the 

generalization of the famous Riemann problem). If time permits we’ll come back 

to this and other related nice analytical problems (among them to the open so far 

Kolmogorov-Garsia problem on the system of almost everywhere convergence of 

a rearranged orthogonal sequence). 

 Literature: [1] S.Chobanyan, G.Giorgobiani, Lecture Notes in Math.,1391, 1987, 

33-46;[2] S.Chobanyan, Birkhauser, Prog. Probab. 35, 1994, 3-29; [3] 

S.Sevastyanov, Discrete Applied Math.;  [4] J.Beck, V.T.Sos, Handbook in 

Combinatorics, v.2, Elsevier Sciernce B.V. and MIT Press, 1995;  [5] N.Makai, Appl. 

Math. Comp., 150, 2004, 785-801; [6] L.Chobanyan, S.Chobanyan, Giorgobiani, 

Bull. Georgian  National Acad. Sci., 5, 2011, 16-21;  [7]  L.Chobanyan, 

V.V.Kvaratskhelia, 9th  International Conference CSIT-2013, Yerevan, Armenia, 

Proceedings: pp.58-60, 2013; [8]N.Harvey, S.Samadi, Workshop and Conference 

Proceedings 35, 1-18;2014; [9] E.Steinitz, J.Reine Angew. Math., 143 (1913), 128-

175. 

  



2. The main maximum inequalities. In this talk we apply the following two 

maximum inequalities to problems related to the calculation or estimation of the 

Steinitz functional. 

Theorem 1. [1,2] Let Xxx n ,...,1  be a collection of elements of a normed 

space  .0
1


n

ixwithX        Then 

a. For any collection of signs  ),...,( 1 n  there is a permutation 

},...,1{},...,1{: nn   such that 

;||||max2||||max||||max
1 )(11111   
k

ink

k

iink

k

ink xxx  There is 

an explicit one-to-one correspondencebetween ),...,( 1 n  and  )( . 

b. (Transference Theorem). There is a permutation },...,1{},...,1{: nn   

such that  

||||max||||max
1 )(11 )(1   
k

iink

k

ink xx    

for any collection of signs  ),...,( 1 n  . 

 

Literature. [1] S.Chobanyan, G.Giorgobiani, Lecture Notes in Math.,1391, 1987, 

33-46;[2] S.Chobanyan, Birkhauser, Prog. Probab. 35, 1994, 3-29; 

  



3. The greedy algorithm is not in general the best.  Given vectors 

Xxx n ...,,1  a greedy algorithm  chooses at each step a vector that 

minimizes the norm of the next partial sum.  In other words, on step 1 it 

chooses an element 
1nx  that has a minimum norm. On step 2 it selects an 

element  
122

, nnn xxx  such that 

||||||||
121 knnnn xxxx   for any    1nnk  ,  etc. 

The following example constructed by Jakub Wojtaszchik  (oral communication) 

shows that a greedy algorithm is not in general the best one even in a two-

dimensional space.  

Example. Consider  n  groups of vectors of  
2

l  each consisting  of the three 

following vectors: (1,1), (2,-3), and (-3,2). Obviously, the greedy algorithm 

chooses  at the first   n  steps the vectors (1,1),…, (1,1).  Therefore,  for the 

optimal permutation  o and greedy permutation g  we have  respectively 

;3||...||max )()1(1  knk oo
xx   

and  .2||...||max )()1(1  nxx knk gg   

In [1] we show that such sort of an example can be constructed in any 2-

dimensional normed space. 

 

 

 

Literature. [1] G.Chelidze, S.Chobanyan, G.Giorgobiani, V.Kvaratskhelia, Bull. 

Georgian National Acad. Sci, 4, 2010, 5-7.  



4. Corollaries to the Transference theorem (Theorem 1b).  

The Transference theorem allows us to get a permutation theorem given a sign 

theorem. Moreover, as we’ll see in Section 5, if the sign algorithm is constructive, 

then a desired  permutation can also be found constructively. As a first example 

we consider the classical Steinitz permutation theorem that we get from the 

following Grinberg-Sevostyanov sign theorem . 

 

Theorem 2 [1,2]. Let X be a normed space of dimension 

.,...,1,1||||,...,,, 1 nixXxxd in    Then there exists  a collection of signs  

),...,( 1 n    such that 

dxx kknk 2||...||max 111   . 

The permutation version of Theorem 2 found by the Transference theorem can be 

stated as follows. 

Corollary. The Steinitz inequality. Let X be a normed space of dimension 

nixXxxd in ,...,1,1||||,...,,, 1    and .0...1  nxx      Then there exists  

a permutation },...,1{},...,1{: nn    such that 

.2||...||max )()1(1 dxx knk    

Remark. Steinitz [3] proved his inequality straightforwardly, however a proof 

through the sign version additionally allows to find the desired permutation 

constructively provided that the collection of signs in the sign version can be 

obtained constructively, by use of the Transference theorem  (see Section 5). 

 

Another sign-permutation duality example is provided by the case of the space 

l . 

Theorem 3 (Spencer [4]). Let nixXxxlX in

d ,...,1,1||||,...,,, 1   .  

Then there exists  a collection of signs  ),...,( 1 n    such that 

.2ln2||...||max 111 dnxx kknk    

 



Remark. Spencer also gives an effective way of finding thetas. This means that the 

following dual permutational counterpart also is provided by an effective 

construction of the permutation (see Section 5). 

Corollary.  Let nixXxxlX in

d ,...,1,1||||,...,,, 1      and 

.0...1  nxx      Then there exists  a permutation },...,1{},...,1{: nn    such 

that 

.2ln2.||...||max )()1(1 dnxx knk    

 

Literature. [1] V.S.Grinberg and S.V.Sevastyanov, Funkts. Analiz I Prilozh, 14, 1980, 

56-57 (in Russian); [2] I.Barani and V.S.Grinberg, Linear Algebra Appl., 41, 1981, 1-

9;  [3] E.Steinitz, J.Reine Ang. Mathematik, 143, 1913, 128-175, [4] J.Spencer, 

J.Combinatorial Theory, Ser. B, 23, 1977, 68-74. 

 

 

 

 

  

  



5. Corollary to the Transference theorem.  In this section we show that the 

algorithm for near optimal permutation  for 


k

inkx x
1 )(1 ||,||max)(   can be reduced to the algorithm for near 

optimal sign. The reduction is based on the Transference theorem (Theorem 

1b).  

Theorem 4.  Let X be a normed space, 

.0...,,...,1,1||||,...,, 11  nin xxandnixXxx  

Assume  that for any permutation },...,1{},...,1{: nn    there is an 

algorithm with a polynomial complexity to define   ),...,( 1 n  such that 

)1(,||||max
1 )(1  

k

iink Dx   

.ondependnotdoesDwhere   

Then    for any  0     there is an algorithm with a polynomial complexity 

to define  },...,1{},...,1{: nn   such that  

.||||max
1 )(1  

k

ink Dx   

The complexity of the algorithm is )/log(( nC  , where C is the 

complexity of the sign algorithm (for finding ).  

Literature. [1] N.Makai, Appl. Math. Comp., 150, 2004, 785-801;  

[6] L.Chobanyan, S.Chobanyan, Giorgobiani, Bull. Georgian  National Acad. Sci., 5, 

2011, 16-21; [7]  L.Chobanyan, V.V.Kvaratskhelia, 9th  International Conference 

CSIT-2013, Yerevan, Armenia, Proceedings: pp.58-60, 2013; [8]N.Harvey, 

S.Samadi, Workshop and Conference Proceedings 35, 1-18;2014;  

6. Applying the Monte-Carlo.   Let ,2lX 

.0...,,...,1,1||||,...,, 11  nin xxandnixXxx   

Let us introduce the notations: 

  
k

iink

k

ink xxxx
1 )(11 )(1 ,||||max||,||||max||    

We choose at random k collections 
)1()1(

1 ,..., k  each of them being a collection 

of n signs and choose among them  1  , that one, for which || )1(

ix   attains  its  



minimum.  Then we create the permutation 2 generated by the initial 

permutation (denote it by 1 ) and 1  according to Theorem 1(a). Therefore, 

we’ll have 

.||
2

1
||

2

1
|| 1112

 xxx   

Then we choose at random (independently) 
)2()2(

1 ,..., k  and among them 

choose 2  minimizing || )2(

2 ix  . Carrying out these iterations 1l   times we 

find a sequence of permutations  l ,...,1  such that for the last permutation 

we get the following inequality 

)1(.||max)
2

1
1(||

2

1
||

1 ilill il
xxx      

We now show that  l for sufficiently large l is a near optimal permutation. 

For these purposes  let us make sure that the following probability is small 

enough after an appropriate choice of  landkC, :  
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)|(|)||(max
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The next step is to use the estimation of the tail probability for the Rademacher  

random variables with values in a normed space (in our case it is the space 
dl 2 ) 

(see the monograph by M.Ledoux and M.Talagrand [1], p.101). Then we get 

.2)||(max 321

)(
n

Cn

k

iili elnCxP




 

 



Up to now   l  and  k    were arbitrary. Letting   kl  , as well as   

4ln32 C    we get  

).2(
2

)||(max
1)(  

kiili

k
nCxP 

 

These computations along with (1) imply that with large probability (which can be 

made arbitrarily close to one) the following inequality holds 

)3(.||
2

1
||

1
nCxx

ll
   

According to Theorem 1b, the order of n  is correct, and  

it is also  known that it can not be improved. 

Therefore, we proved the following  

Theorem 5.  The random algorithm described in this section leads to the  nearly 

optimal  permutation. The algorithm runs in a polynomial time. 

 

Literature. 

M.Ledoux, M.Talagrand, Probability in Banach Spaces, 1991. 

 


